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I. Introduction

How do we go from impersonal physical laws to intentions and goals? From an engineering
perspective, this question is of great relevance now, given the growing interest in achieving artificial
general intelligence. It will be very hard to build agents capable of matching or even exceeding
human intelligence, if we cannot answer fundamental questions about agency. This essay will
address some of these questions. I will begin by presenting the minimal dissipation hypothesis,
followed by a short description of the methodology and the exact relationship between dissipation
and learning dynamics. I will then extend these ideas to explain how goal-oriented agency would
emerge in physical systems under the hypothesis, and present results from non-equilibrium
thermodynamics to suggest a way to unify learning with the biological evolutionary process. I will
conclude the essay with some exciting conjectures on connections to the critical brain hypothesis,
and cognition as phase transitions in input mapping. I would like to make clear that while
mathematical descriptions of the laws of nature might be a product of human cognition, I will
work under the premise that the evolution of physical systems under these laws is ontologically
objective. The familiar language of mathematics is a necessary evil to explain how subjective goals
and intentions arise in physical systems.

II. A Physical Basis for Learning: The Minimal Dissipation Hypothesis

I have been studying the fundamental limits on energy efficiency in new computing paradigms
using physical information theory as part of my dissertation. Given the increase in machine
learning applications, determining efficiency limits for physical instantiations of neural networks
are of particular interest to me. The large number of algorithms, often arbitrary cost functions
and non-intuitive training processes left me perplexed and looking for a clear basis for learning
in physical systems from fundamental laws. In my search for a solution, I posed the following
statement that I will refer to as the minimal dissipation hypothesis -

Open physical systems with constraints on their finite complexity, that dissipate minimally when driven by
external fields, will necessarily exhibit learning and inference dynamics.

Are physical systems energy efficient because they learn, or are systems that dissipate minimally
(and are highly energy efficient) in their environment, necessarily show dynamics that we identify
as learning? This might just seem like a clever play of words, but let us take a second and think
about it. Our numerous attempts at machine learning, often requiring tremendous resources have
shown us that it is clearly possible to learn without being energy efficient. Can minimal dissipation
alone be a sufficient condition for learning? Before I proceed, note that energy efficiency as an
underlying principle in neural dynamics has been suggested before, but we will make clear the
connection here [1].

In order to test this idea, I generalized the fundamental bounds on dissipation developed for
finite state automata (FSA). The bounds on dissipation that are used in this paper are rigorously
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Figure 1: (a) The physical FSA instantiated in the states of system S that is correlated to the input
string R = R0R1 and in contact with heat bath B, undergoing a state transition. (b) Diagram of
an hierarchical predictive coding architecture. Predictions travel from higher to lower levels, while
prediction errors travel the other way around.

obtained from the dynamics of the system, and details on the corresponding methodology are
available in [3]. A detailed physical description of an abstract and physical FSA can be found in
[4], but I will present a quick summary here. The physical implementation of an abstract FSA
is given as FP = {S ,R, {σS}, {x̂R}, {L̄}}. The FSA is faithfully instantiatied in the orthogonal
distinguishable states {σ̂S} of a quantum system S . The external input strings {x̂R} that produce
transitions in the FSA are instantiated in the physical ’referent’ system R = R0R1, with R0
corresponding the current state of the FSA and R1 for the latest, that is about to produce the next
state change. We allow R0 and R1 to be correlated. The state transition (defined by transition
mapping {L̄}) is realized by the dynamical evolution of the state of S , conditioned on the state of
R1 (they exhibit Markov property) and in interaction with B, a heat bath at temperature T that
is in contact with S (as shown in Fig.(1a)). Global evolution of the interacting composite R1SB
producing this transition is assumed to be governed by the time-dependent Schrodinger equation
to ensure consistency with physical law (implying unitary evolution of the state of R1SB). The
input R1 remains unchanged at the conclusion of the FSA state transition.

