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Abstract

This paper argues against a strong philosophical interpretation of the leading role
of mathematics in all of physics. To do so the paper focuses on a specific case study,
that of the truly astonishing success of symmetry groups in modern particle physics.
Specifically, I analyze the case of one local gauge symmetry, that of the strong nuclear
interaction. I would say this is an especially pertinent case study, as gauge symmetry
applies throughout most of our current best fundamental physics and the intimate relation
with the physics it describes is particularly astonishing. The paper advocates for an
understanding of mathematics only as an (especially appropriate) language which does
nothing but describe patterns, a subset of which are instantiated in Nature. With such
an understanding I argue that the effectiveness of mathematics is not unreasonable; on
the contrary, it is to be expected. Such an explanation undermines the viewpoint that
takes gauge symmetry principles as a priori reasonable or as some sort of necessary meta-
laws. Likewise, such an explanation weakens the reasons to endorse a strong ontological
commitment to the mathematical entities (as the diverse variants that suggest that the
universe is fundamentally mathematical, like [Tegmark, 2014] or [French, 2014]).
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1 Introduction

It is astonishing, some even said ”unreasonable” [Wigner, 1960], the effectiveness of mathemat-
ics in physics. In the last decades, the role of a branch of mathematics —group theory— in the
constitution of modern particle physics has brought even more enthusiasm. In section 2 I will
try to briefly convey why this has been so. Then, the aim of this paper is to show that one should
not be so enthusiastic—more precisely, not so enthusiastic as to interpret symmetry principles
as anything like a priori or necessary ”superprinciples” or meta-laws (in the line of [Weyl, 1952]
or [Wigner, 1967]), or as to take a too strong ontological commitment about the mathematical
entities involved (for instance in the line of [Tegmark, 2014]). Such a strong intrepretation
of symmetry principles is motivated in section 2, while some representative examples of tak-
ing a strong ontological commitment of the mathematical entities are, for instance, Tegmark
[2014] proposal that the world is fundamentally mathematical or the also wild-but-interesting
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proposal of some structural realists that put the notion of structure in the first place, as the
fundamental ontological category (e.g. French [2014]). Of course, there are other variants and
the reasons for defending their positions do not reduce only to the mysterious effectiveness of
the mathematics in physics. For instance, platonists in philosophy of mathematics advocate
for the existence of mathematics—in this case in a platonic world. But they are not my target
since they do not recur to the effectiveness of mathematics in support of their position. They
recur to the indispensability of mathematics —arguably the only non-question begging reason
in their support, as once said by [Field, 1980]. I will say something about indispensability after
my proposed explanation.

In a nutshell, my main goal is to provide an explanation of the effectiveness of mathematics
in physics according to which mathematics is understood just as an especially powerful, precise,
and useful language for the description of the workings of Nature (or at least of our surrounding
Nature). In other words, mathematical language is employed in the physical sciences to describe
the spatial and temporal patterns of the world. Then, the complexity of the world that we are
able to unveil directly depends on the richness of the language with which we are able to
express it—and so certain advances in physics did necessarily require of previous advances in
mathematics. Yet it is only a language, and it is not describing any necessary feature of the
world or of its dynamics, nor it is itself constituting any ”part of physical reality” (quoting a
suggestion of this FQXI eassy contest).
Then, with the explanation proposed the effectiveness of mathematics cannot be regarded
anymore as a reason to support 1) an interpretation of current symmetry principles as privileged
in any sense (necessary or a priori reasonable) or 2) a strong ontological commitment to the
mathematical entities.

Likewise, this essay also targets a widespread attitude among scientists and philosophers:
that of those that, satisfied by the elegance and beauty of the mathematics that describe the
dynamics of the world, seek no further explanation as to the existence of such laws. I argue that
this attitude should change, as some have previously argued (e.g. [Wheeler, 1982], [Weinberg,
1981], or [Peirce, 1867]).

In section 2 I sketch how this enthusiasm towards the role of mathematics in physics is
indeed well justified. Then, in section 3 I spell out my argument whose purpose is to attenuate
such enthusiasm.

