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Abstract. This essay, submitted to the Foundational Questions Insti-
tute contest on undecidability, uncomputability, and unpredictability,

argues that the mathematics being created by the research mathematics
community is not responsive to the needs of the physical science com-

munity; that undecidability, uncomputability, and unpredictability are

evidence of this gap.
The essay goes on to suggest four research initiatives that could led

to the creation of mathematics that was responsive to the needs of the

physical sciences.
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1. Mathematics for the Physical Sciences

The premise of this essay is that the reason physicists find themselves en-
tangled with the flaws in the foundations of mathematics is not because nature
can no longer be described mathematically but rather that mathematics has
fallen short of the needs of physicists to craft those descriptions. In short, we
needn’t distort physics to fit today’s mathematics or fret about the shortcom-
ings in the foundations of mathematics. We need to create mathematics that
serves the needs of today’s physics and is free of those shortcomings.

After introducing this contention, we review the relevance of three par-
ticular shortcomings in the use of today’s mathematics by the physical
sciences—unpredictability, undecidability, and uncomputability—to the
continuing progress of our understanding of the physical world.

We close with some suggestions for lines of research that can lead to mathe-
matics that is better attuned to the requirements of today’s physical sciences.

1.1. Abstract Mathematics. The theoretical mathematics community is
proud–sometimes justly and sometimes unjustly—of the instances where a
mathematical construct developed in the abstract was subsequently found to
useful to the physical sciences. There are also many cases in which a physical
scientist created the mathematics they needed themselves; mathematics that
was subsequently abstracted and generalized by the mathematics community.

Furthermore, one can cite occasions where the mathematics created while
building a new physical theory was found in hindsight to have been reported
in a article in a mathematics journal. Whether or not the scientist developing
the theory actually read the article and as a result used the mathematics is
typically not determined. Whatever the case, there are a number of drawbacks
to the strategy of searching abstract mathematics journals or waiting for the
mathematics community to develop the mathematical tools you need.

First, however diligent the mathematics community may be it is unlikely
that generating mathematics at random will just by chance create mathematics
that meets the emerging requirements of the physical sciences. Second, as has
been widely reported all the mathematics in the abstract mathematics journals
suffers from the logical flaws that are the concern of this essay and, for all
anyone knows, from additional logical flaws.

Third, and most telling, even if a needed mathematical construct happens to
be hiding in the mathematics literature, finding it, freeing it from its notation,
and adapting it to the requirements at hand may well take more time and
effort than simply creating the needed mathematics de novo.

There are hundreds of research mathematics journals and hundreds of thou-
sands of mathematical theorems published every year. Since abstraction and
generalization are the gold standards of mathematics research these contri-
butions are by intent as far away from applicability as possible. This is not
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to say that the mathematics community deliberately obfuscates its definitions
and theorems to make them hard to apply. Only that the aesthetics driving
mathematical research leads to this consequence.

In summary, that we find ourselves considering topics such as the unpre-
dictability, undecidability, and uncomputability of the mathematics used in the
physical sciences is prima facie evidence that the mathematics being created
by today’s research mathematics community is not responding to the needs
and requirements of today’s physical sciences.

We return to this issue in the conclusion to make some suggestions for
developing mathematics that is responsive to the needs of today’s physical
sciences.

1.2. Mathematics as a Language. Mathematics is a language particularly
well-suited to describing and manipulating patterns. The fact is, however,
that there is nothing that can be said in mathematics that can’t be said in any
other sufficiently rich language such as Chinese or Peirce’s deductive logic. In
all such languages one can form statements that agree with our perceptions
as well as statements that are odds with our perceptions. One can also form
statements that are nonsensical as well as statements that are ambiguous.

Scientists have been able to advance our understanding of the world around
us in spite of shortcomings—recognized or not—in whatever language they
employed to communicate their findings. One highly effective language for
this purpose, mathematics, was in fact fleetingly thought to be free of any
shortcomings for describing patterns in the physical world. When work in the
twentieth century turned up three, unpredictability, undecidability, and un-
computability, the question naturally arose whether or not these shortcomings
were imported into the physical theories described using mathematics.

