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ABSTRACT. Essential tensions remain in our understanding of the reasons
underlying the striking success achieved in science by applying mathemat-
ics. Wigner and many likeminded scientists and philosophers conclude
that this success is a miracle, a “wonderful gift which we neither deserve
nor understand.” This essay seeks to dissipate that aura of mystery and
bring the factors underlying the success of applied mathematics into the
fold of scientific rationality.
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Inquiries into the nature of mathematics as a science of its own and into
its role in empirical science have a venerable tradition. Given that mathe-
matics displays a kind of exactness and necessity that appears to be in sharp
contrast with the contingent character of worldly facts, the problem that is
perhaps the most unsettling examines how mathematics can be used to ad-
equately represent the world. For instance, Einstein argued that “[t]he laws
of mathematics, as far as they refer to reality, are not certain, and as far as
they are certain, do not refer to reality” [6]. Similarly, Russell maintained
that “[t]he exactness of mathematics is an abstract logical exactness which
is lost as soon as mathematical reasoning is applied to the actual world”
[8]. And yet, since the scientific revolution, efforts devoted to writing the
book of the world in the language of mathematics have been resoundingly
successful.

In light of this tension, many scientists and philosophers maintain that
the applicability of mathematics is condemned to remain intrinsically mys-
terious. For instance, Wigner famously claimed that the “miracle of the
appropriateness of the language of mathematics for the formulation of the
laws of physics is a wonderful gift which we neither understand nor deserve”
[10]. Dirac has similarly claimed that “[t]here is no logical reason why [the
method of mathematical reasoning to study natural phenomena] should be
possible at all, but one has found in practice that it does work and meets
with remarkable success” [5]. It is true that, due to resilient tensions in our
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understanding, the applicability of mathematics is surrounded by an aura of
mystery, but the present essay seeks to bring it back into the fold of scientific
rationality.

1. A MOSAIC OF PROBLEMS

Failure to make significant progress towards solving a foundational prob-
lem often results from a clumsy understanding of that problem. In the case
of the applicability of mathematics, it is also the case that part of the mys-
tery stems from gathering many problems that require different types of
solutions under the same umbrella. The striking achievement we wish to
explain is the success of our use of mathematics in scientific practice. Yet
many of the most widely discussed themes are only tenuously related to the
explanandum.

Some such themes focus on mathematics qua language. There is bewil-
derment that it is even possible to use the language of mathematics to de-
scribe the world. In oder to see that no mystery lies here, we must regard the
activity of mathematical modelling as any other modelling practice. Con-
structing a model always involves the choice of a medium for the repre-
sentation. Yet regardless of whether the medium chosen is plastic, wooden
sticks, a picture, or statements in some language, models will succeed in
capturing some aspects of a system, while other aspects will be idealized
away. Each medium has its strengths and weaknesses. The main advan-
tage of mathematics qua language is its considerable expressive power and
versatility. If we consider the generality of foundational approaches to math-
ematics such as set theory or category theory, it would be difficult to imagine
possible states of affairs that could not be somehow describable in mathe-
matical terms. Hence the possibility of using the language of mathematics
to describe the world is not in itself very surprising. But more importantly,
the expressive power of mathematics qua language should not be conflated
with our explanandum, for many mathematical expressions do not success-
fully apply. So what needs explaining are the circumstances that make some
of the mathematics apply so successfully.

Another such theme focuses on the unexpected applicability of mathe-
matical concepts developed in epistemic contexts in which no conceivable
applications were anticipated. Yet such questions do not seek the actual
reasons that underlie the successes of various applications. Instead they re-
quire an account of the conditions of possibility of such successes. However,
in order to account for these actual successes, we would simply assume by
fiat (based on the recent history of science) that mathematics is applicable,
and then seek the causes of successful applications.

Thus, the problem is not one of characterizing mathematics as a language.
Rather, it is one of explaining how to compare the virtues of different math-
ematical representations in a way that accounts for the success of those with
a comparative advantage. It is common to identify truth as the theoretical
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virtue fulfilling this role. But even if we are willing to grant the broad point
that the fundamental goal of science is the pursuit of truth, it cannot be de-
nied that few of our successful models and theories are exactly true—indeed
some are not even remotely true.