2 The ”unreasonable” success of symmetry principles in

physics

The history of modern physics has been invariably acknowledging what Galileo Galilei beauti-
fully illustrated centuries ago:

”Philosophy is written in this grand book, the universe [...] It is written in the language

of mathematics, and its characters are triangles, circles, and other geometric figures; [...]”

[Galilei, 1623, ch. VI]

a metaphor intuited much before, since Pythagoras of Samos, and that has been confirmed ever
since. Regardless of the philosophical interpretation given to mathematics, it seemed that the
laws of physics were inextricably formulated in mathematical terms. Nowadays, this long and
successful love story is at its best, bolstered by the application of a new algebra, called Lie
algebra, to the description of the elementary particles/fields and interactions of the Standard
Model.
In particular, few decades ago symmetry principles could have been plausibly considered as a
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sort of ”superprinciples”, in the sense of some kind of necessary a priori meta-laws. Foremost
examples of such principles are the invariances under time and space translation. As is known,
these two global continuous symmetries correspond to two principles of conservation, of energy
and linear momentum respectively. Furthermore, the relation of symmetry principles with
principles of conservation was generalized by Emmy Noether’s theorem: for every continuous
global symmetry of the Lagrangian there is a conservation law (and vice versa). If some
principles at all could be assumed as necessary or a priori, these could have been reasonable
candidates. One might feel reasonably satisfied with beautiful mathematical truths associated
with the conservation of a basic property, ultimately grounding the existence of other, less
fundamental, laws of nature.
Furthermore, the advent of more symmetries of a new type, local (also called ’internal’) and
following the so called gauge principle, has been taken as a sign of the ”elegance of nature”
[Wilczek, 2008, 63]1. [Martin, 2003, 41] describes this point of view:

”the ‘gauge philosophy’ is often elevated and local gauge symmetry principles enshrined.

Gauge symmetry principles are regularly invoked in the context of justification, as deep

physical principles, fundamental starting points in thinking about why physical theories

are the way they are, so to speak. This finds expression, for example, in the prominent

current view of symmetry as undergirding our physical worldview in some strong sense”

and [ibidem, p.52]:

”gauge invariance is often invoked as a supremely powerful, beautiful, deeply physical,

even undeniably necessary feature of current fundamental physical theory”.

In fact, it also turns out that the gauge paradigm exhibits an appealing simplicity in that
few inputs are required to specify full theories [Martin, 2003, 53], and ”the fact that all non-
gravitational interactions fit into the gauge framework then lends this simplicity to a large part
of fundamental physics” [ibidem]. This leads to one of the most attractive features of this new
physics: its unificatory role. All elementary interactions (though gravitation only in theory)
are described in terms of local gauge symmetries. Thus, sophisticated ”elegant” mathematics
provide a foremost unified account of the fundamental interactions.
Last, but not least, physicists have proudly achieved so as a result of conceptual (mathemati-
cal) work much before the posterior solid experimental support: see e.g. [Bangu, 2008] for the
study of impressive historical cases, like the prediction of the Ω− boson (cf. [Weyl, 1952] and
[Wigner, 1980] for elaborated reflections stemming from such astonishing successes).
In sum, all these have been central reasons for the enthusiasm towards this new physics and,
more specifically, for the judgments of elegance and of (a vaguely stated) necessity2.

Now, contrary to this positive attitude towards the symmetry principles I will argue that, in
spite of their astonishing empirical and theoretical success, it is not unreasonable that such prin-
ciples (and mathematics in general) are so effective in fundamental physics. On the opposite,
it is what should be expected.

3 Elegant but contingent local gauge symmetry

3.1 The argument

Having outlined in the previous section some key points of the intimate relation of mathematics
with the new physics, the crucial question can be formulated like that: Why is group theory so
central to describing the physical world? And of course not only group theory but also Hilbert
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spaces, riemannian geometry, differential calculus, and so on and so forth. In this essay I’ll try
to dissolve the wonder by sketching an explanation of why this is so. The conclusion, call it
(C), is:

(C): It is not unreasonable to expect that the part of the world investigated by the
physical sciences is going to be described by mathematics.

