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The physical meaning of the wave function is an important interpretative prob-
lem of quantum mechanics. The standard assumption is that the wave function
is a probability amplitude, and its modulus square gives the probability den-
sity of finding particles in certain locations at a given instant. This is usually
called the probability interpretation of the wave function. Notwithstanding its
great success, the probability interpretation is not wholly satisfactory because
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Abstract

According to the standard probability interpretation, the wave func-
tion is a probability amplitude, and its modulus square gives the prob-
ability density of finding particles in certain positions in space. In this
essay, we show that this central assumption of quantum mechanics may
have an ontological extension. It is argued that microscopic particles such
as electrons are indeed particles, but their motion is not continuous but
discontinuous and random. On this view, the modulus square of the wave
function not only gives the probability density of the particles being found
in certain locations, but also gives the probability density of the particles
being there. In other words, the wave function can be regarded as a repre-
sentation of the state of random discontinuous motion of particles, and at
a deeper level, it may represent the dispositional property of the particles
that determines their random discontinuous motion.

The wavefunction gives not the density of stuff, but gives rather (on squar-
ing its modulus) the density of probability. Probability of what, exactly?
Not of the electron being there, but of the electron being found there, if
its position is ‘measured’. Why this aversion to ‘being’ and insistence on
‘finding’? The founding fathers were unable to form a clear picture of
things on the remote atomic scale. (Bell 1990)

Introduction

of resorting to the vague concept of measurement (see, e.g. Bell 1990).

Recently a new penetrating analysis shows that the wave function not only
gives the probability of getting different outcomes, but also may offer a faithful
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representation of reality (Pusey, Barrett and Rudolph 2012). This analysis con-
firms the earlier result obtained based on protective measurements (Aharonov
and Vaidman 1993; Aharonov, Anandan and Vaidman 1993), and shows that
the standard assumption is ripe for rethinking. In fact, the realistic view of
the wave function is already a common assumption in the main alternatives to
quantum mechanics such as the de Broglie-Bohm theory and the many-worlds
interpretation. Unfortunately, however, the precise meaning of the wave func-
tion is still an unresolved issue in these theories.

What, then, does the wave function truly represent? In this essay, we will
try to answer this fundamental question through a new analysis of protective
measurements and the mass and charge distributions of a quantum systenﬂ
The answer may help to understand the deep nature of quantum reality.

2 Measuring the state of a quantum system

The meaning of the wave function is often analyzed in the context of conven-
tional (impulse) measurements, for which the coupling interaction between the
measured system and the measuring device is of short duration and strong. As
a result, even though the wave function of a quantum system is in general ex-
tended over space, an ideal position measurement can only detect the system
in a random position in spacdﬂ Then it is unsurprising that the wave function
is assumed to be related to the probability of the random measurement result
by the standard probability interpretation. This also indicates that conven-
tional measurements cannot obtain enough information about a single quantum
system to determine what physical state its wave function represents.
Fortunately, it has been known that the physical state of a single quantum
system can be protectively measured (Aharonov and Vaidman 1993; Aharonov,
Anandan and Vaidman 1993; Aharonov, Anandan and Vaidman 1996; Vaidman
2009)|ﬂ A general method is to let the measured system be in a nondegenerate
eigenstate of the whole Hamiltonian using a suitable protective interaction (in
some situations the protection is provided by the measured system itself), and
then make the measurement adiabatically so that the state of the system nei-
ther collapses nor becomes entangled with the measuring device appreciably. In
general, the measured state needs to be known beforehand in order to arrange
a proper protection. In this way, such protective measurements can measure
the expectation values of observables on a single quantum system, and in par-
ticular, the mass and charge distributions of a quantum system as one part of
its physical state, as well as its wave function, can be measured as expectation
values of certain observables. Since the principle of protective measurement is
independent of the controversial collapse postulate and only based on the lin-
ear Schrodinger evolution (for microscopic systems such as electrons) and the

LFor a more detailed analysis see Gao (2011a, 2011b, 2011c).

2In this essay we only consider the spatial wave functions of quantum systems.

