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The last century saw the breakdown of the dream of the mechanical universe where it was imagined 

that given sufficient intellect and effort all truths could be discovered and known.  Gödel’s 

Incompleteness Theorems, which form the basis for the concept of Undecidability, revealed that there 

exist true statements that cannot be proven to be true.  The analogue in computer science is the 

concept of Uncomputability, which is based on the proofs by Alonzo Church and Alan Turing that the 

Entscheidungsproblem, the Decision Problem, cannot be generally solved.  This means that there exists 

no general algorithm that can logically decide whether a given statement is provable from a set of 

axioms. 

While these revelations shook the mathematical community, it is reasonable to ask, in retrospect, 

whether this is at all surprising.  These theoretical results were augmented by experimental results in 

quantum mechanics which demonstrated that the universe at the smallest of scales was inherently 

unpredictable in the sense that only the probabilities of outcomes could be predicted rather than the 

outcomes themselves.  This inherent unpredictability of quantum mechanics was later supplemented 

with the unpredictability of a number of nonlinear dynamical systems which exhibited sensitive 

dependence on initial conditions.  Together, these experimental demonstrations of inherent 

unpredictability in conjunction with the theoretical results of undecidability and uncomputability served 

to decimate our confidence in anything like a mechanical clockwork picture of the universe. 

Mathematics has a long history of not dealing well with uncertainty.  The drowning of Hippasus 

following his discovery of irrational numbers1 may have been one of the first examples of 

Mathematicians desperately defending their dogmatic Worldview.  Certainly, the tortuous history of 

Probability Theory, which includes Frequentism tying Bayesian Probability Theory up in the basement 

and holding it hostage for nearly a century, is another example of the Mathematician’s strained 

relationship with uncertainty.  But Kurt Gödel, a Mathematician, played their game well and delivered a 

theorem that proved undecidability with certainty.  This undeniably shook the Mathematical Worldview, 

but was this Worldview shaken enough?  Perhaps Mathematics should have been sufficiently stirred to 

follow the lead of the Physical Sciences and learn to embrace uncertainty when necessary. 

The Unreasonable Effectiveness of Mathematics 

When I was in graduate school, a question came to me that I couldn’t answer.  I wondered about 

addition and it bothered me that it wasn’t quite clear to me how we knew that we should apply the 

operation of addition to numbers of things when they are combined.   

Was this a fact that had been proved at some point, and if so, how?   

Or was this discovered over time through experience, or rather, experiments?   

Or is the operation of addition simply defined to work?   

Or is the operation of addition somehow inherent to the concept of number? 

I asked my fellow students, and it quickly became clear that none of them really knew.  In fact, many of 

them had never really thought about it, which wasn’t surprising since it wasn’t something I had ever 

 
1 It is possible that this story is not entirely accurate. 



noticed until it struck me.  I then began to ask my professors, which is where this situation became very 

disappointing.  None of them could answer the question, and only a handful admitted it.  Instead, 

several of them declared that it was obvious and proceeded to make fun of me for asking the question.   

For a short while, I was known as the graduate student who didn’t understand why we add numbers.  

Fortunately, I was smart enough to recognize this as a sign of their ignorance.  And it worried me.  It 

worried me that such a fundamental question, which should really have a straightforward answer, had 

completely eluded all of these otherwise intelligent people.  I could not help but feel that something was 

seriously wrong somewhere. 

It was only a few years later that I stumbled on the following quote from the mathematician Richard 
Hamming in his 1980 paper that paid homage to Eugene Wigner’s famous paper (Wigner 1990) with 
almost the same title, “The Unreasonable Effectiveness of Mathematics in the Natural Sciences”, 
published twenty years earlier: 

“I have tried, with little success, to get some of my friends to understand my 
amazement that the abstraction of integers for counting is both possible and useful.  
To me, this is one of the strongest examples of the unreasonable effectiveness of mathematics.   
Indeed, I find it both strange and inexplicable.” 

