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The question of whether it is possible or not to surpass the speed of light is already centennial.
The special theory of relativity took the existence of a speed limit as a principle, the light postulate,
which has proven to be enormously predictive. Here we discuss some of its twists and turns when
general relativity and quantum mechanics come into play. In particular, we discuss one of the most
interesting proposals for faster than light travel: warp drives. Even if one succeeded in creating
such spacetime structures, it would be still necessary to check whether they would survive to the
switching on of quantum matter effects. Here, we show that the quantum back-reaction to warp-
drive geometries, created out of an initially flat spacetime, inevitably lead to their destabilization
whenever superluminal speeds are attained. We close this investigation speculating the possible
significance of this further success of the speed of light postulate.

I. A QUESTION FOR A CENTURY

Why is it not possible to travel faster than light? Probably this is the most-frequently-asked question to scientists
around the globe during the last century. Science does not have yet a compelling answer to this question and, logically
possible but improbable in practice, it might even be that there is none. The speed of light as a maximum speed for
propagation of any signal, the light postulate, was introduced by Einstein as a hypothesis or principle in his famous
paper of 1905. Einstein himself acknowledged that his theory of Special Relativity (SR) was a “principle theory” to be
validated empirically and not a “constructive theory” trying to explain the facts from elementary foundations [1, 2].

After the proposal of the relativity principle together with the light postulate, a large part of the developments in
physics during the last Century came to life from the desire of making all theories compatible with these principles.
From a predictive point of view, these principles have been a tremendously successful source of inspiration in physics
and up to now, there is not a single observation contradicting the light postulate.

On another front, the exploration of the universe has enlarged further and further its size to inconceivable pro-
portions. Given the current way in which we humans understand this exploration, that is, remaining on the Earth
while sending round-trip expeditions outside, it is almost unavoidable not to feel from time to time that the speed
of light barrier restrain our probing capacities to unbearable limits. That is one of the reasons why, from time to
time, scientists like to revise the relativistic scientific building to look for fissures. In most of the cases the consistency
fissures will ask for healing conditions which, if empirically correct, will add more medals to the impressive trophy
shelf of the relativity principle and the light postulate. But one cannot discard that through some of these fissures
one might glimpse an extended theory allowing for superluminal travel. In any case, pushing physics to its limits has
always been a source of advancement and in this essay we will give a recount of one particular battle on the fields of
the light postulate we have participate in.

The general theory of relativity (GR) was born from the desire of constructing a gravitational theory consistent
with the relativity principle and the light postulate. At a first glance general relativity does incorporate the light
postulate, but in a subtle and somewhat restricted manner: No signal can travel faster than the speed of light as
defined locally with respect to space and time, or in other words, the spacetime geometry is everywhere Lorentzian.
General relativity tell us that gravity is encoded in terms of Lorentzian geometry. However, although this assertion has
an enormous significance, it does not say anything about our real chances of sending an expedition to our neighboring
star, Alpha Centauri, and receiving it back in less that 8.6 years.
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FIG. 1: Spacetime structure of a warp-drive bubble. (Source: internet)

II. A GEOMETRY FOR SUPERLUMINAL TRAVEL: THE WARP DRIVE

Nothing can travel faster than light with respect to space, but what about space itself? The kinematics of GR sets
no restriction on the expanding or contracting capacities of spacetime itself. By manipulating the light-cone structure
of Minkowski spacetime one can construct geometries allowing for superluminal travel. A prime example of that is
the warp-drive geometry introduced by Miguel Alcubierre in 1994 [3]. This geometry represents a bubble containing
an almost flat region, moving at arbitrary speed within an asymptotically flat spacetime. Mathematically its metric
can be written as

ds2 = −c2dt2 + [dx− v(r)dt]2 + dy2 + dz2 , (1)

where r ≡
√

[x− xc(t)]2 + y2 + z2 is the distance from the center of the bubble, {xc(t), 0, 0}, which is moving in the
x direction with arbitrary speed vc = dxc/dt. Here v(r) = vcf(r) and f is a suitable smooth function satisfying
f(0) = 1 and f(r) → 0 for r → ∞. In Fig. 1, the curvature of the warp-drive geometry is plotted: To make the
warp-drive travel at the speed vc(t), the spacetime has to contract in front of the warp-drive bubble and expand
behind. It is easy to see that the worldline {xc(t), 0, 0} is a geodesic for the above metric. Roughly speaking, if one
places a spaceship at {xc(t), 0, 0}, it is not subject to any acceleration, while moving faster than light with respect to
someone living outside of the bubble.