As I will argue in the next two sections, idealizations and other epistemic
shortcuts play an indispensable role in the effective use of scientific ratio-
nality. For this reason, I take the main problem to be this: Given that the
construction and manipulation of our successful mathematical models of
reality is riddled with uncertainty, measurement error, modelling error, an-
alytical approximations, computational approximations, and other forms of
guesses and ignorance, how can their remarkable accuracy be explained?
On the basis of the commonsensical “garbage in, garbage out” rule, this ac-
curacy appears rather baffling, and accordingly I call this the problem of the
uncanny accuracy of mathematics.

2. TOO TRUE TO BE GOOD

As I have pointed out, an explanation of the actual success of applied
mathematics in scientific practice is unlikely to be grounded in the literal
truth of models, since very few models have this property de facto. How-
ever, to understand the nature of the success we seek to explain with more
precision, it is important to acknowledge that this failure to be exactly true
is a feature, not a bug. Indeed, any good theory idealizes away aspects of
a physical system. Truesdell [9] elegantly make the point that “[o]ne good
theory extracts and exaggerates some facets of the truth. Another good the-
ory may idealize other facets. A theory cannot duplicate nature, for if it did
so in all respects, it would be isomorphic to nature itself and hence useless.”
Theories and models play such a prominent role in physics because untan-
gling the world is beyond the reach of our unmediated reason. We do not
build theories to duplicate this complexity, but to set it aside as much as
possible.

To illustrate this point, consider three different kinds of “idealized bod-
ies” (or, idealized “building blocks”) employed in classical mechanics to rep-
resent physical systems: mass-points particles, perfectly rigid bodies, and
perfectly continuously deformable bodies. Despite their fundamentally ide-
alized character, each type gives rise to a specific approach to classical me-
chanics. Articulating different idealized perspectives that complement each
other enables us to efficiently get a grasp on the inner workings of physical
systems. On the other hand, insisting on a sub specie aeternitatis true ap-
prehension would be a path toward certain failure. A model or theory that
contained “the whole truth and nothing but the truth” would quite simply
be too true to be good.

Even so, if idealizations are to lead to any success, not any distortion can
be warranted. Models should be true enough in order to be good. Mathe-
matical modelling is a question-driven endeavour, so that the success has a
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FIGURE 1. Constructing mathematical models to answer
questions about the world

pragmatic dimension. In applied mathematical practice, one considers real
systems, i.e., systems as we actually encounter them in the universe we live
in. So, in contrast to abstract models, a real model is not populated with
mass-points, rigid bodies, or continuous media, but rather with things like
tennis balls, blocks of concrete, wood studs, steel beams, planets, galaxies,
impure water, etc. In the presence of such real systems, we formulate spe-
cific questions that determine what aspect of the system is the behaviour of
interest. Here are examples of such questions: Would this structure break
under a typical load? Would a certain solution containing likely impurities
remain stable under a certain increase of temperature? Can the observed
trajectory of Uranus be explained by the presence of another heretofore un-
observed planet? The task of mathematically modelling real systems is to
derive a mathematical representation of the system that will allow us to cor-
rectly capture some of its physical properties. From this point of view, a
good model does not have to correctly capture all aspects of the system, but
only those relevant to the questions that concern us in the first place. More-
over, the question-driven character of applied mathematics makes it clear
that representations do not have to be true in order to lead us to correct
answers—selective accuracy is sufficient.

It is hard to give a completely general account of the way in which math-
ematical representations are constructed in order to answer our questions
about the behaviour of interest, but figure 1 perhaps comes close. Start-
ing from a raw, non-mathematical real system, we choose idealized build-
ing blocks as our representational medium and attempt to articulate what is
mathematically relevant to the problem. The selection of modelling assump-
tions is a crucial step, which is often plagued with error and uncertainty. It
is sometimes possible to say whether modelling assumptions are factual or
not, but it is typically hard to directly assess such claims in a comparative
way. In other words, it is hard to determine whether one assumption is as
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far from the truth as another. Making such judgements is even more dif-
ficult for sets of modelling assumptions. Moreover, whether this error will
invalidate our answers cannot be determined at this point. While we only
have particular facts about a system, the evolution of that system is un-
derdetermined. Without an underlying theory providing general kinematic
principles, such as a geometrical structure and general conservation laws,
no modelling equations could be derived to characterize the behaviour of
the system. Similarly, a general theory does not have sufficient specificity
to predict anything about the behaviour of systems without being supple-
mented with specific modelling assumptions [7]. It is this interconnected
collection of hypotheses that faces the tribunal of experience.