- Richard Hamming (Hamming, 1980) 

I felt some relief and vindication that I was not alone in my wonderment.  More importantly, I 
came to appreciate that the solution was not obvious and must be very deep.  The question as to 
why we add the numbers that represent sets of objects when we combine those sets of objects 
lies at the very heart of Wigner’s amazement of the unreasonable effectiveness of mathematics. 

Although profound, the solution really is simple.  The effectiveness of mathematics is reasonable 
because mathematics is designed to work.  But the fact that it is designed is subtle, in part 
because Mathematics masquerades as something that is discovered through absolute reason.  In 
that Worldview, there is no room for design and there is certainly no room for uncertainty! 

The mathematics of addition is designed to be consistent with the basic symmetries of 
combination, and it is unique up to isomorphism (invertible transform), which gives the illusion of 
it having been dictated by God.  This aspect of the unreasonable effectiveness of mathematics was 
the topic of one of my earlier FQXi essays (Knuth, 2015), and it pays to look at it more closely here. 

Measure, Probability, and Quantum 

In science, we quantify things so that we can rank them: quantity, mass, volume, voltage, probability.  

To maintain such rankings, quantities must be assigned consistently, especially in situations in which 

things are combined or partitioned to form other numbers of things.   

Consider an operator ⊕ that combines disjoint objects 𝐴 and 𝐵 into a composite object 𝐴 ⊕ 𝐵.  In 

general, for objects that have 𝑁 comparable qualities, we can quantify object 𝐴 with an 𝑁-tuple of scalar 

quantities (numbers) 𝑎 = {𝑎1, 𝑎2, ⋯ , 𝑎𝑁}, and quantify object 𝐵 with the 𝑁-tuple 𝑏 =  {𝑏1, 𝑏2, ⋯ , 𝑏𝑁}.  

Since the composite object 𝐴 ⊕ 𝐵 is related to both objects 𝐴 and 𝐵, we can expect that the 𝑁-tuple 

used to quantify 𝐴 ⊕ 𝐵 must a function of both 𝑁-tuples {𝑎1, 𝑎2, ⋯ , 𝑎𝑁} and {𝑏1, 𝑏2, ⋯ , 𝑏𝑁}. 



We have shown (Knuth, 2009; 2015; Skilling and Knuth, 2018) that the basic symmetries of the operator 

⊕ suffice to constrain the quantification of 𝐴 ⊕ 𝐵.  Specifically, if we have Closure, such that 𝐴 ⊕ 𝐵 is 

considered to be the same type of object as 𝐴 and 𝐵, and the combination operator ⊕ satisfies: 

 Commutativity 𝐴 ⊕ 𝐵 = 𝐵 ⊕ 𝐴   (1) 

and 

 Associativity 𝐴 ⊕ (𝐵 ⊕ 𝐶) = (𝐴 ⊕ 𝐵) ⊕ 𝐶 (2) 

so that objects can be shuffled without changing the result, and we can conceivably continue to 

combine equivalent but disjoint objects, then one can show (Skilling and Knuth, 2018) that 𝐴 ⊕ 𝐵 is 

represented (up to isomorphism) by the component-wise sum 𝑎 + 𝑏 =  {𝑎1 + 𝑏1, 𝑎2 + 𝑏2, ⋯ , 𝑎𝑁 + 𝑏𝑁}. 

In the case where the objects are fully commensurable so that there is only one relevant quantity then 

instead of an 𝑁-tuple quantification, we have a scalar quantification, resulting in Measure Theory.  

However, here we have additivity is a theorem rather than the usual axiom.   

Hence the answer to my question! 