3Note that the earlier objections to the validity and meaning of protective measurements
have been answered (Aharonov, Anandan and Vaidman 1996; Dass and Qureshi 1999).
Uffink’s (1999) objection seems to be the unique exception. Although Vaidman (2009) re-
garded this objection as a misunderstanding, he gave no concrete rebuttal. Recently we have
argued in detail that Uffink’s objection is invalid due to several errors in his arguments (Gao
2011d).



Born ruleEI, which are two established parts of quantum mechanics, its result as
predicted by quantum mechanics can be used to investigate the meaning of the
wave functionP]

According to protective measurement, the charge of a charged quantum sys-
tem such as an electron is distributed throughout space, and the charge density
in each position is proportional to the modulus square of the wave function of
the system therdﬂ Historically, the charge density interpretation for electrons
was originally suggested by Schrédinger when he introduced the wave function
and founded wave mechanics (Schrodinger 1926). Schrodinger clearly realized
that the charge density cannot be classical because his equation does not include
the usual classical interaction between the densities. Presumably since people
thought that the charge density could not be measured and also lacked a con-
sistent physical picture, this initial interpretation of the wave function was soon
rejected and replaced by Born’s probability interpretation (Born 1926). Now
protective measurement re-endows the charge distribution of an electron with
reality by a more convincing argument. The question then is how to find a con-
sistent physical explanation for itﬂ Our following analysis can be regarded as
a further development of Schrodinger’s original idea to some extent. The twist
is: that the charge distribution is not classical does not imply its non-existence;
rather, its existence may point to a new, non-classical picture of quantum reality
hiding behind the mathematical wave function.

3 Electrons are particles

The key to unveil the meaning of the wave function is to find the physical origin
of the charge distribution. The charge distribution of a quantum system such
as an electron has two possible existent forms: it is either real or effective. The
distribution is real means that it exists throughout space at the same time, e.g.
there are different charges in different positions at any instant. The distribution
is effective means that there is only a localized particle with the total charge of
the system in one position at every instant, and the time average of its motion
(during an infinitesimal time interval) forms the effective distribution in the
whole space. Moreover, since the integral of the formed charge density in any
region is required to be equal to the average value of the total charge in the
region, the motion of the particle is ergodic.

These two existent forms of the charge distribution of a quantum system have
different physical effects, and thus they can be distinguished. Experiments show
that different charges in different positions at a given instant have electrostatic
interaction, while a charge at one instant has no electrostatic interaction with
the charge at another instant. Therefore, if the charge distribution is effective,
then there will exist no electrostatic self-interaction of the effective distribution,
while if the charge distribution is real, then there will exist electrostatic self-

41t is worth noting that the possible existence of very slow collapse of the wave function
for microscopic systems does not influence the principle of protective measurement.

51t can be expected that protective measurements will be realized in the near future with
the rapid development of quantum technologies (cf. Lundeen et al. 2011).

6See the Appendix for an introduction of this important result.

"The proponents of protective measurement did not analyze the origin of the charge dis-
tribution. According to them, this type of measurement implies that the wave function of a
single quantum system is a real physical wave (Aharonov, Anandan and Vaidman 1993).



interaction of the real distribution. In short, the first form entails the existence
of electrostatic self-interaction of the charge distribution of a quantum system,
while the second form does not.

Since the existence of electrostatic self-interaction is inconsistent with the
superposition principle of quantum mechanics, and especially, the existence of
such electrostatic self-interaction for individual electrons already contradicts
experimental observations (e.g. the results of the double-slit experiments with
single electrons)ﬂ the charge distribution of a quantum system such as an elec-
tron must be effective. This means that at every instant there is only a localized
particle with the total mass and charge of the system, and during an infinites-
imal time interval the time average of the ergodic motion of the particle forms
the effective mass and charge distributions of the system. In short, electrons
are particles, and their charge distributions in space, which are measureable by
protective measurements, are formed by the ergodic motion of these particles.