For the FSA FP , the input-averaged amount of energy dissipated to a thermal environment
∆〈EB〉, on each state transition is lower bounded as

∆〈EB〉 ≥ kBT ln 2
[
−∆SS + IR1S ′ − IR1S

]
where kB is the Boltzmann constant, T is the temperature of the bath and −∆SS is the loss of von
Neumann entropy of the system S undergoes the state transition. IR1S and IR1S ′ is the quantum
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mutual information between system R1 and S before and after the state transition 1. We can view
IR1S as a measure of "prediction" of R1 by S . A similar bound has been derived under a different
set of assumptions in [5]. Since a number of biochemical processes in living systems operate near
the limits of dissipation, these bounds are good approximations of the actual dissipation for these
processes [6], and analysis based on them are very relevant. Furthermore, the bounds are derived
from fundamental physical law and applies to all systems, providing us with valuable insight that
is independent of implementation details.

I will assume that the states {σ̂S} of S are pure states, allowing me to reduce the von Neumann
entropy to it’s classical Shannon equivalent, and replace the quantum mutual information with
Shannon mutual information. Let p(kSt |iR0) indicate the probability that the i-th string of R0
maps to the k-th current state of S at time t. We can find out the required optimal mapping for
which dissipation is minimized by performing an optimization of ∆〈EB〉 subject to a constraint
on the complexity IR0S [7], with respect to p(kSt |iR0). We construct the necessary Lagrangian
L = ∆〈EB〉+ βIR0S , where β is the tradeoff parameter between dissipation and complexity

β = ∂∆〈EB〉
∂IR0S

The optimization problem can be described as

minp(kSt |i
R0 ) L = ∆〈EB〉+ βIR0S

We would need to solve the equation dL
dp(kSt |i

R0 )
= 0. Under the assumption that the next state

transition matrix is homogenous and independent of past encodings i.e
dp(lSt+1|kSt ,jR1 )

dp(kSt |i
R0 )

= 0, we

would get a system of equations for p(kSt |iR0), p(jR1 |kSt ) and p(kSt ), that are parametricized using
β and need to be solved consistently [8]. We have the equation for p(kSt |iR0) to be

p(kSt |iR0) ∝ e
−1
β {DKL [p(jR1 |iR0 )|p(jR1 |kSt )]−ln p(kSt )}

where DKL[a|b] is the Kullback-Liebler (KL) divergence between distributions {a} and {b} 2.
If DKL[p(jR1 |iR0)|p(jR1 |kSt )] is low, p(kt|iR0) is higher and iR0 is likely to map to a state kSt
that better predicts jR1 , forming the basis of predictive inference in the dynamics. For equally
predictive encodings, ln p(kSt ) ensures preference of sparse mappings over dense ones [9].

Since we require the FSA system S to continue to be in a minimally dissipative state, we can
obtain the transition probabilities p(lSt+1|kSt , jR1) from earlier results. We find that for systems that
continue to be in minimally dissipative state, the favored state transitions are those from kSt -th
state at time t, to lSt+1-th state at time t + 1 by the j-th input of R1, if the system can predict the

next incoming input R2. In addition to assuming that
dp(lSt+1|kSt ,jR1 )

dp(kSt |i
R0 )

= 0, if we assume the system

is in a steady state and −∆SS = 0, we are left with the results from the Information Bottleneck
(IB) method [8]. Like the IB method, the above equations can be implemented in physical systems
through an hierarchical predictive coding model, similar to the one constructed by Rao and Ballard
for the visual cortex [10], and by Friston within the Free-Energy Principle [11] (Fig.(1b)).

However if we let
dp(lSt+1|kSt ,jR1 )

dp(kSt |i
R0 )

6= 0, we can follow the same procedure as before and obtain a

revised expression for p(lSt+1|kSt , jR1) as follows

1The von Neumann entropy is the quantum analogue of the classical Shannon entropy, and depends upon the
probabilistic description of the states of the system. The quantum mutual information between two systems is the quantum
analogue of Shannon mutual information, and a measure of the amount of correlation between two systems.