Indeed, this collection of hypotheses determines dynamical equations
characterizing the temporal behaviour of the system (i.e., equations de-
scribing the evolution of points or regions in a state space through time).
The evolution rule is typically a differential equation (continuous time) or
a difference equation (discrete time). Finding the trajectory in the state
space prescribed by the rule amounts to solving the system, and it is a
very crucial step in extracting the information needed for empirical tests.
Without effective solution methods, there is no prediction nor explanation,
only speculation. However, this step often involves significant analytical
and computational challenges, and we return to this theme in next section.
But presuming that information has been accurately extracted, we would
then obtain answers to our questions and evaluate the successfulness of our
model.

3. SUCCESS AS A BALANCING ACT

The ineliminable need to set aside complexity puts us in a situation in
which the sets of modelling assumptions from which we derived model
equations are extremely simplified compared to what would faithfully cap-
ture real physical systems. Needless to say, when we build a model for a
system of real bodies, the inaccuracy and incompleteness of the modelling
assumptions could very well lead us to incorrectly answer questions about
the behaviour of interest. To establish whether this is the case, a tradi-
tional view enjoins the modeller to compare the idealized model to a de-
idealized model derived from an accurate and complete set of modelling
assumptions. This would allegedly guarantee that the model equations thus
derived would correctly answers our questions about the system. Batterman
[1] pinned down the idea nicely: “The aim here is to effect a kind of conver-
gence between model and reality. One tries, that is, to arrive at a completely
accurate (or ‘true’) description of the phenomenon of interest. On this view,
a model is better the more details of the real phenomenon it is actually
able to represent mathematically.” However, to experienced applied math-
ematicians, it is clear that the more details are built into the model, the
more mathematically intractable the mathematical equations representing



6 NICOLAS FILLION

accuracy and
completeness

of the assumptions

tractability of
model equations

FIGURE 2. The fundamental balancing act at the core of ap-
plied mathematics

the behaviour of interest are likely to be. That means that, even if we can
somehow derive model equations from our accurate and complete set of
modelling assumptions, it is likely that we will not be able to use them to
make predictions and to obtain answers to our questions concerning the be-
haviour of interest. That would be a representation that is not manageable,
no matter how true, accurate, or complete it is—it would be useless to us.

The improvement of the accuracy of the modelling assumptions brings
about a decline in the tractability of the model. Thus, counter-balancing
the view of the role of applied mathematics as a language for formulating
true representations of systems, there is the view that mathematics is “the
art of finding problems we can solve,” as Hopf said (cited in [2]). Since
in applied mathematics there is in addition a question of accuracy, there is
always a cost-benefit analysis to perform. The most important contribution
of mathematics to modelling is that it provides the tools to do just that.
What makes mathematical modelling difficult is that above all we must find
a balance between accuracy, completeness, and tractability, as in figure 2.
Finding this balance with respect to the behaviour of interest is the true
measure of success in applied mathematics.

But how can we know whether we have reached this balance? How do
we distinguish accidental positive results from models that truly capture the
essential features of the system? Perhaps this is the mysterious part that will
resist our efforts to bring it into the fold of reason.

4. RATIONALIZING THE UNCANNY ACCURACY OF MATHEMATICS

We have seen that the complexity of the world is such that models will
typically not be exact representations of physical systems. Moreover, even
simplified models typically have a level of complexity such that extracting
information from modelling equations will lead to an additional layer of er-
ror. Thus, the key to successful applications of mathematics is to establish
that a description of the behaviour of a system is in fact approximately true,
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without causing an overflow of information that would undermine our ability
to assess the situation. In this respect, an essential virtue of mathematics is
that it can be applied to itself in a way such that finding whether a representa-
tion is close to the truth is easier than finding what the truth is. I will explain
this slogan below based on general insights from perturbation theory and
numerical analysis.