Thus, from a purely historical perspective we can conclude that physicists
have successfully dealt with mismatches between the complexities of nature
and the human languages available to describe its regularities and that there
is no reason to think that they will not continue to be successful when using
mathematics even with its flaws.

But this is not fully responsive to the essay’s charter. All living languages
evolve to extend their descriptive powers to new objects, phenomena, and world
views. Mathematics is no exception. So it is germane to inquire if mathematics
is evolving to embrace the emerging needs of the physical sciences. As noted,
the essay closes by suggesting four evolutionary directions that would support
a positive response to this inquiry.

2. Undecidability

It needn’t be argued that there is regularity in nature. A law of physics,
Ohm’s law for example, is a concise and eminently useable characterization of
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a real-world regularity. And yet quite obviously one cannot conclude from the
existence of regularity in nature the non-existence of randomness. But even
if there were no randomness in nature—no true physical undecidability—one
is still faced with the possibility of not possessing a language rich enough to
describe all physical regularity.1

The undecidability in the foundation of mathematics has nothing to do
with the outcome of random events. Mathematical undecidability refers to
well-formed mathematical statements that cannot be proven true or false with
respect to the assumptions that underpin them. That there exist such math-
ematical statements does not imply that there are physical regularities whose
mathematical description cannot be verified.

2.1. The Role of Mathematical Proofs. The proofs of mathematics
merely reveal the tautologies that have been baked into—however wittingly
or unwittingly—a set of definitions in the first place. A set of definitions
along with all the theorems deductable from them is a closed, self-referential
world of tautologies that it and of itself can make no contribution to our
understanding of the world around us.2

Thus, even if all physical regularity could be described in a complete and
consistent subset of mathematics, the notion of a mathematical proof which is
where mathematics undecidability comes into play has no relevance to acquir-
ing and harnessing knowledge of the physical universe.

2.2. The Irrelevance of Undecidability. Even without arguments based
on infinite enumeration which by themselves would render undecidability irrel-
evant to our understanding of the physical world, the mathematical language
considered by Gödel is not the mathematical language we use to describe our
understanding the physical world. Not only are there extra-mathematical con-
structs in our descriptions, but as mentioned above the notion of proof which
is at the core of Gödel’s work is immaterial to these understandings.

All of our understanding of the physical world is necessarily conditional
and probabilistic. A proof applies solely to the mathematical constructs used
to form a description. It may well clarify the description, elucidating what
is being said, but manipulating mathematical symbols cannot conjure any
knowledge that isn’t already embedded in the description. Insights generated
in this manner are about the mathematics not about the physical world the
mathematics proposes to describe.

1There may be regularities in the universe that human beings, even with all present and

future technology, are unable to detect and thus appear to them as true randomness. Our
argument applies whether randomness is real or just perceived.

2Bringing into being such a world may led us to inquire about why we do this and hence to
understanding about ourselves but this understanding does not flow from the mathematics.
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3. Uncomputability

A recognized property of all written languages is that the information con-
tent of a set of symbols cannot be changed by any algorithmic manipulation.
Said relative to scientific investigation, you can discover something you didn’t
know by manipulating a set of data but no amount of computation will lead
you to the discovery of a pattern in the physical world that wasn’t in the data
in the first place.3

3.1. The Purpose of Scientific Computation. Discovering patterns in
measurements of the physical world is the intensional purpose of scientific
computation. Whether fitting a line to a set of data points or running a cli-
mate simulation, the output of a computational algorithm is a by design and
intent a reexpression of the input. Succinctly, the purpose of a scientific com-
putation is to create recognizable and describable patterns in the output data
that faithfully and understandably reflect patterns in the input data so that
hypotheses about the output patterns can be transformed to hypotheses about
the input data and hence to the context from which the input data were taken.

3.2. The Irrelevance of Uncomputability. All scientific data sets are finite
and therefore the number of patterns any given data set contains is finite.
While the number of finite-time transformations that can be applied to a finite
set of data is infinite, if one elides outputs that are only cosmetically different—
that use Roman numerals rather than Arabic numerals, for example—and
excludes output patterns that have no arguable connection to input patterns–
patterns generated independently of the input data, for example—then the
number of outputs fit for the purpose of the computation is also finite.