I will put forward two premises (A) and (B) that aim to be sufficient to explain (C). Notably,
the explanation proposed does not need to confer any privileged status neither to the dynam-
ical principles of our current physics nor to mathematical entities in general. As such, it can
be considered a better explanation than those that, too much nurtured by the effectiveness
of mathematics postulate more abundant ontologies. Examples of the latter are the several
variants that bestow existence to mathematics in the world, as [Tegmark, 2014] or [French,
2014].

First, premise (A). Scientists and engineers are aware of the utility of the ’divide and
conquer’ strategy, and so I am going to do via the premise (A): I will distinguish two different
problems that should not be conflated. (A) consists in the acknowledgement of the following
uncontroversial fact:

(A): The physical world displays stable spatiotemporal patterns.

With this premise we assume the uncontroversial fact that the world is ordered, that it displays
stable patterns of behaviour—what the laws of physics aim to describe. (A) is not only a neces-
sary premise to justify (C), but it also helps to distinguish two different puzzling issues, namely
(A) and (C) themselves. Thus, it hopefully contributes to face better both issues. That is, I
am disentangling the puzzling fact that the world is ordered from the puzzling fact that math-
ematics seems unreasonably effective to describe the world. The fact that (A) is distinguished
from (C) and assumed as a premise consists in the first of the two steps needed to explain (C).
Of course (A), in this essay assumed, is prone of further investigation3.

So, having disentangled these two different puzzles and assuming (A), now we will need
a further premise (B) in order to explain (C). This second premise characterizes an essential
property of mathematics. The underlying idea of (B) is that mathematics can be seen just as a
language, the most appropriate language at our diposition to describe the degree of complexity
of Nature’s order—more exactly, the degree of complexity of the empirical data we have been
able to extract from Nature4. Crucially, (B) defends in particular that it is a language full
of non-actualized possibilities, and that the mathematics that is actually constituting our best
physical theories is only one of the infinite possible mathematical descriptions of the regularities
of a world. That is, among the infinite possibilities, the subset of maths that constitutes our
actual physical theories is that which best fits with the patterns and order empirically found
in Nature. In brief:

(B): Mathematics (or at least part of it) describes an extremely wide range of actu-
alized as well as non-actualized structures.

So, while the vast majority of patterns referred in (B) will not correspond to the actual struc-
tures/patterns of the world referred in (A), the acknowledgement of (A) and (B) allows the
feasibility that within this extremely wide space of possibilities a subset of those abstract patterns
matches some of the actual patterns of Nature. Hence, it should not strike us as unreasonable
that mathematics is highly effective in physics, as the conclusion (C) states.
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While the acceptance of (A) is hardly disputable, (B) should be justified, and this is what
I am going to do in the next subsection. Before, let me consider a possible objection to the
argument. An opponent could still be puzzled by such effectiveness, asking how is it that we
currently have the proper mathematics for the current physical theories. However, this is a
qualitatively different question than that which just asks for the unreasonable effectivenes of
mathematics in physics per se and that my argument above aims to answer. This new question
involves considerations regarding the maths we have discovered (or created, as you prefer) so
far, and how is it that the existing maths is so successful with the existing physics. Interestingly,
this new question allows me to add the observation that among the spatiotemporal patterns
existing out there (as acknowledged in premise (A)), we are able to discern only those that our
current mathematics—of a certain degree of expressivity σ— allows us.

In sum, (A) and (B) constitute a possible explanation of the effectiveness of mathematics
in physics. Crucially, it is an explanation that does not need to postulate any sort of existence
to the mathematical entities: as a language, those entities do not exist in the same sense as the
terms of natural language do not exist.
The postulation of mathematics in the world (as in [Tegmark, 2014] and somehow also in
[French, 2014]) or the privileged status of current symmetry principles (as portrayed in section
2) was motivated —among other reasons— by the unreasonable effectiveness of mathematics in
physics. But my proposal explains such effectiveness in a way that does not need to make any
strong philosophical interpretation of the dynamical principles or of the mathematical entities.
And let me note that the alternative candidates do not have reasons to refute my premises (A)
and (B), therefore they have at their own disposition an explanation with a more economic
ontology. Thus, caeteris paribus this explanation is preferable.
Therefore, the mysterious effectiveness of mathematics ceases to be a valid reason to justify
such strong positions (which obviously does not mean that such positions might not have other
reasons in their support).