Looking at the previous geometry it would seem that general relativity easily allows superluminal travel; but this
is not quite true. General relativity is not only Lorentzian geometry, in addition one has to carefully specify the right
hand side of the Einstein equations, that is, the stress-energy tensor of the matter content. When the warp-drive
geometry is interpreted as a solution of the Einstein equations one realizes that the matter content supporting it has
to be “exotic”, i.e. it has to violate the so called energy conditions (EC) of GR [4, 5].

III. THE ATTRACTIVE CHARACTER OF GRAVITY

Our daily experience tell us that gravity is attractive or, what is equivalent, that the mass (energy) of a body
is always positive. The energy conditions of GR mathematically encode this observation. They take the form of
inequalities involving the full stress energy tensor of matter (both energy density and pressure gravitate in GR)
which determines the focussing/defocussing properties of the gravitational field via the Einstein equations. Hence,
the EC impose restrictions on the allowed manipulations of light cones (i.e. on the local causal structure of spacetime).

Indeed, it seems that any attempt to produce superluminal travel would need some matter with gravitationally
repulsive properties [6, 7]. In particular, as we anticipated above, the light cone structure of the Alcubierre warp drive
requires violations of the weak and dominant energy conditions [8] (remarkably this is true even if the warp drive is
not traveling at superluminal speeds).

One could say that any strong version of the light postulate, forbidding superluminal travel of any sort and not just
of the local type, will be linked to the gravitationally attractive properties of matter. In fact, not only the Alcubierre
warp drive but also alternative “spacetime shortcuts”, such as the Krasnikov tube [9, 10] or traversable wormholes [5],
seem to require the same kind of exotic matter [11]. Of course, empirical observations in the future will decide whether
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a strong light postulate is at work or not. At present, theoretical investigations and empirical evidence are still not
completely in favor of its existence.

On the one hand, energy conditions can be violated by several physical systems, even classical ones [12]. On the
other hand, violations of the weak and dominant energy conditions are particularly difficult to get as they imply
negative energy densities. Quantum phenomena, such as the Casimir effect, are known to entail such violations [5]
(and indeed it is a subject of debate their relevance for possible faster than light propagation [13–16]). However, it
has been convincingly argued that these quantum mechanical violations of the energy conditions would have to satisfy
(by the very same tents of Quantum Mechanics) strict bounds on their extension in time and space. These bounds
are the so called quantum inequalities (QI) [17].

Hence, it is not so surprising that, immediately after Alcubierre’s proposal of the warp drive, the most investigated
aspect of its solution has been the amount of exotic matter required to support such a spacetime [8, 18–20]. Applying
QI to the warp drive it has been found that such exotic matter must be confined in Planck-size regions at the edges
of the bubble [8], thus making the bubble-wall thickness to be of the order of the Planck length, LP ≈ 10−35m (see
Fig. 2). This bound on the wall thickness turns into lower limits on the amount of exotic matter required to support
the bubble (at least of the order of 1 solar mass for a macroscopic bubble traveling at the speed of light).

The requirement of exotic matter in order to support the warp drive can be seen as an engineering problem. Let
us assume that some advance civilization would be finally able to solve it. Even in this case there would be another
important issue regarding the feasibility of the warp drive: its semiclassical stability. This will be the subject of our
investigation.

IV. ON CURVATURE AND VACUUM FLUCTUATIONS

In quantum field theory (QFT) the vacuum state possesses, at least formally, an infinite amount of energy (it can be
understood as an infinite collection of harmonic oscillators, each contributing with energy ~ω/2). However, to date,
non-gravitational particle-physics phenomena seem to depend only on energy differences between states, so the value
of the quantum vacuum energy does not play any role: The vacuum contribution to the total stress-energy tensor
(SET) of any field in flat spacetime is renormalized to zero using a subtraction scheme. In a curved spacetime the
divergent part of the SET can still be canceled, by using the same subtraction scheme that works in flat spacetime.
However, the subtraction is now no longer exact, leaving a finite residual value for the renormalized SET (RSET) —
this effect is called quantum vacuum polarization.

Therefore, one ends up with the following iterative process: Classical matter curves spacetime via Einstein equations,
by an amount determined by its classical SET; this curvature makes the quantum vacuum acquire a finite non-vanishing
RSET; the latter becomes an additional source of gravity, modifying the initial curvature; the new curvature induces
in turn a different RSET, and so on. In this way one can incorporates quantum corrections into General Relativity in
a “minimal” way, taking into account the quantum behavior of matter but still treating gravity (that is, spacetime)
classically. Hence, the name “semiclassical approach”.