We can consider logical statements and quantify the degree to which one logical statement implies 

another by a scalar quantity, which we call the probability.  For example, we can consider the degree, 

𝑃(𝐴 | 𝐼), to which prior information 𝐼 implies a logical statement 𝐴, and the degree, 𝑃(𝐵 | 𝐼), to which 

prior information 𝐼 implies a logical statement 𝐵.  For disjoint statements 𝐴 and 𝐵, the logical OR of 

statements 𝐴 and 𝐵 results in a logical statement, denoted 𝐴 ∨ 𝐵, (closure).  Furthermore, the logical OR 

is both commutative and associative, which means that we can write the probability of the statement 

𝐴 ∨ 𝐵 as the sum of probabilities:  

𝑃(𝐴 ∨ 𝐵 | 𝐼) = 𝑃(𝐴 | 𝐼) + 𝑃(𝐵 | 𝐼).      (3) 

This is the Sum Rule of probability.  If statements 𝐴 and 𝐵 are not disjoint, the Sum Rule takes the more 

general form (Knuth, 2009) 

𝑃(𝐴 ∨ 𝐵|𝐼) = 𝑃(𝐴|𝐼) + 𝑃(𝐵|𝐼) − 𝑃(𝐴 ∧ 𝐵|𝐼),    (4) 

where 𝐴 ∧ 𝐵 denotes the logical AND of statements 𝐴 and 𝐵. 

We can also consider chaining logical statements, and again, associativity of chaining results in a 

quantification that is isomorphic to additivity.  However, we also have distributivity over the 

combination, ∨, which results in a Product Rule 

𝑃(𝐴|𝐶) = 𝑃(𝐴|𝐵) 𝑃(𝐵|𝐶),     (5) 

which can be expressed in the more familiar, more general form (Knuth, 2009)  

𝑃(𝐴 ∧ 𝐵|𝐶) = 𝑃(𝐴|𝐵 ∧ 𝐶) 𝑃(𝐵|𝐶).     (6) 

As a result, we have a derivation of Probability Theory. 

As a final example, we consider the quantification of the interaction between a target (e.g. a beam of 

particles) and a probe.  We postulate that this requires two numbers, which we call the Pair Postulate 

(Goyal, Knuth, Skilling 2010; Skilling and Knuth 2019).  We can consider combining beams in parallel as 

well as series, and as before, the basic symmetries of shuffling hold, along with consistency with 



probability so that we can make inferences.  This results in the Feynman Sum and Product Rules for 

quantum amplitudes: 

𝑢 + 𝑣 =  (
𝑢1

𝑢2
) +  (

𝑣1

𝑣2
) =  (

𝑢1 + 𝑣1

𝑢2 + 𝑣2
)     (4) 

𝑢 ∘ 𝑣 =  (
𝑢1𝑣1 −  𝑢2𝑣2

𝑢1𝑣2 +  𝑢2𝑣1
)     (5) 

along with the Born Rule 𝑃(𝑢) =  |𝑢|2 (Goyal, Knuth, Skilling 2010; Skilling and Knuth 2019). 

We have outlined the derivation of three theories: Measure Theory, Probability Theory, and the 

Feynman Rules for manipulating Quantum Amplitudes.  These derivations rely on consistent 

quantification, where one assigns numbers to objects in a way that is consistent with respect to 

underlying symmetries and the underlying order.  The result is a set of constraint equations, typically 

recognized as laws, which enforce those symmetries.  This is another way, distinct from, but equally 

profound as, Noether’s theorem, in which symmetries give rise to laws.  

Lattice Theory 

Here we make a short detour into order theory, which is also known as lattice theory, so that we can 

think carefully about Hypothesis Spaces.  A partially ordered set is a set of elements along with a binary 

ordering relation, generally denoted ≤, that obeys the following properties for elements 𝑥, 𝑦, and 𝑧: 

  For all 𝑥, 𝑥 ≤ 𝑥     Reflexivity 

  If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥, then 𝑥 = 𝑦   Antisymmetry 

  If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧, then 𝑥 ≤ 𝑧   Transitivity 