3.2 The case of the mathematical representation of the strong in-
teraction

Is then my explanation compatible with the picture presented in section 2 regarding the mys-
terious effectiveness and astonishing success of gauge symmetries in particle physics? What
about all the extraordinary virtues of the new physics? In this subsection I focus on high-
lighting how the symmetry groups constituting the Standard Model of particle physics are, in
spite of their remarkable successes, not a priori reasonable nor necessary at all, but they are
significantly contingent and have been chosen due to empirical adequacy among a large space
of possibilities. In that way both premise (B) will be justified while also any sort of necessity
or a priori reasonableness of the mathematics of our current physics will be explicitly refuted,
contrary to what section 2 suggested.

Introducing SU(3) Let’s take a look at one specific case: the color local gauge invariance
of quarks, one of the several local gauge symmetries, hence part of the allegedly impeccable
gauge paradigm. The color invariance is represented by the symmetry group SU(3), the Spe-
cial Unitary group of degree 35. Each gluon, to preserve the internal symmetry, carries one
unit of color and one of anticolor (the ”colors”, ’red’, ’green’, and ’blue’, name the charges
of this interaction). Therefore, there are nine logically possible combinations of the 3 colors:
rr, rg, rb, br, bg, bb, gr, gb, gg. Every symmetry group has the so called ’representations’. It is
always the so called ’adjoint representation’ that describes the force carriers, in this case the
gluons6. The adjoint representation of SU(3) is not nine but eight dimensional. In this rep-
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resentation the nine states are structured in an octet and the other state is a singlet element
apart. The linearly independent base vectors that constitute the octet are:

|1〉 = (rb+ br)/
√

2 |5〉 = −i(rg − gr)/
√

2

|2〉 = −i(rb− br)/
√

2 |6〉 = (bg + gb)/
√

2

|3〉 = (rr − bb)/
√

2 |7〉 = −i(bg − gb)/
√

2

|4〉 = (rg + gr)/
√

2 |8〉 = (rr + bb− 2gg)/
√

6

and the singlet element is:
|9〉 = (rr + bb+ gg)/

√
3

The combination rr + bb+ gg is not verified in experiment [Griffiths, 2008, 285].

Figure 1: The pattern of strong charges for the three colors of quark, three antiquarks, and eight

gluons (in black) with two of zero charge overlapping in the center. The vertical axis is strangeness

and the horizontal is isospin.

Thus, the eight gluons that exist in Nature are described by the eight so called ’generators’ that
compose the octet, the set of linearly independent vectors above that form a vector base of the
8 dimensional group SU(3). Each generator aims to represent the color state of a certain type
of gluon7. The situation is beautifully illustrated in figure 1. The octet of the figure illustrates
indeed the existence of a tight pattern between the gluons (and also with the quarks).

However, to what extent should we ”celebrate” the beautiful and unified pattern exhibited
between the gluons? The next subsections argue that we should not celebrate too much, as the
mathematical model is not so mysteriously successful or necessary as these aesthetic patterns
(and all that has been said in section 2) might suggest.

The symmetry space First of all, consider the space of possibilities of symmetry groups.
This space has been explored and classified in the ’Cartan classification’. The full classification
of all possible ’simple’ Lie algebras is divided in four types [Lederman and Hill, 2004, 315]:

1. Rotational symmetries of spheres that live in N real coordinate dimensions: O(2) = U(1),
SO(3) = SU(2), SO(4), SO(5), ... , SO(N), ...

2. Rotational symmetries of spheres that live in N complex coordinate dimensions: U(1),
SU(2), SU(3), SU(4), ... , SU(N), ...