The stability of the stationary (eternal) superluminal warp-drive geometry against the quantum-vacuum effects was
studied in [21]. There it was noticed that, to an observer within the warp-drive bubble, the backward and forward
walls (along the direction of motion) look respectively as the future (black) and past (white) event horizon of a black
hole (see Fig. 2). We name them respectively the black and white horizon of the bubble. Indeed, while the warp-
drive bubble travels at superluminal speeds, nothing can escape from inside the bubble to the external world passing
through the front wall, neither anything can enter the bubble from the back, as this would require that signals travel
locally faster than light (remember that in GR special relativity still rules locally).

In this essay we consider the realistic case of a warp drive created with zero velocity at early times and then
accelerated up to some superluminal speed in a finite time (a more detailed treatment can be found in [22]). Spacetime
in the past is flat, therefore the physical vacuum state has to match the Minkowski vacuum at early times (we work
in the Heisenberg representation). At late times we find, as expected, that the center of the bubble is filled with a
thermal flux of radiation at the Hawking temperature corresponding to the surface gravity of the black horizon. The
latter is inversely proportional to the wall thickness. Hence, if the QI hold, then Planck-size walls would lead to an
excruciating temperature of the order of the Planck temperature TP (1032 in the Kelvin/absolute scale or in whatever
temperature scale one adopts!). Even worse, we do show that the RSET does increase exponentially with time on the
white horizon (while it is regular on the black one). This clearly implies that a warp drive becomes rapidly unstable
once a superluminal speed is reached. You may be able to build a warp drive but you still will have to respect the
speed of light limit.
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FIG. 2: Artistic representation of a Warp Drive. From the point of view of an observer inside the bubble, the front (back) wall
looks like the horizon of a white (black) hole (yellow solid lines). Large amounts of exotic matter are concentrated in the walls
on a plane orthogonal to the direction of motion. (Source: Scientific American)

V. SCHEME OF THE CALCULATION

We are including now a technical section with the scheme of our calculation. The reader not interested in mathe-
matical details can safely “jump” directly to Sect. VI, where the results are briefly summarized.

A. Light-ray propagation

In the actual computation we shall restrict our attention to the 1 + 1 dimensions case (since this is the only one
for which one can carry out a complete analytic treatment as explained below).1 Changing coordinates to those
associated with an observer at the center of the bubble, the warp-drive metric (1) becomes

ds2 = −c2dt2 + [dr − v̄(r)dt]2 , v̄ = v − vc , (2)

where r ≡ x − xc(t) is now the signed distance from the center of the bubble. In our dynamical situation the warp-
drive geometry interpolates between an initial Minkowski spacetime [v̂(t, r)→ 0, for t→ −∞] and a final stationary
superluminal (vc > c) bubble [v̂(t, r)→ v̄(r), for t→ +∞]. To an observer living inside the bubble this geometry has
two horizons, a black horizon H + located at r1 and a white horizon H − located at r2. For those interested, in [22]
you can find the Penrose diagram of these spacetimes. Here let us just mention that from the point of view of the
Cauchy development of I − these spacetimes posses Cauchy horizons.

Let us now consider light-ray propagation in the above described geometry. Only the behavior of right-going rays
determines the universal features of the RSET, just like outgoing modes do in the case of a black hole collapse [22–24].
Therefore, we need essentially the relation between the past and future null coordinates U and u, labelling right-going
light rays (see Fig. 3). Following [23], this relation can be found by integrating the right-going-ray equation

dr

dt
= c+ v̂(r, t) . (3)

1 Indeed, we do expect that the salient features of our results would be maintained in a full 3+1 calculation, given that they will still be
valid in a suitable open set of the horizons centered around the axis aligned with the direction of motion.



5

FIG. 3: Light rays propagating rightward (solid lines) and leftward (dashed lines) in the plane (t, r) in a warp-drive spacetime.
At t < 0 the metric is Minkowskian. The horizons at r1 and r2 (heavy dashed lines) are formed at t = TH = 1.