This structure is referred to as being partially ordered, since it is not assured that every element of the 

poset can be compared to every other element.  That is, when there exist two elements 𝑥 and 𝑤, such 

that 𝑥 ≰ 𝑤 and 𝑤 ≰ 𝑥, we say that 𝑥 and 𝑤 are incomparable, denoted 𝑥 ∥  𝑤.  The ordering relation 

𝑥 ≤ 𝑧 is read either as 𝑥 is less than 𝑧, 𝑥 is included by 𝑧, or 𝑧 includes 𝑥.  If 𝑥 ≤ 𝑧 and there does not 

exist an element 𝑦 such that 𝑥 ≤ 𝑦 ≤  𝑧, then it is said that 𝑧 covers 𝑥. 

A lattice is a poset such that for every pair of elements, 𝑢 and 𝑣, there exists a least upper bound called 

the join, denoted 𝑢 ∨ 𝑣, as well as a greatest lower bound called the meet, denoted 𝑢 ∧ 𝑣.  While the 

join of two elements always exists in a lattice, there can be elements, called join-irreducible elements, 

that cannot be expressed as the join of two other distinct elements.  The lattice meet and join are 

commutative and associative.  

The consistency relation 

  𝑥 ≤ 𝑦  𝑖𝑚𝑝𝑙𝑖𝑒𝑠  
𝑥 ∨ 𝑦 = 𝑦
𝑥 ∧ 𝑦 = 𝑥     (6)  

highlights the fact that there are two equivalent perspectives:  focusing on the ordering relation and the 

partial ordering of the elements, one has a lattice; whereas by viewing the join and meet as algebraic 

operations, one has an algebra.  Lattices are algebras. 

 

  



Hypothesis Spaces 

“Supposing we hit him by mistake?”, said Piglet anxiously.   

“Or supposing you missed him by mistake”, said Eeyore.  

“Think of all the possibilities Piglet before you settle down to enjoy yourselves.” 

— A. A. Milne 

The foundation of a Hypothesis Space is an exhaustive set of 𝑁 mutually exclusive logical statements 

called the atomic statements, which we denote as {𝑥1, 𝑥2, ⋯ , 𝑥𝑁}.  The space is formed by taking the 

logical disjunction (OR) of all possible subsets of these atomic statements.  Logical implication, denoted 

𝑥 → 𝑦, is a binary ordering relation 𝑥 ≤ 𝑦, so that a set of logical statements ordered by implication is a 

poset.   

More importantly, this poset forms a Boolean lattice for which the lattice join, ∨, is the logical OR 

operation, and the lattice meet, ∧, is the logical AND, where the operations OR and AND comprise a 

Boolean algebra (Figure 1).  The bottom element of the lattice, denoted ⊥, is called the falsity.  It is a 

false statement, and as such it implies all others.  The atomic statements that cover the bottom are join-

irreducible.  The top element, the truism, denoted T, which is formed from the join of all of the atoms is 

always true.  Last, the Boolean lattice has a unary operation, negation, such that each statement 𝑥 in the 

lattice has a logical complement 𝑥̅, such that either the statement 𝑥 OR the statement 𝑥̅ is true, 𝑥 ∨ 𝑥̅ =

T, and the statement 𝑥 AND 𝑥̅ is false, 𝑥 ∧ 𝑥̅ =⊥.   

The resulting Boolean lattice is the Hypothesis Space.  We are now prepared to discuss deductive logic 

and inductive logic in the context of a Hypothesis Space. 

  

Figure 1.  A Boolean lattice (left) formed from three atomic statements.  If we are given the fact 

that 𝑥3 is true this allows one to define an equivalence class of statements that are true (green), 

and a complementary equivalence class of statements that are false (red).  Under this 

equivalence relation the lattice on the left collapses into the degenerate lattice on the right. 