Nothing is uncomputable when producing a finite output from a finite input
so the notion of uncomputability is irrelevant to scientific computation. As
Knuth has demonstrated, a finite computation can embody a paradox but a
paradox is an undecidability not an uncomputability.

4. Unpredictability

A mathematical model is said to be unpredictable when small changes in the
numerical values on which it rests cause very large changes in the evaluations
of the model. Sometimes such models are said to lack robustness with respect
to their parameters. In other times such models are be said to be unstable.

Whether a mathematical model exhibiting this sort of unpredictability ad-
vances or retards our understanding of the physical world (it can do either)

3The empirical study of computational algorithms per se is grammatically a special case

but since data about an algorithm is analyzed by other algorithms it is implicitly included
in the discussion and for this reason will not be rhetorically distinguished.
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depends on the reason behind the unpredictability. We consider two possibili-
ties with the understanding that there may be others.

4.1. Discontinuity vs. Dynamics. One source of unpredictability is an un-
recognized discontinuity in the physical phenomena being modeled. While this
is not the type of unpredictability of concern here, it must be noted in passing
that continuous models that don’t take into account inherent discontinuities
will appear to be unpredictable whereas in fact they are incomplete.

Mathematical models of dynamical systems based on differential equations
are the canonical example of models of continuous physical phenomena that
exhibit unpredictability as understood in the sense under discussion. If we
set aside the case that the model is incomplete—that is, does not include a
parameter or construct that would render it predictable—then suspicion about
the source of the unpredictability shifts to the mathematics. Thus, either the
model hasn’t captured the relevant parameters of the physical phenomena or
unsuitable mathematics is being used to describe the model. In neither case,
is the source of the unpredictability the physical world.

Finally, it should be noted that there are physical phenomena that are
continuous but cannot be satisfactorily modeled with differential equations.
Phenomena with “sharp corners” or “elbows” are examples. As with hidden
discontinuities, models employing differential equations in these situations can
exhibit unpredictability while the true situation is that the model is insuf-
ficiently specified. In the just-mentioned example, a piecewise model might
eliminate the unpredictability.

4.2. The Irrelevance of Unpredictability. Predictability is the heart and
soul of the scientific method. Theories that can’t predict or that make predic-
tions that are odds with observation are set aside.

But type of unpredictability before us—mathematical unpredictability—
is no more relevant to the practicing physicist than the fact that an angle
can’t be trisected or a circle squared. If a tool isn’t useful for a task—if a
meter doesn’t read in the right range or a stove doesn’t heat to a high enough
temperature—then one reaches for a tool that is useful. One doesn’t fret about
the shortcomings of meters or stoves.
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5. Mathematics for Today’s Physical Sciences

There are two ways the physical sciences can address the gap between the
mathematics they need and the mathematics available in research mathematics
journals.

The first way, and the way that seems to be currently in use, is to adapt
theories to available mathematical constructs and abstractions however flawed
or inappropriate they may be. Among other examples of this approach we
have string theory, the multi-verse, and reality as a hologram. In addition
to no longer creating knowledge about the world in which we live, this ap-
proach risks importing yet more irrelevant mathematical shortcomings in to
the emerging theories. As with unpredictability, undecidability, and uncom-
putability, finding and attenuating these shortcomings is an unnecessary tax
on physical science research.

The second way to address the lack of mathematical constructs responsive
to the needs of the physical sciences and the way that offers a more productive
use of researchers’ time and resources is to determine the characteristics of
the mathematics that is needed to support an emerging theory and set about
developing mathematics that has the desired properties.

5.1. Finite not Infinite. Our current understanding of the world in which we
live contains no infinities. There is a finite amount of time since the universe
began and there are a finite number of atoms in that universe. It verges on the
nonsensical to base physical theories on an infinite amount of anything. And
yet many of the mathematical results we use to construct physical theories are
based on letting something “go to infinity.” Combinatorics is an illustrative
exception and it has proven to be of considerable value to the physical sciences.