6



3. Symplectic groups, which are the symmetries of N harmonic oscillators: Sp(2), Sp(4), ...,
Sp(2N), ...

4. The ’exceptional’ groups: G2, F4, E6, E7 , and E8

As it appears, the resulting landscape is undoubtedly vast; indeed, it is infinite, as we see in the
infinite order of the Lie groups. Thus this classification allows us to realize the first dimension
of the contingency of the symmetry groups chosen: SU(3) is just one of the infinite groups at
stake. Not to say that with this classification we are already assuming the subset of Lie groups,
which is something hardly justifiable a priori.

Fermions There is a further layer of contingency if one focuses not on the bosons but on the
fermions. As previously stated, for each group there are infinite possible representations. While
for the bosons the representation chosen is always unique, namely the adjoint representation,
for the fermions the physically interesting representations are the so called ’irreducible repre-
sentations’. The states in the irreducible representation are those that possess the determinate
properties measured in reality, like isospin and hypercharge for the case of SU(3)8. Thus, the
connection of a symmetry group with physical reality —with empirical data— is made through
the choice of an irreducible representation of the group [McKenzie, Forthcoming, 10]. It turns
out, though, that there are infinite representations of this type for each group [ibidem]. So
there is a connection mapping the irreducible representation with a physical interpretation of
families of particles that would exist in the world. Therefore, there are a priori infinite possible
classes of sets of particles allowed for each of the (in turn, infinite) symmetry groups.

The moral I want to draw is that, in the end, the particular final choice is made among an
extremely vast space of possibilities.

But... the self-consistency is astonishingly constraining What remains, then, of the
apparent inevitability and a priori reasonableness presented in section 2? Recall for instance the
impressive historical cases of theoretical postulations of certain types of particles, empirically
verified only much later. This preeminence of the theoretical research is due to the high degree of
mathematical consistency and inter-dependence of the different parts of the theory of Quantum
Chromo Dynamics (QCD). And this is an exceptional situation in the history of physics that
is probably suggesting something. What could be suggesting? Wilczek [2008] talks about
the approach to perfection of the theory of QCD. He does so by appealing to the notion of
the fragility of a theory, which consists in pointing out the mathematical consistency between
the different parts of the theory such that the possibilities that can be found a posteriori are
highly constrained. Thus, the theory is fragile because it is very open to refutation: a slightly
empirical inconsistency would imply that the whole theory is wrong! This characteristic is
brilliantly illustrated by an analogy with a musical score: the score is perfect because if one
displaces one note everything diminishes, if we displace a phrase, the whole structure falls
[Wilczek, 2008, 135]. But then, it must mean something that such a fragile theory as QCD is
obtaining such a precise and abundant empirical support.
My diagnosis of what does it mean is the following. Wilczek’s analysis, interesting as it is,
bolsters the plausibility that the theory is on the right track, i.e. that it is true (and as such
it could be considered a novel argument for scientific realism). However, it is not an argument
for any sort of necessity nor anything suggested in section 2, and it is not incompatible with
the characterization of mathematics stated in (B).

Summary In conclusion, I want to underline that, pace section 2, it is a well-known fact that
the mathematical description of the strong interaction is a contingent representation among a
wide space of possibilities, and is clearly not a priori nor necessary in spite of its elegance, of its
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fragility, of the unified account with the rest of interactions, and of the theoretical predictions
much before any empirical evidence.
[Martin, 2003, 52] shares the same diagnosis ”against” gauge invariance. He remarks other
factors that have to be taken into account when a gauge-invariant term is added into the
lagrangian. These other requirements are Lorentz invariance, simplicity, and renormalizability
[Martin, 2003, 44]. His main upshot is to highlight the heuristic character of such symmetries,
showing how ”the gauge fields are put in by hand to large extent” [Martin, 2003, 45].

Recapitulating, this review has been carried out to show the different dimensions of con-
tingency of an especially beautiful and celebrated part of mathematical physics, while at the
same time justifying the characterization of mathematics stated in (B).