There are two special right-going rays defining, respectively, the asymptotic location of the black and white horizons.
In terms of the right-going past null coordinate U let us denote these two rays by UBH and UWH, respectively. The
finite interval U ∈ (UWH, UBH) is mapped to the infinite interval u ∈ (−∞,+∞) covering all the rays traveling inside
the bubble. For rays which are close to the black horizon, in [22] the present authors proved that the relation between
U and u can be approximated as a series of the form

U(u→ +∞) ' UBH +A1e
−κ1u +

A2

2
e−2κ1u + . . . . (4)

Here An are constants (with A1 < 0) and κ1 > 0 represents the surface gravity of the black horizon. This relation is the
standard result for the formation of a black hole through gravitational collapse. As a consequence, the quantum state
which is vacuum on I − will show, for an observer inside the warp-drive bubble, Hawking radiation with temperature
TH = κ1/2π.

Equivalently, we find that the corresponding expansion in proximity of the white horizon is

U(u→ −∞) ' UWH +D1e
κ2u +

D2

2
e2κ2u + . . . , (5)

where D2 > 0 and κ2 is the white hole surface gravity and is also defined to be positive (κ2 could be different from κ1

in general, although it is expected to be comparable with κ1 in this specific case). The interpretation of this relation
in terms of particle production is not as clear as in the black horizon case. For this reason, we shall consider now the
RSET.

B. Renormalized stress-energy tensor

For the calculation of the RSET inside the warp-drive bubble we use the method proposed in [24]. In past null
coordinates U and W the metric can be written as

ds2 = −C(U,W )dUdW . (6)

In the stationary region at late times, we use the previous future null coordinate u and w̃, defined as

w̃(t, r) = t+
∫ r

0

dr

c− v̄(r)
. (7)
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In these coordinates the metric is expressed as

ds2 = −C̄(u, w̃)dudw̃ , C(U,W ) =
C̄(u, w̃)
ṗ(u)q̇(w̃)

, (8)

where U = p(u) and W = q(w̃). In this way, C̄ depends only on r through u, w̃.
For concreteness, we refer to the RSET associated with a quantum massless scalar field living on the spacetime.

The RSET components have the following form [25]:

TUU = − 1
12π

C1/2∂2
UC
−1/2 , (9)

TWW = − 1
12π

C1/2∂2
WC

−1/2 , (10)

TUW = TWU =
1

96π
C R . (11)

If there were other fields present in the theory, the previous expressions would be multiplied by a specific numerical
factor. Using the relationships U = p(u), W = q(w̃) and the time-independence of u and w̃, one can calculate [22]
the RSET components in the stationary region:

TUU = − 1
48π

1
ṗ2

[
v̄′ 2 +

(
1− v̄2

)
v̄v̄′′ − f(u)

]
, (12)

TWW = − 1
48π

1
q̇2
[
v̄′ 2 +

(
1− v̄2

)
v̄v̄′′ − g(w̃)

]
, (13)

TUW = TWU = − 1
48π

1
ṗq̇

(
1− v̄2

) [
v̄′ 2 + v̄v̄′′

]
, (14)

where we have put c = 1 and we have defined

f(u) ≡ 3p̈2(u)− 2ṗ(u)
...
p (u)

ṗ2(u)
, (15)

g(w̃) ≡ 3q̈2(w̃)− 2q̇(w̃)
...
q (w̃)

q̇2(w̃)
. (16)

One can show [22] that q̇ contains solely information associated with the dynamical details of the transition region.
Moreover, for simple dynamical interpolations between Minkowski and the final warp drive, q̇(w̃) goes to a constant
at late times, such that g(w̃)→ 0. From now on, we will neglect this term.

We want to look at the energy density inside the bubble, in particular at the energy ρ as measured by a set of
free-falling observers, whose four velocity is uµc = (1, v̄) in (t, r) components. For these observers we obtain

ρ = Tµνu
µ
c u

ν
c = ρst + ρdyn , (17)

where we define a static term ρst, depending only on the r coordinate through v̄(r),

ρst ≡ −
1

24π

[(
v̄4 − v̄2 + 2

)
(1− v̄2)2

v̄′ 2 +
2v̄

1− v̄2
v̄′′

]
, (18)

and a dynamic term ρdyn

ρdyn ≡
1

48π
f(u)

(1 + v̄)2
. (19)

These latter term, depending also on u, corresponds to energy travelling on right-going rays, eventually red/blue-
shifted by a term depending on r.