4 Particles move in a discontinuous and random
way

The next question is which sort of ergodic motion the particles undergo. If the
ergodic motion of a particle is continuous, then it can only form the effective
mass and charge distributions during a finite time interval. But the effective
mass and charge distributions of a quantum system at each instant, which is
proportional to the modulus square of the wave function of the system at the
instant, is required to be formed during an infinitesimal time interval near the
instant. Thus it seems that the ergodic motion of the particle cannot be con-
tinuous.

We can also reach this conclusion by analyzing a concrete example. Consider
an electron in a superposition of two energy eigenstates in two separated boxes
Y1(x) + 2(x). In this example, even if one assumes that the electron as a
localized particle can move with infinite velocity, it cannot continuously move
from one box to another due to the restriction of box walls. Therefore, any sort
of continuous motion cannot generate the effective charge density e|¢q(x) +
o (x)|2. One may object that this is merely an artifact of the idealization of
infinite potential. However, even in this ideal situation, the model should also
be able to generate the effective charge distribution by means of some sort of
ergodic motion of the electron; otherwise it will be inconsistent with quantum
mechanicd’]

On the other hand, if the motion of a particle is discontinuous, then the
particle can readily move throughout all regions where the wave function is

8As another example, consider the electron in the hydrogen atom. Since the potential of
the electrostatic self-interaction is of the same order as the Coulomb potential produced by the
nucleus, the energy levels of hydrogen atoms will be remarkably different from those predicted
by quantum mechanics and confirmed by experiments if there exists such electrostatic self-
interaction for individual electrons. For a detailed analysis see Gao (2011c).

9t is very common in quantum optics experiments that a single-photon wave packet is
split into two branches moving along two well separated paths in space. The wave function
of the photon disappears outside the two paths for all practical purposes. Moreover, the
experimental results are not influenced by the environment and setup between the two paths
of the photon. Thus it is very difficult to imagine that the photon performs a continuous
ergodic motion back and forth in the space between its two paths.



nonzero during an arbitrarily short time interval at a given instant. Further-
more, if the probability density of the particle appearing in each position is
proportional to the modulus square of its wave function there at every instant,
the discontinuous motion can also generate the right effective mass and charge
distributions. This may solve the problems plagued by the classical ergodic
models. The discontinuous ergodic motion requires no existence of a finite er-
godic time. A particle undergoing discontinuous motion can also move from
one region to another spatially separated region, no matter whether there is
an infinite potential wall between them, and such discontinuous motion is not
influenced by the environment and setup between these regions either.

In conclusion, we have argued that the mass and charge distributions of a
quantum system such as an electron are formed by the discontinuous motion
of a localized particle with the total mass and charge of the system, and the
probability density of the particle appearing in each position is proportional to
the modulus square of its wave function there.

5 Meaning of the wave function

According to the above analysis, microscopic particles such as electrons are
indeed particles. Here the concept of particle is used in its usual sense. A particle
is a small localized object with mass and charge, and it is only in one position
in space at an instant. Moreover, the motion of these particles is not continuous
but discontinuous in nature. We may say that an electron is a quantum particle
in the sense that its motion is not continuous motion described by classical
mechanics, but discontinuous motion described by quantum mechanics.

From a logical point of view, for the discontinuous motion of a quantum par-
ticle, there should exist a probabilistic instantaneous condition that determines
the probability density of the particle appearing in every position in space, oth-
erwise it would not “know” how frequently they should appear in each position
in space. In other words, the particle should have an instantaneous property
that determines its motion in a probabilistic way. This property is usually called
indeterministic disposition or propensity in the literaturﬂ As a result, the po-
sition of the particle at every instant is random, and its trajectory formed by
the random position series is also discontinuous. In short, the motion of the
particle is essentially discontinuous and random.