3.3 Corollary: should we be satisfied with such laws?

There is another moral that stems from the partial characterization of mathematics presented
in 3.2. If symmetries are neither necessary nor a priori, they can be hardly considered as
undisputable irreducible primitives of an ontology. Hence, some sort of explanation of symmetry
principles is desirable.
All the candidate fundamental physical theories, even the most natural versions, share such local
gauge symmetries as an essential constituent, thereby becoming subject of the present analysis9.
To advocate for this need of explanation of symmetries—and in general of the fundamental
laws of nature—is a secondary goal of this essay. It is not a trivial goal because nowadays the
widespread attitude in physics and philosophy of physics is to assume bigger symmetry groups in
higher energy scales, without any worry as to their explanation. In general, the worries revolve
around the process of (spontaneous) symmetry breaking towards lower energies, whereas the
other way around, towards higher energies, symmetries are just assumed to be restored. In
fact, in the compendium [Brading and Castellani, 2003], in the encyclopedia entry [Brading
and Castellani, 2013], or in the handbook chapter [Bangu, 2013] any demand of explanation of
the highly symmetric picture assumed at high energies is barely cited.

4 Concluding remarks: it was not so unreasonable

The goal of this paper has been to discard the astonishing effectiveness of mathematics as a
reason to endorse a strong interpretation of mathematics in the line of [Tegmark, 2014], [French,
2014] or [Weyl, 1952], given the alternative explanation that has been sketched.
Let me frame my analysis among other philosophical discussions and review whether it is inde-
pendent of them. The characterization of mathematics carried out in premise (B) and defended
in the previous section 3 can be naturally framed along with a nominalist version of the so called
’structuralism’ in philosophy of mathematics (see e.g. Shapiro [1997]), dating back to Richard
Dedekind. Still, I think that other philosophical approaches to mathematics are compatible
with the undemanding claim stated in (B)—it is hard to see any incompatibility of (B) with
logicism, formalism, or intuitionism.
There are other discussions related to the nature of mathematical entities: do mathematicians
discover or create such mathematical objects? I would say this question is orthogonal to my
argument, i.e. there is no need to commit to a specific answer.
Another discussion regards the alleged indispensability of genuinely mathematical terms in the
explanation of physical phenomena. Maths seems to be ”indispensable to our best theories of
the world” [Bueno, 2014, 2.2]. Then, some defended an entailment that goes from the indis-
pensability of the entities in our best scientific theories to the existence of such entities. Just
the opposite of what I defend here.
The indispensability argument is independent from my proposed explanation of the effectiveness
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of mathematics. Even so, let me mention what can be said about it from the viewpoint here
proposed. Accepting the characterization of mathematics presented, there is not any reason
to accept an inference that goes from indispensability to existence. Not to say that the indis-
pensability is even disputable, as defended e.g. by [Field, 1980]. More specifically: assuming
that mathematics is a language, even if accepting its indispensability to the expression of our
best theories of the world, mathematical entities do not exist in the same sense as the terms of
natural language do not exist10.

All in all, if we assume (whether we are convinced or not by the previous subsection 3.2) the
characterization of mathematics as stated in (B) and we distinguish as a separated issue the fact
that the world displays patterns and order—as stated in (A)—, then (C) is justified. That is: it
is not unreasonable to expect that the physical world is going to be described by mathematics.
In fact, it should not appear unreasonable that there is a correspondence between a subset of all
the possible abstract patterns that mathematics offers to us and the actual patterns displayed
by the physical world. Within this picture it is, in fact, what should be expected11.
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Notes
1 The gauge principle specifies a procedure for obtaining an interaction term in the Lagrangian which is

symmetric with respect to a continuous symmetry. The results of localizing (or ’gauging’) the global symmetry
group involves the introduction of additional fields so that the Lagrangian is extended to a new one that is
covariant with respect to the group of local transformations. Remarkably, it turns out that nowadays all the
fundamental interactions of the Standard Model can be described according to this procedure.

2 I am assuming an ontological interpretation of local gauge symmetries, not representing a mathematical
redundancy in our description of the world. This means that, paraphrasing Wigner, local gauge symmetries
do have an ontological ”active” role and do provide physically significant claims about the carvings of Nature.
While my assumption is widespread, the issue is nevertheless unsettled and the alternative interpretations exist.