C. Hawking radiation inside the bubble

We study now the behavior of the RSET in the center of the bubble at late times. Here ρst = 0, because v̄(r =
0) = v̄′(r = 0) = 0. Integrating Eq. (3), one realizes that u(t, r) is linear in t so that, for fixed r, it acquires with
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time arbitrarily large positive values. One can evaluate ρdyn from Eq. (19) by using a late-time expansion for f(u),
which (up to the first non-vanishing order in e−κ1u) gives f(u) ≈ κ2

1, so that ρ(r = 0) ≈ κ2
1/(48π) = πT 2

H/12, where
TH ≡ κ1/(2π) is the usual Hawking temperature. The above expression is the energy density of a scalar field in 1 + 1
dimension at finite temperature TH . This result confirms that an observer inside the bubble measures a thermal flux
of radiation at temperature TH .

D. Problems with horizons

Let us now study ρ on the horizons H + and H −. Here, both ρst and ρdyn are divergent because of the (1 + v̄)
factors in the denominators. Using the late time expansion of f(u) in the proximity of the black horizon [22]

lim
r→r1

f(u) = κ2
1

{
1 +

[
3
(
A2

A1

)2

− 2
A3

A1

]
e−2κ1t (r − r1)2 +O

(
(r − r1)3

)}
, (20)

and expanding both the static and the dynamic terms up to order O(r − r1), one obtains that the diverging terms
(∝ (r − r1)−2 and ∝ (r − r1)−1) in ρst and ρdyn exactly cancel each other [22]. An analogous cancellation is found
when studying the formation of a black hole through gravitational collapse [24]. It is now clear that the total ρ is
O(1) on the horizon and does not diverge at any finite time (as expected from Fulling-Sweeny-Wald theorem [26]).
By looking at the subleading terms,

ρ =
e−2κ1t

48π

[
3
(
A2

A1

)2

− 2
A3

A1

]
+A+O (r − r1) , (21)

where A is a constant, we see that on the black horizon the contribution of the transient radiation (different from
Hawking radiation) dies off exponentially with time, on a time scale ∼ 1/κ1.2

Close to the white horizon, the divergences in the static and dynamical contributions cancel each other, as in
the black horizon case. However, something distinctive occurs with the subleading contributions. In fact, they now
becomes

ρ =
e2κ2t

48π

[
3
(
D2

D1

)2

− 2
D3

D1

]
+D +O (r − r1) . (22)

This expression shows an exponential increase of the energy density with time. This means that ρ grows exponentially
and eventually diverges along H −.

In a completely analogous way, one can study ρ close to the Cauchy horizon [22]. Performing an expansion at late
times (t→ +∞) one finds that the RSET diverges also there, without any contradiction with the Fulling-Sweeny-Wald
theorem [26], because this is precisely a Cauchy horizon.

Note that the above mentioned divergences are very different in nature. The divergence at late times on H − stems
from the untamed growth of the transient disturbances produced by the white horizon formation. The RSET di-
vergence on the Cauchy horizon is due instead to the well known infinite blue-shift suffered by light rays while
approaching this kind of horizon. It is analogous to the often claimed instability of inner horizons in Kerr-Newman
black holes [27–29]. Anyway, these two effects imply the same conclusion: The backreaction of the RSET will doom
the warp drive to be semiclassically unstable.

VI. SUMMARY OF RESULTS

We think that this work is convincingly ruling out the semiclassical stability of superluminal warp drives on the
base of the following evidence.

(1) We found that the central region of the warp drive behaves like the asymptotic region of a black hole: In both
of these regions the static term ρst vanishes and the whole energy density is due to the Hawking radiation generated

2 However, in analogy to the conclusions of [24], a slow approach to the black-horizon formation might lead to large values of the RSET
and hence to a large back-reaction.
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at the black horizon. If one trusts the QI [8, 18], the wall thickness for a warp drive with v0 ≈ c would be ∆ . 102 LP,
and its surface gravity κ1 & 10−2 t−1

P , where tP ≈ 10−43 s is the Planck time. Hence, the Hawking temperature of
this radiation would be unacceptably large: TH ∼ κ1 & 10−2 TP.

(2) The formation of a white horizon produces a transient radiation which accumulates on the white horizon itself.
This causes the energy density ρ, as seen by a free-falling observer, to grow unboundedly with time on this horizon.
The semiclassical backreaction of the RSET will make the superluminal warp drive to become rapidly unstable, in a
time scale of the order of 1/κ2 (i.e. of the inverse of the surface gravity of the white horizon). In fact, in order to get
even a time scale τ ∼ 1 s for the growing rate of the RSET, one would need a wall as large as 3× 108 m. Thus, most
probably, one would be able to maintain a superluminal speed for just a very short interval of time.