Deductive Logic versus Inductive Logic 

Logical deduction works by following the ordering relation of implication.  Proving that a logical 

statement 𝑥𝑇 is true amounts to identifying an equivalence relation between the statement 𝑥𝑇 and the 

truism 𝑇.  Since any true statements must imply true statements, any statement that is implied by the 

true statement 𝑥𝑇 is also a member of the equivalence class of true statements.  Moreover, if 𝑥𝑇 is true 

then its complement 𝑥𝑇̅̅ ̅ is false, and the statement 𝑥𝑇̅̅ ̅ is identified with the falsity.  This true-false 

equivalence relation is illustrated in Figure 1 where 𝑥𝑇 ∼ 𝑥3 and 𝑥𝑇̅̅ ̅ ∼  𝑥1  ∨  𝑥2. 

An alternative technique to proving logical statements to be true, is proving that some logical 

statements are false.  Ruling out possibilities, referred to as eliminative induction, is not only extremely 

useful in practice, as in high-quality machine learning algorithms, such as Nested Sampling (Skilling 

2006), but it is the only way that learning progresses in the physical world.  For example, The 

abbreviation, R/O, that medical doctors use when ordering a medical test means to ‘Rule Out’ a 

diagnosis.  In such situations, one is reminded of the quote from Arthur Conan Doyle’s Sherlock Holmes  

"When you have eliminated all which is impossible, then whatever remains, however improbable, 

must be the truth." —Sherlock Holmes 

Of course, for this to apply, one needs to eliminate all of the other cases, regardless of their 

improbability.  This is not surprising since the atomic statements in the hypothesis space must be 

exhaustive. 

Deductive reasoning on the Boolean lattice of the Hypothesis space is carried out using Aristotle’s two 

Strong Syllogisms: 

 Given:  If A is true, then B is true. SS-1 

 Learn: A is true. 

 Deduce: B must be true. 

and 

 Given:  If A is true, then B is true. SS-2 

 Learn: A is false. 

 Deduce: B must be false. 

This is the basic reasoning of the Mathematician.  However, as Ed Jaynes (2003) points out that these 

syllogisms are too strong for practical use.  One must rely on weaker syllogisms: 

  Given:  If A is true, then B is true. WS-1 

 Learn: B is true. 

 Infer: A becomes more plausible. 

and 

 Given:  If A is true, then B is true. WS-2 

 Learn: B is false. 

 Infer: A becomes less plausible. 

Clearly, in adopting weaker syllogisms we have now deviated from the deductive logic of the Boolean 

lattice.  If it is any comfort, Jaynes reminds us that the mathematician George Polya wrote several books 

on the topic of plausible reasoning which obeys definite rules (Polya 1954; 1990), and Polya 



demonstrated that even pure mathematicians use the weaker syllogisms WS-1 and WS-2 most of the 

time only to buttress them later with deductive arguments of the stronger form, SS-1 and SS-2. 

However, physical scientists usually do not have the luxury of knowing anything with certainty.  This 

requires the application of an even weaker syllogism 

 Given:  If A is true, then B becomes more plausible. WS-3 

 Learn: B is true. 

 Infer: A becomes more plausible. 

Despite the weakness of the above syllogism, repeated application often allows one to achieve a 

precision approaching that of deductive reasoning.  This is the essence of inductive reasoning. 

Inductive reasoning can be quantified with real-valued functions, which we call probability.  Probability 

is often thought of as quantifying the degree of truth.  However, this conception has some difficulties 

since many of the models that scientists use are known to be approximations, which are strictly not 

true. 

Instead, I think of probability as a generalization of implication to degrees of implication.  As we learned 

above, implication flows up the lattice, with lower statements implying higher statements, as in 

𝑥1  →  𝑥1 ∨ 𝑥2 in Figure 1.  But what we really want to quantify is the degree to which one of the higher 

statements, such as the truism, T =  𝑥1 ∨ 𝑥2 ∨ 𝑥3, implies a particular atom, such as 𝑥3: 

degree(𝑥1 ∨ 𝑥2 ∨ 𝑥3  →  𝑥1). Now, of course, it is not true that 𝑥1 ∨ 𝑥2 ∨ 𝑥3  →  𝑥1.  That is not how 

implication works.  So, we introduce a function 𝑃(𝑦 | 𝑥), called a bi-valuation, that generalizes binary 

implication by taking two logical statements to a real number, such that  

𝑃(𝑦 |𝑥) =  {

0 if 𝑥 ∧ 𝑦 = ⊥
1 if 𝑥 → 𝑦

0 < 𝑝 < 1  otherwise
     (7) 

