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In 1960 Eugene Wigner published an article titled “The Unreasonable 

Effectiveness of Mathematics in the Natural Sciences.”[1]  He gave several 

examples of areas of mathematics that had developed independently of physics, 

but that nonetheless proved to be essential in the formulation of twentieth 

century physics.  Wigner concluded that “The miracle of the appropriateness of 

the language of mathematics for the formulation of the laws of physics is a 

wonderful gift which we neither understand nor deserve.”   

Wigner’s view stands in contrast to the view of Galileo in which he used the 

image of nature and its laws as a book and asserted that that book was written in 

the language of mathematics.[2]  In Galileo’s view, when we develop physical 

theories we are discovering the underlying mathematical order of nature.  I will 

argue that Galileo’s view is essentially correct, but that the developments that led 

to Wigner’s view reveal two deep truths: one about the nature of mathematics 

and the other about the nature of physics.  

To begin, it is helpful to recall the development of non-Euclidean 

geometry.[3]  Though expressed in an axiomatic form by Euclid, geometry can be 

thought of as something akin to a physical theory, with the properties of its lines 

revealing empirically discovered properties of stretched strings, or the lines of 

sight of surveying and thus the paths of light rays.    However, of the axioms used 

by Euclid, one seemed less natural than the others: the parallel postulate, which is 

the statement that given a line and a point not on the line there is exactly one line 

through the given point that is parallel to the given line.  (Euclid did not put the 

parallel postulate in this form; but what he used is equivalent to this).  Because 

the parallel postulate seemed unnatural, there were efforts to derive it from the 

other axioms of Euclidean geometry, but all such efforts were unsuccessful.   

Finally in the 19th century Gauss, Bolyai, and Lobachevsky went in the 

opposite direction, producing a geometry that used the other axioms of Euclid, 

but in which the parallel postulate was replaced by the statement that through 



the given point there was more than one line parallel to the given line.  In modern 

language, we would say that Gauss, Bolyai, and Lobachevsky had developed the 

geometry of the hyperbolic plane: a two dimensional space of constant negative 

curvature.     

The development of non-Euclidean geometry marked the divergence of 

mathematics from physics.  Euclidean geometry and non-Euclidean geometry 

gave different answers from each other, but they were both “right” in the sense 

that both were consistent systems derived by logic from a set of axioms.  Though 

one could argue about which geometry better modeled the physical world, as 

long as one uses only consistency as the criterion, the two geometries were on an 

equal footing.  No longer was mathematics to be about finding the “right” axioms 

(i.e. the ones that seem to come from nature).  Instead the mathematician could 

choose any set of axioms he (or she) liked as long as they were consistent, and 

then whatever followed from those axioms would be mathematics.  

Partly in response to this new found insight, the study of mathematics 

exploded: more and more systems of greater and greater abstraction and 

complexity were developed, and the features of these systems were worked out 

in meticulous detail.   This trend continued through the 20th century, with 

mathematics becoming ever more formal and abstract, and the number of 

different systems studied by mathematicians ever increasing.   

The 20th century also saw the development of new and revolutionary 

theories of physics: relativity and quantum mechanics.  And, miraculously, when 

the new theories of physics needed new mathematics, lo and behold that new 

mathematics had already been developed: differential geometry for the general 

theory of relativity, group theory, complex vector spaces and their operators for 

quantum mechanics.  Furthermore, this extraordinarily useful mathematics had 

been developed by mathematicians who had merely been pursuing abstract 

subjects with total disregard for any physical meaning or application those 

subjects might have.   

It is that extraordinary coincidence, that the new physics needed new 

mathematics, and there it was, that seemed so miraculous to Wigner.  But I will 

now argue that this development is not as miraculous as it seems.  First, let us 

consider the nature of the new mathematics.  Non-Euclidean geometry and the 



formal and axiomatic approach to mathematics gave the mathematicians 

enormous freedom.  Any formal system of axioms could be considered 

mathematics: simply develop a system of axioms (as long as they are consistent 

with each other) and then these axioms along with all theorems derived from 

them form a mathematical system.  But what were the mathematicians to do with 

all of this newfound freedom?  If anything can be mathematics, then how is a 

mathematician to choose what to work on?   

Wigner claimed that mathematicians chose systems and problems solely to 

exhibit their cleverness in making formal arguments.  Well, perhaps that claim has 

some element of truth to it, and it is not surprising that Wigner, who was a close 

friend of John von Neumann since childhood, would have that view of 

mathematics and mathematicians.  But just as “choose any set of axioms you like” 

does not give sufficient guidance in the development of new mathematics, so 

“exhibit your mathematical cleverness” is also too amorphous a criterion to be a 

guide in the development of new mathematics.   