The concepts of sensitivity to and robustness under perturbations play a
crucial role in any perspective on error management. There are many rig-
orously defined concepts in applied mathematics which capture aspects of
this very general idea (e.g., Lyapunov exponents, condition numbers, Lips-
chitz constant, etc.). But for the sake of this essay, an intuitive illustration
will suffice. Most of us have at some point had to live in an apartment of
questionable quality. Taking a shower in apartments of this ilk is not always
without danger. Indeed, a very slight push on the shower knob—technically,
we call this a perturbation of the knob’s position—might lead to quite dra-
matic changes in water temperature. In such a case, we can say that the
water temperature is very sensitive to perturbations. Robustness under per-
turbations is just the opposite. If you were so lucky to have air conditioning
in this apartment, odds are that however much you cranked the knob, the
ambient temperature would not change much. So, the ambient temperature
was robust under perturbations. Great accuracy in the shower knob position
would be required to correctly predict water temperature, but large errors in
the AC unit’s knob position could be tolerated in order to accurately predict
ambient temperature.

The idealization, simplification, error, and uncertainty contained in mod-
els we construct to characterize some behaviour of interest can also be un-
derstood as perturbations. Let me first illustrate the point with a modern
approach to understanding the impact of computational error as it occurs
in computer simulations. Suppose that a dynamical system specified by an
ordinary differential equation x′ = f(x) and an initial condition x(0) = x0
has been derived as in figure 1 to represent a given physical system. Using
some computer algorithm, we find a trajectory x̂(t) that will hopefully de-
scribe the behaviour of the system accurately. However, there is no a priori
guarantee that it will. We need to first analyze the various sources of error.
The applied mathematical toolbox offers many ways of talking about error.
In what follows I will use the notion of residual error as it is easiest to inter-
pret in physical contexts [4]. If we somehow knew the exact solution x(t) to
our dynamical system, we would find that x′−f(x) = 0 just by re-arranging
the terms. However, since the simulated solution x̂(t) contains some degree
of computational error, x̂′ − f(x̂) would not be equal to 0. The quantity
∆ given by ∆ = x̂′ − f(x̂) is, what we call, the residual error. Now, we
can reverse-engineer the situation. Instead of saying that x̂(t) is hopefully
approximately solving the equation from the dynamical system, we can say
that it is an exact solution to the dynamical system x′ = f(x) + ∆. With this
change of perspective, we can now treat ∆ as a perturbation of the original
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dynamical system. It could be thought of as a breeze, a vibration, a small
gravitational effect, or anything relevant. If the magnitude of the compu-
tational error, reinterpreted in physical terms, is smaller than the expected
modelling error and uncertainty, then the computed solution is deemed true
to our modelling assumptions.

In fact, for all we know, such a solution could exactly represent the phys-
ical system. As mentioned, the representation x′ = f(x) is not in general
exact due to various sources of modelling and experimental error. How-
ever, as the expressive power of mathematics is virtually unlimited, one
can presume that some other equation exactly represents the system, say
x′ = f(x) + εg(x), where ε is a small term and εg(x) acts as a correcting
factor. We could once again verify the residual error of the computed solu-
tion x̂ mentioned above, but this time with respect to the ‘true’ equation. Of
course, we will not in general have an exact characterization of the correc-
tion factor and, as a result, will not exactly know the value of the residual
error. However, we can study the amplitude of the residual using qualitative
methods over various intervals of time, such as the limiting behaviour of the
residual error as t goes to infinity. The intervals and parameters of choice
for the error analysis will once again be determined by the behaviour of in-
terest. Often, we will find that the residual error is vanishingly small. We
then have a precise and effective method to rationalize the fact that even if
the construction and manipulation of our successful mathematical models
of reality is riddled with uncertainty, measurement error, modelling error,
analytical approximations, computational approximations, and other forms
of guesses and ignorance, they can be remarkably accurate.