This bi-valuation must be consistent with the symmetries of associativity and commutativity of ∨, and 

associativity of chaining inferences as well as the distributivity of chaining over ∨.  This results in the 

familiar sum and product rules for probability, which act as constraint equations enforcing consistency 

with respect to the aforementioned algebraic symmetries resulting in the very reasonable effectiveness 

of mathematics! (Knuth 2005; 2009; Knuth & Skilling 2012; Skilling & Knuth 2019).  This is Bayesian 

probability theory.  The application of inductive inference typically proceeds by taking the Cartesian 

product of the Hypothesis Space (𝑥) with a Data Space (𝑑) of logical statements of observations with 

joint probabilities 𝑃(𝑥, 𝑑), with one particular data statement known to be true.  Bayes’ theorem is then 

derived by applying the product rule to this joint probability, and inference ensues. 

Since this essay is focused on Gödel’s Theorems, one ought to ask whether we could prove that 

probability theory is consistent.  The sum and product rules are derived by enforcing consistency with 

the underlying symmetries of Boolean logic.  However, the derivations we perform (Skilling & Knuth 

2019) rely on eliminative induction where it is assumed that if there is a general theory, then it must 

apply to special cases.  We then use special cases to constrain the theory to uniqueness, up to invertible 

transform, so that we then know that if there is a general theory of probability, then it must be the one 

we derived.  The fact remains that we have not verified that a general theory exists.  Such a proof may 

not be possible within the framework.   



The good news is that probability theory will detect contradictions.  So that if contradictions are ever 

found, they would be detected.  That is, the theory will tell us if contradictions exist, which in a sense, is 

a way out. 

Probability Theory and Tarski’s Theorem 

Related to Gödel’s Incompleteness Theorems is Tarski’s Undefinability Theorem, which states that 

within a formal system the concept of truth cannot be defined within that system.  At first blush, such a 

revelation is disconcerting.  However, we find that this fact is essential to the success of probability 

theory. 

Probability theory itself consists of the sum and product rules, from which Bayes theorem is readily 

derived.  In the past, there have been complaints that probability theory does not provide any clues as 

how to assign the probabilities of the atomic (join-irreducible) statements in the hypothesis space.  Of 

course, this is a good thing because it makes it possible for one to apply the theory to a wide variety of 

problems.  The probability assignments are problem-specific—not dictated by the theory of inference.  

In fact, if probability theory dictated the probability assignments, then the theory would be too 

constrained to be useful. 

From the perspective of Tarski’s theorem, probability theory cannot be used to define the concept of 

truth within probability theory.  Probabilities must be assigned based on other application-specific 

constraints.  In addition, despite the fact that the atomic statements are exhaustive, so that their logical 

disjunction, the truism, is true, it is the application, which also dictates which atomic statements belong 

in the Hypothesis Space. 

Tarski’s theorem, which says that probability theory cannot dictate truth values, does not tie our hands.  

Quite the opposite, Tarski’s theorem ensures that probability theory can be used to solve inference 

problems in general where the concept of truth depends on the specific application! 

Undefinability makes Probability Theory useful! 

What Kinds of Truths are Undecidable? 

Consider a hypothesis space generated by an exhaustive set of N atomic independent, mutually-

exclusive logical statements denoted {𝑥1, 𝑥2, … , 𝑥𝑁}.  Consider a logical statement 𝑢 in the hypothesis 

space that is undecidable so that it is impossible to prove that 𝑢 is true or false.   