=
=

t : t

Figure 1. Continuous motion vs. discontinuous motion

Unlike the deterministic continuous motion, the trajectory function z(t) can
no longer provide a useful description for random discontinuous motion. For

101t is worth stressing that the propensities possessed by the particles relate to their objective
motion, not to the measurements on them as in the existing propensity interpretations of
quantum mechanics (cf. Sudrez 2007).



a quantum particle, there is no continuous trajectory at all. Rather, the ran-
dom discontinuous motion of the particle forms a particle “cloud” extending
throughout space (in an infinitesimal time interval), and the state of motion of
the particle is represented by the density and flux density of the cloud, denoted
by p(x,t) and j(z,t), respectively. This is similar to the description of a clas-
sical fluid in hydrodynamics. But their physical meanings are different. The
particle cloud is formed by the random discontinuous motion of a single par-
ticle, and the density of the cloud, p(z,t), represents the objective probability
density of the particle appearing in position x at instant ¢. By assuming that
the nonrelativistic equation of motion is the Schrodinger equation in quantum
mechanicﬂ the complex wave function ¥(z,t) can be uniquely expressed by
p(z,t) and j(z,t) (except for a constant phase factor):

(e, 1) = v/l e I TR n, (1)
In this way, the wave function ¥ (x,t) also provides a complete description of
the state of random discontinuous motion of a particle.

The description of the motion of a single particle can be extended to the
motion of many particles. At each instant the quantum system of N particles
can be represented by a point in a 3N-dimensional configuration space, and the
motion of these particles forms a cloud in the configuration space. Then, similar
to the single particle case, the state of the system is represented by the density
and flux density of the cloud in the configuration space, p(z1,z2,...zn,t) and
j(x1, e, .. xN,t), where the density p(x1, 2, ...2n,t) represents the probability
density of particle 1 appearing in position z; and particle 2 appearing in position
To, ..., and particle N appearing in position xy. Since these two quantities
are defined not in the real three-dimensional space, but in the 3N-dimensional
configuration space, the many-particle wave function, which is composed of these
two quantities, is also defined in the 3N-dimensional configuration space.

One important point needs to be stressed here. Since the wave function in
quantum mechanics is defined at a given instant, not during an infinitesimal time
interval, it should be regarded not simply as a description of the state of motion
of particles, but more suitably as a description of the dispositional property of
the particles that determines their random discontinuous motion at a deeper
1eveﬂ In particular, the modulus square of the wave function determines the
probability density of the particles appearing in certain positions in space. By
contrast, the density and flux density of the particle cloud, which are defined
during an infinitesimal time interval at a given instant, are only a description
of the state of the resulting random discontinuous motion of particles, and they
are determined by the wave function. In this sense, we may say that the motion
of particles is “guided” by their wave function in a probabilistic way.

6 Conclusions

In this essay, we have argued that quantum mechanics may have already spelled
out the meaning of the wave function. There are three main steps to reach this
conclusion.

M For a derivation of the free Schrédinger equation see Gao (2011c).
12For a many-particle system in an entangled state, this dispositional property is possessed
by the whole system.



First of all, protective measurement, whose principle is based on the estab-
lished parts of quantum mechanics, shows that the charge of a charged quantum
system such as an electron is distributed throughout space, and the charge den-
sity in each position is proportional to the modulus square of its wave function
there. Next, the superposition principle of quantum mechanics requires that the
charge distribution is effective, that is, it is formed by the ergodic motion of a
localized particle with the total charge of the system. Lastly, the consistency of
the formed distribution with that predicted by quantum mechanics requires that
the ergodic motion of the particle is discontinuous, and the probability density
of the particle appearing in every position is equal to the modulus square of its
wave function there.

Therefore, quantum mechanics seems to imply that the wave function de-
scribes the state of random discontinuous motion of particles, and at a deeper
level, it may represent the dispositional property of the particles that determines
their random discontinuous motion. In particular, the modulus square of the
wave function not only gives the probability density of the particles being found
in certain locations as the standard probability interpretation assumes, but also
gives the probability density of the particles being there. It will be interesting
to see how this new interpretation of the wave function can be extended to
quantum field theory and what it implies for the solutions to the measurement
problem.
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Appendix: Protective measurement of the charge
distribution of a charged quantum system

Since the existence of the charge distribution of a charged quantum system is
the basis of our analysis of the meaning of the wave function, we will briefly
illustrate this important result here. For a more detailed analysis see Aharonov
and Vaidman (1993), Aharonov, Anandan and Vaidman (1993, 1996), and Gao
(2011c).