2The KL divergence DKL[a|b] between distributions {a} and {b} is a measure of the non-symmetric difference between
the two probability distributions and is lower if the two distributions are similar. DKL[a|b] = 0 when {a} = {b}.
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p(lSt+1|kSt , jR1) ∝ e
−1
β1
{DKL [p(mR2 |iR0 jR1 )|p(mR2 |lSt+1)]}e

1
β2
{DKL [p(jR1 |iR0 )|p(jR1 |kSt )]}

In addition to first term from the previous case, there is the e
1

β2
{DKL [p(jR1 |iR0 )|p(jR1 |kSt )]} term, which

implies that if the prediction of R1 by kSt was poor and corresponding KL divergence was large, it
will favor mappings away from kSt to lSt+1. This is using past encodings to improve predictions
by avoiding recent errors i.e an error correction mechanism. These results show that learning
dynamics are inevitable in a trade off between energy dissipation and statistical complexity, and
give us a solid base to expand on and tackle issues regarding agency and goals.

III. Intentional Agency

It is important to start with a clear and simple definition for agency. Agency is the capacity
of a system/entity/agent/organism to act on it’s environment. It can be broadly classified as
unintentional (unconscious and involuntary), and purposeful goal-directed intentional agency. We
have goals as desirable results of an action. It is the latter type of agency that we are particularly
interested in, especially when the intentions and objectives are generated by the agent directly,
rather than have it bestowed on them externally. We will define sense of agency (SA) as the
pre-reflective subjective awareness that one is initiating, executing, and controlling one’s own
volitional actions in the world. In normal, non-pathological experience, the SA is tightly integrated
with one’s sense of ownership (SO), which is the pre-reflective awareness that one is the owner of
an action.

In this section, I will explain the emergence of goal-directed agency in systems that dissipate
minimally. We will now consider a joint quantum system SA, which behaves like a FSA, but can
also act upon it’s environment and affect the next incoming input R1. System SA is defined as
before, with actions dependent on the the states of A capable of affecting which input is seen next
by the joint system (I am imbuing system A with agency, but not with a specific goal or purpose).
We place no restriction on the nature of interaction between systems S and A. Following the
procedure in [4], we can calculate the lower bound on dissipation in this system as it undergoes a
state transition -

∆〈EB〉 ≥ kBT ln 2
[
−∆SSA + IR1SA′ − IR1SA

]
We construct the required Lagrangian L = ∆〈EB〉+ βIR0SA and optimize it with respect to

p(kSt lAt |iR0). We see that in the optimal encoding, we have that

p(kSt lAt |iR0) ∝ e
−1
β DKL [p(jR1 |iR0 ,lAt )|p(jR1 |kSt ,lAt )]e

1
β DKL [p(jR1 |iR0 ,lAt )|p(jR1 )]

From the above expression, we can see that as before we have that p(kSt lAt |iR0) is higher when
DKL[p(jR1 |iR0 , lAt )|p(jR1 |kSt , lAt )] is lower, implying that iR0 is likely to map to that SA state that
makes good a prediction of the future distribution as predicted by that state of A (and correspond-
ing action) and input R0. p(kSt lAt |iR0) is also increased if DKL[p(jR1 |iR0 , lAt )|p(jR1)] is higher,
implying the future distribution produced by the state of A deviate from the mean distribution.
The optimal encoding of R0 in SA is a trade-off between exploiting known information and
exploration. Perhaps wandering is not such a bad thing.

While the state of A depends upon balancing exploration with prediction, the state of system S
given the state of A needs to be maximally predictive of this future input. The state of the system
SA corresponding to best future input prediction p(jR1

t+1|kSAt ) can form the basis of aims and
intentions. Let us consider the following example case using the human brain, and say systems
S and A correspond to the neocortex (responsible for sensory perception) and motorcortex
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Figure 2: Diagram of higher level predictions in the hierarchical model corresponding to intentions.

(responsible for voluntary movement) respectively, and employ it in this example. Let the system
SA be affected by the incoming visual input of say a basketball. The state of the joint system
that predicts the future input depends on how the past inputs are encoded p(kSAt |iR0), lending
weight to the adage that our aims and goals are shaped by our history. Due to these past inputs,
let the state of the system A (motor cortex) that is most likely given the prediction-exploration
trade off, corresponds to the action "throw the ball". Since the state of S (neocortex) has to be
correlated with A in order to maximally predict the future input of "ball being thrown", the states
of S corresponding to sensory perception make predictions for "seeing the ball being thrown".
Thus the joint state of SA=("see ball being thrown","throw ball") as the ball is thrown will explain
the sense of agency, the awareness of an action being performed as it being performed.