It is clear that if there exists a true logical statement v that implies u, so that 𝑣 → 𝑢, then 𝑢 must also be 

true, and hence decidable.  However, since 𝑢 is undecidable, then there can be no true statement, 𝑣, 

that implies 𝑢.  This means that either 𝑢 is an atomic statement such that there are no statements, 

other than the falsity, that imply 𝑢, or there exists a set of atomic statements that imply 𝑢, for which at 

least one of those atomic statements is undecidable and the rest are false. 

Moreover, since it is not possible to prove 𝑢 to be false, this implies that the logical complement of 𝑢, 

denoted 𝑢̅, is also undecidable.  However, since either 𝑢 or 𝑢̅ is true, 𝑢 ∨ 𝑢̅ = 𝑇, and the truism 𝑇 is the 

join of all of the atomic statements, then the atomic statements can be separated into two subsets, each 

of which has at least one undecidable statement with the rest being false.  We find that the existence of 



one undecidable statement 𝑢 in the hypothesis space implies that there are at least two undecidable 

atomic statements in the hypothesis space with the rest being false.  

However, it really shouldn’t be too surprising that a hypothesis space cannot determine the truth values 

of the logical statements comprising it.  This is especially obvious when one considers that assigning 

truth values amounts to defining equivalence classes that reduce the Boolean lattice with 2𝑁 elements 

to the 21 lattice consisting of a truism and a falsity, as in Figure 1.  One would be surprised if a logical 

structure with 2𝑁 elements would collapse into a degenerate structure by itself. 

Instead, when perceived from the context of information, to assign truth values to logical statements in 

a hypothesis space would require information additional to the hypothesis space itself.  It is then not at 

all surprising that the logical relationships among statements do not reveal their truth values.  From an 

information perspective, Gödel’s Theorem appears to be a truism itself. 

Embracing Uncertainty 

Gödel’s revelation exposed a fundamental flaw in mathematical reasoning and shook mathematics to its 

core resulting in the end of Russell and Whitehead’s program of Principia Mathematica.  But that isn’t 

all.  Gödel showed that in mathematics there are fundamental uncertainties, information that we have 

no access to.  In some ways, this is reminiscent of the problem of information isolation seen in quantum 

mechanics (Schumacher & Westmoreland 2010) where the phase of a target is inaccessible.  When 

interacting, the target and the detector belong to the same system.  Both the state of the target and the 

state of the detector are unknown (two unknowns), yet only one piece of information can be learned 

from the interaction.  That final piece of information, the absolute phase of the target, necessarily 

eludes us.  Quantum Mechanics accepts and accommodates this fact.  To make progress, one must 

accept, embrace, and work with uncertainty. 

Going back to Undecidability, while the truth of some propositions cannot be proven through deductive 

reasoning, it is still possible to make some progress with inductive reasoning using probability theory.  

This is what is done in the Physical Sciences.  Cannot Mathematics embrace uncertainty and employ 

inductive reasoning when deductive reasoning fails?  Could that possibly work? 

We have evidence that it could work.  And that evidence is my not-so-silly question “Why addition?”.  It 

appears that no one knew the answer to that question, and more importantly, few people thought to 

ask it.  It is precisely because the experimental evidence was so overwhelming that acceptance was 

automatic—proof seemed unnecessary.  Mathematicians had such confidence that in measure theory, 

additivity was taken as a postulate.  Of course, obtaining a proof is better, mainly because it leads to 

additional insights, such as Probability Theory and the Feynman Rules. 

When deduction is not possible, inductive inference can serve in its stead and form a different kind of 

base.  What progress could be made in Mathematics if uncertainty was embraced and inductive 

inference employed to its maximum potential?  One could hypothesize mathematical relations and 

verify them to some degree through both constraints and data (results of experiments).  One cannot 

help but envision a daring New Branch of Mathematics, which could then join the other Natural Sciences 

in their careful treatment of information in the quest for knowledge.   

But could the Mathematicians ever accept it? 
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