3 The acknowledgment of (A) motivates questions like ’Why there are laws?’ or similarly the study of what
has been dubbed as the emergence of ”order from chaos”, investigated for instance by Prigogine and Stengers
[1984] or Peirce [1867]. Let me also cite myself, as my doctoral dissertation reflects upon the notion of law of
nature and studies specifically the plausibility of formation of stable behaviour from a lawless fundamental level
Filomeno [2014].

4 I am hoping that in this brief essay it will suffice to stick with a pre-theoretical/intuitive understanding
of what a language is, given that a full characterization of mathematics as a language is not necessary for my
argument. Either way, a pertinent definition of ’language’ is when it is understood as a grammar, where a
grammar is defined as a system that contains representations and rules that relate such representations.

5 The story goes roughly like this: the mathematical description SU(3) has been chosen following empirical
adequacy and consistency with the rest of models of particle physics, constituting a highly unified model of the
fundamental interactions. Unified mainly because the same principle, the local gauge principle, is shared by
every model of each type of field/particle. (More precisely, some global models have solid empirical support
but are not so unified as to, for instance, incorporate gravity, while others are more unified but lack empirical
evidence. The Standard Model and Supersymmetry are the classic respective examples). Thus, the theory of
Quantum Chromo Dynamics (QCD) successfully describes the color strong interaction: the property of color is
conserved due to a certain type of bosons (force carrier particles) called gluons, exchanged in the interactions
(whether I refer to fields or particles is irrelevant for our purposes). Each of them carries one unit of color
and one unit of anticolor. Thus they guarantee the conservation of the initial color that changes in the quark
in a ’strong’ interaction with another quark. Formally, SU(3) is a real group in complex dimensions of degree
N=3 of the classical Lie groups. The dimension of SU(N) groups, as real manifolds, is N2 − 1. Therefore for
SU(3) the dimension is 8. To preserve the color eight gluons do the work. The structural representation of (the
properties of) those eight gluons is the symmetry group SU(3). The gauge fields/particles are associated with
a set of vectors that are the so called ’generators’ of the group. All this representation is translated into a new
term in the lagrangian so that the lagrangian becomes invariant under the operations of the group.

6 An adjoint representation of a Lie group G is one of the ways of representing the elements of the group
as linear transformations of the group’s Lie algebra, where the elements constitute a vector space (this is what
a representation is in general). Specifically, the adjoint is the representation in which the structure constants
themselves form a representation of the group.

7 The states are added in linear combinations according to the principle of superposition of Quantum Me-
chanics. The numerical parameters are required for normalization.

8 Informally, the irreducible representations of a group are the representations of the smallest possible order,
i.e. those that cannot be further reduced. More technically, they are said to have no nontrivial invariant
subspaces. Let me also note that the force-carriers correspond, in general, to the eigenvectors of the generators
while the eigenvalues of those eigenvectors are the physically measurable charges (color, in this case).

9 The prospect of a future unification is what might resolve the tension, because a unification of the several
interactions would be obviously simpler, more natural and therefore allegedly more a priori reasonable. However,
this hope has been seriously undermined in studies like [Maudlin, 1996] or [Morrison, 2013]. In the same line,
the most recent experiments at the LHC are strongly suggesting the abandonment of supersymmetry in its most
natural and simpler versions, since these are not finding the expected empirical support.

10 There is abundant philosophical literature dealing with the puzzling ontological status of abstract entities,
like linguistic entities (terms, propositions), concepts, or fictional characters. Some seek to grant a certain type
of existence to such entities. However, it is crucial to note that the type of existence they grant is always
different from the usual sense of the term ’existence’ (roughly understood as concrete spatiotemporal location).
Therefore, my claim that linguistic terms do not exist, given that I am employing the usual sense of the term,
is not threatened by those discussions.

11Let me thank here the valuable suggestions of my smart colleagues of the LOGOS Graduate Reading Group
(especially David Rey, Mairym Llorens, Romina Zuppone and Roger Deulofeu).
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