Consider the spatial wave function of a single quantum system with negative

charge Q (e.g. Q@ = —e):

ﬁ’(%f) - awl(x,t) + bw2<xat)> (2)

where 1 (x,t) and 12 (z, t) are two normalized wave functions respectively local-
ized in their ground states in two small identical boxes 1 and 2, and |a|?+]b]? = 1.
An electron, which initial state is a small localized wave packet, is shot along
a straight line near box 1 and perpendicular to the line of separation between
the boxes. The electron is detected on a screen after passing by box 1. Suppose
the separation between the boxes is large enough so that a charge Q in box 2
has no observable influence on the electron. Then if the system were in box 2,
namely |a|? = 0, the trajectory of the electron wave packet would be a straight
line as indicated by position “0” in Figure 2. By contrast, if the system were
in box 1, namely |a|? = 1, the trajectory of the electron wave packet would be
deviated by the electric field of the system by a maximum amount as indicated
by position “Q” in Figure 2.

Q

Jaf? b
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Figure 2. Scheme of a protective measurement of the charge density of a
charged quantum system

We first suppose that ¥ (x,t) is unprotected, then the wave function of the
combined system after interaction will be

1!)(,%, .Z’/, t) = a(pl(ibl, t)d}l (LE, t) + b(pg(x/, t)¢2(l'7 t)? (3)

where @1 (2',t) and (2, t) are the wave functions of the electron influenced by
the electric fields of the system in box 1 and box 2, respectively, the trajectory of
1(2’,t) is deviated by a maximum amount, and the trajectory of ps (2, ) is not



deviated and still a straight line. When the electron is detected on the screen,
the above wave function will collapse to o1 (2, )11 (x,t) or pa(2’, t)h(z,t). As
a result, the detected position of the electron will be either “Q” or “0” on the
screen, indicating that the system is in box 1 or 2 after the detection. This is
a conventional impulse measurement of the projection operator on the spatial
region of box 1, denoted by A;. A; has two eigenstates corresponding to the
system being in box 1 and 2, respectively, and the corresponding eigenvalues
are 1 and 0, respectively. Since the measurement is accomplished through the
electrostatic interaction between two charges, the measured observable Ay, when
multiplied by the charge @, is actually the observable for the charge of the
system in box 1, and its eigenvalues are ) and 0, corresponding to the charge
@ being in box 1 and 2, respectively. Such a measurement cannot tell us the
charge distribution of the system in each box before the measurement.

Now let’s make a protective measurement of A;. Since v (z,t) is degenerate
with its orthogonal state ¢ (x,t) = b*iy (z,t) — a*tho(x, t), we need an artificial
protection procedure to remove the degeneracy, e.g. joining the two boxes with
a long tube whose diameter is small compared to the size of the box. By this
protection ¥ (z,t) will be a nondegenerate energy eigenstate. The adiabaticity
condition and the weakly interacting condition, which are required for a protec-
tive measurement, can be further satisfied when assuming that (1) the measuring
time of the electron is long compared to i/AFE, where AFE is the smallest of
the energy differences between 1 (z,t) and the other energy eigenstates, and (2)
at all times the potential energy of interaction between the electron and the
system is small compared to AE. Then the measurement of A; by means of
the electron trajectory is a protective measurement, and the trajectory of the
electron is determined by the expectation value of the charge of the system in
box 1. In particular, when the size of box 1 can be ignored compared with the
separation between it and the electron wave packet, the trajectory of the center
of the electron wave packet, 7.(t), will satisfy the following equation:

a2, e-lal*Q
. =—k ) 4
m dt? |re — 71| (re — 71) (4)

where m, is the mass of electron, k is the Coulomb constant, 71 is the position
of the center of box 1. Then the electron wave packet will reach the position
“lal?Q” between “0” and “Q” on the screen as denoted in Figure 2, where |a|?>Q
is the expectation value of the charge @ in the state v (x,t) in box 1, namely
the integral of the charge density Q[i(x)|? in the region of box 1. This result
of protective measurement indicates that there exists a charge |al?Q in box 1.
In conclusion, protective measurement shows that the charge of a charged
quantum system is distributed throughout space, and the charge density in each
position is proportional to the modulus square of its wave function there.
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