(3) The formation of a Cauchy horizon gives rise to an instability, similar to inner horizon instability in black holes,
due to the blue-shift of Hawking radiation produced by the black horizon.

VII. UNDERSTANDING THE NATURE OF THE POSTULATE

We have just reported another episode in the search for failures of the light postulate. Once more the postulate
came out of this trial triumphant. So a strong formulation of it seems somehow encoded in natural laws. Can this
have a deeper meaning? Is it just a limitation to our possibility to travel and communicate or is it required by
consistency in the spacetime fabric? As a matter of fact, any mechanism for superluminal travel can be easily turned
into a time machine and hence lead to the typical causality paradoxes associated with these mind-boggling solutions
of GR. For instance, in [30] it was shown that two warp-drive bubbles traveling in opposite directions can be used to
generate closed timelike curves (see also [5, 10] for causality problems with the existence of two Krasnikov tubes and
a two-wormhole system, respectively).

The mainstream opinion in this respect is that generically the physics associated to GR plus QFT (the same
theoretical framework we used in our investigation) is always able to avoid the formation of time machines. This
is the so called Hawking’s chronology protection conjecture [31]. Unfortunately, this conjecture is not yet proved
given that: (1) we are not yet able at the moment to perform a self-consistent calculation taking into account the
RSET back-reaction on a given spacetime, (2) the Kay-Radzikowski-Wald theorem [32] implies the breakdown of the
renormalizability procedure of the SET on chronological horizons (which are just a special sort of Cauchy horizons).
See also [33] for an extensive review on the present status of the chronology conjecture.

The results presented in this essay suggest an interesting twist about the way this conjecture could be enforced in
nature. Indeed, it might be that chronology protection is just a side consequence of a strong form of the speed of
light postulate. That is, “spacetime shortcuts” like warp drives, wormholes and Krasnikov tubes might turn out to be
semi-classically unstable (albeit via different mechanisms) whenever one tries to generate them from approximately
flat spacetime. This probably deserves further investigation.

While the previous discussion refers to the standard framework (GR plus QFT), different outcomes for the speed
of light postulate can be envisaged when departures from GR are taken into account. The search for such departures
has been boosted in recent years by rising of the emergent gravity paradigm. Within this framework it is in fact
very natural to see also Lorentz invariance as an emergent spacetime symmetry broken at high energy. Indeed, we
have nowadays several toy models where a finite speed of propagation can emerge in systems having no fundamental
speed limit [34]. For example, this is the case with the speed of sound in Newtonian (non-relativistic) condensed
matter systems. Individual particles of the system can move at arbitrarily large speeds; however, collective density
disturbances of wavelengths larger than the inter-particle distance, all propagate at the same finite speed, the speed
of sound.

If electromagnetic fields were emergent collective excitations of an underlying system with the speed of light playing
the role of the speed of sound, then, any particle or excitation moving at speeds large than c would slow down by
emitting electromagnetic radiation, much as in the Čerenkov effect. The speed of light will appear as insurmountable
in practice. This perspective offers an answer to the question with which we started this essay: Because all the physics
that we know of, even that in accelerators, is low-energy physics and all the known fields collective variables of a yet
unknown underlying system. Maybe it is allowed to travel faster that light, but only for high-energy beings.

The breakdown of Lorentz invariance generally manifest itself via dispersion relations for matter modified at energies
close to the Planck scale, about 1019 GeV. In this case one generically expects dramatic modifications of the behavior
of light rays close to the horizons. This in turn could lead to a taming of the exponential growth of the RSET and a
late time stabilization of the warp drive. In this sense one could see the results regarding the stability of white hole
horizons in QFT with UV Lorentz violations reported in [35] as an interesting hint for further investigation.

To end up this essay let us comment that the light postulate itself is not such a strong limitation for the exploration
of the universe as it might seem. Imagine that at the same Earth’s time all its inhabitants were separated into several
expeditions prepared to visit different star systems at similar distances from the Earth. All the groups would have
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starships able to reach speeds closer to the speed of light. Then, all people could travel to their chosen star system,
explore it during some fixed period and return back to the Earth having spent all of them approximately the same
amount of proper time, which could be reasonably short if the attained speeds during the expedition were very close to
the speed of light. Therefore, for a nomadic society composed by travelers, the exploration limits would not come from
the light postulate, but from the maximum attainable accelerations of the starships compatible with our structural
resistance. But this is another story. Let us just say that, as far as we know, traveling at just 99% of the speed of
light would be not that bad, after all.
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