We now move from the sense of agency to the actual intention of an action. We should
note that not all levels in an hierarchical model is making predictions about the exact same
features. For example, in the case of visual perception of a face, the higher levels make predictions
corresponding to say, "seeing a face," which is then translated with greater details on features like
mouth and eyes and nose, as it is passed into the lower levels (Fig.(2)). Similarly predictions made
in the higher levels of the hierarchical model in SA, under the minimal dissipation hypothesis,
would correspond to the higher level intention of the action-sense of agency (like say "win game"
in our example), which would then be translated with greater detail downstream to the lower level
subsystems, that interact directly with the external input. If the prediction is correct i.e. confirming
at the lower level with the incoming input of "ball has been thrown," and in the form of "game
won" in the higher level, the system perceives as the objective being successfully accomplished.
While I might have distinguished between features of perception vs intentional action, generated
in the upper levels of the hierarchical model, arguments have been made for inherent intentionality
in every perception event [12]. We can view the upper levels of the hierarchical model in the brain
as the source of only intentions and make a strong case that intention is physical.

Crucial to this process though, is a sense of ownership that the system will learn over time
about what is within the system’s control and what is beyond that. If the system initially predicts
a future input that is beyond what is controllable by it’s own actions, then in time the minimal
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dissipation hypothesis will ensure that system can learn to not make that erroneous prediction.
While we have specified a larger principle of minimal dissipation to explain aims and goals in
physical system, the exact state transition mappings will be heavily dependent on the physical
system in question and can vary significantly. It is possible for two different physical systems,
both that dissipate minimal to make completely different predictions of the future (manifesting
as having different goals and aims), even if they have the same history of inputs. In fact it is
possible for the same structure with a fixed history, to have different predictions at a certain time.
This symmetry breaking at critical bifurcation points will be explained in detail later. Deeper
meaning and hidden objectives to our actions can always be obtained by a reflective analysis after
the fact, and are beyond the scope of this essay. While examples using the human brain are easy
to understand, the results themselves do not assume the requirement of a brain of any sort to be
present.

I used the minimum dissipation hypothesis to explain the emergence of goals and intentions,
but started the section by assuming agency in the system (without imbuing it with a goal or
purpose). The intention and objectives of the agent arose only from the objective physical laws
depending upon the system under consideration. In the next section, I will present results from
non-equilibrium thermodynamics to explain how agency might have arose in physical systems in
the first place, and tie up the idea with the dissipation driven adaptation hypothesis.

IV. An Argument from Non-Equilibrium Thermodynamics

The results from the previous sections do not depend on the following arguments but definitely did
reaffirm the idea of systems that dissipate minimally. Jeremy England presented the dissipation
driven adaptation hypothesis using a revised version of Crook’s fluctuation [14].

π(i→j)
π(i→k) =

π(j∗→i∗)
π(k∗→i∗)

〈e
−∆Q
kBT 〉i→k

〈e
−∆Q
kBT 〉i→j

From the above equation, all things being equal, we are more likely to find a system in state i

than in j (π(i→ j) > π(i→ k)), if 〈e
−∆Q
kBT 〉i→k > 〈e

−∆Q
kBT 〉i→j. The author argues for the dissipation

driven adaptation hypothesis, in which while most changes in system configurations are random
when driven by external fields, the most irreversible of these changes are ones that have better
work absorption and dissipation structures for that driving field. In time, the history of these
specific configurations add upto to produce a structure that appears adapted to it’s environment.
I will ascribe the emergence of agency (but not intentions) in physical systems as a result of such
dissipation driven adaptation. The apparent conflict between this hypothesis and the minimal
dissipation hypothesis can be resolved as follows.