So how did the mathematicians decide what would be the new 

mathematics?  They did it by a process of abstraction and generalization from the 

old mathematics: group theory to generalize the properties of the symmetries of 

objects in Euclidean geometry; differential geometry to generalize curved 

surfaces in three dimensional Euclidean space; operators and vector spaces to 

generalize both the properties of the usual vectors of three dimensional Euclidean 

space and the properties of linear differential equations and their solutions; 

analysis and topology to abstract and generalize a set of useful techniques for 

proving the convergence of series, especially those used to finally put calculus on 

a rigorous footing.  This process of abstraction and generalization generated a 

great number of new mathematical objects and led to another pursuit of modern 

mathematicians: classification.  For each new type of object (group, vector space, 

manifold, Lie Algebra, etc.) one would aim to produce a complete classification of 

all possible objects of that type.     

Thus the new mathematics was related to the old mathematics, which was 

in turn related to the old physics.  But why was the new mathematics just what 

was needed for the new physics?  Here the answer has to do with the fact that old 

physical theories are limiting cases of new physical theories. To cite some well-



known examples: Newtonian mechanics is the limit of special relativistic 

mechanics in the case of small velocity; special relativity is the limit of general 

relativity in the case of weak gravity (and thus Newtonian gravity is the limit of 

general relativity in the case of small velocity and weak gravity); classical 

mechanics is the limit of quantum mechanics for large systems (or more 

specifically actions large compared to Planck’s constant).   

But why do we discover the limiting cases first? Because of limited data and 

Ockham’s razor.  We, and the things we move and throw, are slow moving objects 

(compared to the speed of light) and so the most easily accessible data for us on 

the motion of objects is well described by Newtonian mechanics.  But Ockham’s 

razor enjoins us to prefer simple theories to complicated ones, and so Newtonian 

mechanics was developed before special relativity.  We (and the things we move 

and throw) are large objects, compared to the size of atoms, and so classical 

mechanics is a good description of the data that was accessible to our 

experiments before the end of the 19th century, and therefore classical mechanics 

developed before quantum mechanics.       

When new data becomes available, data no longer well described by the 

old theory, we must develop a new theory.  But what new mathematics is needed 

for the new theory?  If the old theory is a limiting case of the new theory, then it 

is likely that the mathematics of the new theory has something in common with 

the mathematics of the old theory.  In particular, the new mathematics is likely to 

be some sort of generalization of the old mathematics.  But generalization (along 

with abstraction and classification) is precisely the business of contemporary 

mathematicians, as it was for the mathematicians of the 19th and 20th century 

ever since the development of non-Euclidean geometry.   Thus, we should not be 

surprised that when a new physical theory is developed, the new mathematics 

that is needed for that new theory is already at hand.   

One of the things that struck Wigner as particularly miraculous is the 

central role of complex numbers in quantum mechanics.  Complex numbers were 

discovered hundreds of years before quantum mechanics as a mathematical trick 

for finding roots of polynomial equations.  But why should a trick for finding roots 

lie at the heart of our deepest theories of nature?  It seems to me that the answer 

lies in the mathematical concept of a field.  Roughly speaking, a field is a number 



system that has the additive and multiplicative properties of the real numbers.  

However, the mathematical classification of fields shows that the field concept is 

very restrictive: there are very few fields, even fewer that contain the real 

numbers, and of those fields that contain the real numbers the simplest one is the 

complex numbers.  Thus one can think of the complex numbers as the minimal 

extension of the real numbers.  It is therefore not so surprising that when 

studying the algebraic properties of real numbers, mathematicians stumbled 

across this minimal extension.  And it is also not so surprising that for a system of 

nature based on the complex numbers, there are limiting cases that use only the 

real numbers and that physicists found those limiting cases first. 

In summary the “unreasonable” effectiveness of mathematics is not so 

unreasonable after all.  Nature and nature’s laws are mathematical, just as Galileo 

and Newton taught us.  It is our job as theoretical physicists to discover those 

laws.  When new laws are discovered, they may use mathematics that has not 

been used in physics before.  If so, we should not be surprised if that mathematics 

has already been invented by mathematicians for their own purposes.   New 

physics has old physics as a limiting case.   Thus it is not too surprising that the 

mathematics needed for the new physics is something that can be found by 

abstracting and generalizing the mathematics used in the old physics.   Therefore 

the mathematicians, who develop new mathematics by abstracting and 

generalizing old mathematics, may develop just what we need even before we 

need it.  This is indeed, as Wigner said, a wonderful gift; but perhaps we do 

understand it after all.  
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