5. EXPLAINING MIRACLES AWAY

The uncanny accuracy of mathematics has been claimed to be miraculous
in the sense that it does not seem to admit any rational explanation. To
decide whether such a claim can be defended, it is necessary to have a
conception of what might be received as a rational explanation. This, in
turn, requires a correct understanding of the “logic” of model construction
and model assessment. Precisely articulating such metatheoretical concepts
is the province of epistemology. As a consequence, a solution to the problem
of the applicability of mathematics will be of an epistemological nature,
rather than of a metaphysical one.

In addition to the de facto presence of falsehoods, errors (intended and
not intended), approximations, and uncertainty (including both known and
unknown unknowns) in science, there are other elements that we have not
yet mentioned. Indeed, cases of fortunate mistakes, aesthetic preferences,
and personal idiosyncrasies of influential figures are also integral parts of
real science. However, it does not follow that all those factors play an
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equally important role in epistemology, as its point is to explain the reli-
ability of scientific knowledge and to delimit its scope. As a result, episte-
mology does not take the actual thought processes of scientists as its objects,
or the actual words used by scientists, or even what scientists take their own
activity to be. Rather it envisages a better scenario in which the claims, hy-
potheses, models, theories, and methods are accounted for not by fortunate
mistakes, idiosyncrasies, etc., but by a rationally compelling presentation
they ought to have. To use the term introduced by Carnap [3], the object of
scientific epistemology is a rational reconstruction of science.

The dimension of the rational reconstruction process that generates an
object of study suitable for a properly epistemological analysis is often pre-
sented as an invective to distinguish the context of discovery from the con-
text of justification. The distinction between the contexts is one between
processes of discovery and methods of justifications. The phrase “methods
of justification” denotes what satisfactorily establishes knowledge claims,
independently of the beliefs of the historical actors. It is important to em-
phasize that which methods of justification are rationally admissible is not
god-given, as there is room for disagreement. It is nonetheless clear that
what is to be included in the context of justification is determined by what
methods and tools are considered rational. Different choices might result
in different organizations of what belongs to what context. The stakes are
clear: if the methods of justification we are willing to admit are too re-
stricted, then some essentially successful scientific practices will appear to
be miraculous, without any rational grounds.

Scientists and philosophers alike often depict the scientific method as
containing two essential methods of justification. On the one hand, there
are the methods of probability theory and statistics which are meant to un-
derly inductive inferences from observed phenomena. On the other hand,
logic and axiomatics are meant to capture the deductive structure of scien-
tific theories. Probability and statistics are essentially about making precise
judgements about the likelihood of hypotheses. Deductive logic is essen-
tially about truth-preserving inferences (i.e., inferences such that if their
premises are true, so will their conclusion). These methods are undoubtedly
rationally admissible when properly utilized, but it is essential to emphasize
that they do not exhaust the field of rational justifications. It is therefore
necessary to revise and supplement our “rational reconstruction toolbox,”
for otherwise significant parts of applied mathematical sciences would be
wrongly considered methodologically unsound.

The successes of applied mathematics crucially depend on the methods of
perturbation theory. The type of questions they address are not about proba-
bility, likelihood, or truth-preserving inferences. Instead, they concern ques-
tions of this type: if causal factors were slightly changed or if parameters
were tweaked in various ways, what impact would it have? To see the con-
trast with deductive logic even more sharply, one could say that the methods
of perturbation theory are essentially about determining the circumstances
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in which arguments with false premises lead to accurate conclusions. De-
ductive logic cannot address such questions, for even if its inference forms
preserve truth, they do not in general preserve approximate truth. Pertur-
bation methods give us the resources we need to learn how to live with
falsehood, and this is key to understanding the factors that make so many
mathematical models and theories uncannily accurate.

To conclude, persistent failures to unravel the mystery of the applicability
can be attributed to an insufficiently rich way of rationally reconstructing
scientific and mathematical knowledge. To the extent that the problem of
uncanny accuracy is concerned, we need to suitably enrich the catalogue
of methods admissible for the rational reconstruction of the concepts of sci-
ence and mathematics. We should not contemplate elaborate counterfactual
constructions about pristine theories that contain no error and uncertainty,
but learn how to live with them, and love them, for they are the conditions
of possibility of successful science. Then, and only then, the allegedly mirac-
ulous character of the applicability of mathematics will be demystified.
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