There is no need to constrain the mathematics used in the physical sciences
to mathematics whose properties have been logically specified and explored
where the physical sciences don’t go; namely, at infinity. As has been observed
by many, you can’t evaluate the infinite on finite evidence and finite evidence
is all we will ever have available.

5.2. Rational not Irrational. All of the numbers used in the physical
sciences—all of the constants, all of the measurements, all of the data, and all
of the computed values—are rational numbers. Numerical values that cannot
be represented exactly as a rational number such as π, e and

√
2 are symbols

when used in theoretical discussions and are necessarily given approximate
values when those theories are evaluated.

No one knows nor can anyone know all the digits of any of these or any
other irrational number. In this sense, it is irrational to behave as if they were
numbers. They are symbols with arithmetic properties which not at all the
same as being numbers.
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Finally, and speaking informally, while there are infinitely more irrational
numbers than rational numbers, we only given names to and adopted a symbol
for a small number of them, the ones noted above being canonical examples.
Treating these as symbols with properties and basing the mathematics of the
physical sciences on rational numbers would put the mathematics on firmer
logical grounds and bring the mathematics closer to the lived reality.

5.3. Algorithms in Addition to Functions. The notion of a function—the
association of each object of one sort with an object of another sort–is the
keystone concept of mathematics. Whether it’s as mundane as x2 or as arcane
as homomorphism between abstract spaces, mathematics doesn’t get moving
until a function has been brought into play. And even then, as we have seen,
there are functions which might be of use to the physical sciences such as those
with discontinuities and those with sharp corners that have not received at all
as much attention of the research mathematics community as their continuous
and continuously differentiable relatives.

The advent of high-speed digital computers has allowed the physical sci-
ences to explore theories based on a much richer logical construct than the
function; to wit, the algorithm. Physical processes and phenomena can be
described using algorithmic constructs such as for and while loops, subrou-
tines, inheritance, and if-then-else contingencies. This is a much richer set
of tools than continuous functional relationships between sets with operations;
in particular, a set of tools that can readily deal with discontinuities and sharp
corners.

Beside examples of what a physical theory might look like when cast as a
algorithm rather than a collection of continuous functions, what is lacking is a
calculus of algorithms akin to the calculus we have for functions. Building some
examples and exploring their implications in the same manner we explore the
implications of sets of functions would be another way to create mathematics
that is informed by the needs of the physical sciences.

5.4. Proof by Enumeration. In a world of finite, rational, and algorithmic
mathematics the notion of a mathematical proof can be reduced to process of
enumeration. If a physical phenomena can only be measured to a certain degree
of precision and the measurements are necessarily between known bounds, then
an algorithmic theory for the phenomena can be verified by computing and
checking all cases. This computation is the only proof of the mathematical
aspects of the theory needed.

Proof by enumeration is not unknown in today’s mathematics although it is
for the most part held in low regard by the research mathematics community.
Not only could proof by enumeration accelerate the creation and exploration
of new theories by the physical science community it, as opposed to the logical
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deduction method of abstract mathematics, is a more accurate characterization
of how all of us understand the world around us.

6. Conclusion

A new word is added to a language when a new object, activity, or concept
needs a name. “Internet” is an obvious example and the reader easily bring
to mind many others. We don’t add a word to a language in the hope that it
will find a meaning some day. And yet this is how we currently develop new
mathematics for the physical sciences.

Every year the research mathematics community churns out a torrent of new
definitions and theorems about old definitions. Physical scientists are urged to
sort through the hundreds of journals in which these new words are recorded to
find the mathematics they need. Not only is this an extremely inefficient use of
a scientist’s time but due to the extreme level of specialization and abstraction
in the mathematical literature it is unlikely that the scientist would recognize
useful mathematics even if it was there.

We have argued that the three topics to be addressed—unpredictability,
undecidability, and uncomputability—are not only irrelevant to the physical
sciences but are symptoms of a larger problem; namely, the disconnect between
the current output of the research mathematics community and the needs of
the physical science community. We have made four suggestions for closing
this gap.
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