England derived the fluctuation theorem for macrostate-to-macrostate transitions [13]

π(I→I I)
π(I I→I) =

〈
〈e−β∆Qi→j 〉

e
ln
[

p(i|I)
p(j|I I)

]
〉

I→I I

where I and I I correspond to macrostates of the system, each composed of it’s own microstates.
〈e−β∆Qi→j〉 is the average of the exponential of the dissipation over all paths from microstate
i to microstate j. 〈〉I→I I indicates the average over all microstates of I to microstates of I I.
Also β = 1/kBT here, and not the Lagrangian parameter from previous sections. Using the
above equation we ask the following question - what can we say about a system that maintains
it’s macrostate I when driven by an external field. If macrostates I and I I are identical, then
π(I → I I) = π(I I → I) = 1. For the purposes of this essay, let us assume we are dealing with a
large enough state space to approximate p(i|I) = p(j|I). This reduces the equation to
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〈
〈e−β∆Qi→j〉

〉
I→I

= 1

We see that the average of the exponential of dissipation over all paths from all microstates i to
j, both belonging to macrostate I is equal to 1. Taking negative logarithm on both sides and using
the cumulant generating function we get

− ln
〈
〈e−β∆Qi→j〉

〉
I→I

= β〈∆Q〉I→I −
β2

2
σ2

∆QI→I
...

= κ − γ = 0

where κ = β〈∆Q〉I→I is the mean dissipation, and γ = κ + ln
(
〈e−β∆Qi→j〉

)
I→I

represents the
fluctuations about the mean. If κ = γ, that would mean that the fluctuations about the mean
are equal to the mean. We are especially interested when κ = γ is low. Since both the mean
and fluctuations about the mean are low, we would have dissipation over all paths from one
microstate to another, within a macrostate to be low. This is exactly the type of physical system
that I would label a minimally dissipative system, expected to show learning dynamics. This is
not contradictory to the dissipation driven adaptation hypothesis, where we compare π(I → I I)
and π(I → I I I). The state I I is more likely and seems adapted if for equal amounts of fluctuation
γ, the mean dissipation κI→I I > κI→I I I and π(I → I I) > π(I → I I I). Thus the explanation of
individual learning under the minimal dissipation hypothesis does not conflict with England’s
dissipation driven adaptation.

V. Reasons to be Excited

In this section, I will present reasons to be excited about of the minimal dissipation hypothesis.
Let ask the question, what should subsystem interactions of a system S = S0S1 that dissipated
minimally look like? It is possible show that for p(kS0 , lS1), we have

p(kS0 , lS1) ∝ ∑
iR0

e
−1
β DKL [p(jR1 |iR0 )|p(jR1 |kS0 ,lS1 )]

The above equation indicates that the correlation between subsystems S0 and S1 changes as
required to maximally predict the future inputs and achieve minimal dissipation, imbuing it with
the plastic nature that we have come to expect in various levels of a neuronal system. Thus concepts
like plasticity that are fundamental to neuroscience can be derived from this larger principle.

In an earlier section, I had discussed the connection to the IB method. This allows us to tie
the hypothesis with techniques that have already shown to be related to the IB method, and
make use of the vast results and insight that has been gained. These include biologically inspired
signal processing techniques like slow feature analysis [15] and sparse coding [9]. The connection
to other unifying princples like Friston’s Free Energy principle [11] and Hawkins’ Hierarchical
Temporal Memory [16] can be made. The fact that the hypothesis here is physically grounded and
derived from fundamental law gives it an unique advantage.

Another idea that has gained significant momentum in neuroscience recently is the criticality
hypothesis [17]. It states that the collective dynamics of large neuronal networks in the brain operates
close to the critical point of a phase transition, where the brain capacity for information processing
is enhanced. According to this hypothesis, the activity of the brain would be continuously
transitioning between two phases, one in which activity will rapidly reduce and die (sub-critical),
and another where activity will build up and amplify over time (super-critical). The theory states
that the human brain is an example of a system exhibiting self-organized criticality, with a critical
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Figure 3: (a) Second-order phase transition between an active and inactive phase at critical point
λc. (b) Phase transition with the extension of the critical point to a Griffith phase. (c) A simple
figure showing bifurcations at critical βC in p(jR1 |kSt ) vs β−1 graph, of a system that is minimally
dissipative.

point at an attractor and a constant tuning of the control parameter by a decentralized internal
mechanism. I will next show here that systems which dissipate minimally can exhibit critical
behavior and establish a strong connection between the two hypotheses.

The solution we get from constrained optimization are self-consistent equations corresponding
to a family of curves on the (∆〈EB〉,IR0S ) plane, and are parameterized by β. We can use the
equations for p(kSt |iR0) and p(jR1 |kSt ) to form an eigenvalue problem[

I − βC(β, iR0)
] d ln p(iR0 |kSt )

dkSt
= 0

The critical βc obtained as the non-trivial eigenvalues of this eigenvalue problem are points at
which the curves bifurcate through second order phase transitions (Fig.(3c)). Results for the case of
Gaussian inputs (Fig.(1) in [18]) show that the system undergoes multiple continuous second-order
phase transitions through many critical points βc. We can see that the optimal input mappings of
systems that are minimally dissipative thus exhibit a Griffith’s region (Fig.(3b)) [17], an extension
of the critical point to a larger region. If the brain can be viewed as a minimally dissipative
system, it should not be surprising that it’s information processing capabilities is optimal in the
critical regions of β, hence explaining the properties of criticality observed in neuronal avalanches,
branching parameters, etc..

We refer to Fig.(3c) here, and Fig.(1) from [18], indicating the type of bifurcations that is
expected in L as β is varied. The symmetry breaking at these critical points can correspond to
different optimal mappings for the same value of β, allowing for different predictions by the
same system. As β→ ∞, we can see that all the mappings are uniform and there is no emphasis
on prediction, similar to the soft limit in a clustering problem. For β → 0, there are no finite
complexity constraints (which would be improbable), emphasis is on prediction and we are left
with the equivalent of the hard clustering limit. As long as the system maintains the value of β in
the critical regions, the system will exhibit optimal information processing dynamics. If we were
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to use a broad definition for cognition as the process of acquiring information and understanding
it through experience and the senses, we can view the spectrum of p(kSt |iR0) and p(jR1 |kSt ) as
different levels of cognition. We would then have the critical Griffith regions with enhanced
information processing corresponding to optimal cognitive processes. This would leave us to
interpret moving towards the super-critical β → ∞ and sub-critical β → 0 regions as those of
sub-optimal prediction capability, and an impaired state of cognition. I would conjecture that
both lack of any neuronal activity like in brain death, and large synchronous neuronal activity
that produce epileptic seizures correspond to the ordered sub-critical stage (epileptic seizures are
traditionally considered to be part of the super-critical regime). As β is increased and we move
toward the disordered super-critical region, we could obtain states corresponding to sleep, and
even being unconscious.

Since an entire separate essay would be necessary to properly address the topic of consciousness,
qualia and meaning, I will not get into it here. I will note while information integration, recognized
as an important feature of consciousness is especially high in complex networks near criticality
[19], by specifying conditions on which systems can exhibit optimal information processing
dynamics, the minimal dissipation hypothesis can avoid the trap of panpsychism. This adds
further confidence that minimally dissipative systems operating in the critical region are very
good candidate systems for consciousness.

VI. Conclusion

In this essay, to establish that intention is physical I used the minimal dissipation hypothesis to
explain the emergence of learning dynamics and goal oriented agency in physical systems, as
a trade off between energy dissipation and complexity. I also showed that there is no conflict
between the minimum dissipation hypothesis and dissipation driven adaptation to unify individual
learning with evolutionary processes. The connection between this hypothesis and the critical
brain hypothesis looks very promising and provide a very useful approach to study questions
regarding intelligence, agency and maybe even consciousness in a physically grounded manner. A
multi-disciplinary approach would be needed to address questions of immediate interest, such as
the phase space characterization of self-organized systems which dissipate minimally, improved
understanding of internal control mechanisms to maintain criticality, and detailed formulations of
cognitive states as phase transitions in a (non-chaotic strange) attractor.
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