
Akbar Fahmi August 29, 2012

Is the moon there when nobody looks?

Akbar Fahmi

Philosophy of science Department, Sharif University of Technology, Tehran, Iran
School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran∗

I. ABSTRACT

Einstein asked: whether I really believed that the moon exists only when I look at it. In this essay, we
partially try to answer this question. We considered some realistic non-local hidden variable models which
simulate the quantum correlation function (singlet state). We have derived inequalities which are based on
these models and show that these inequalities are violated by quantum predictions. It prompts revisiting
such models from logical perspective. These results raise some questions: Can quantum predictions are
simulated by nonlocal realistic models? Can this approach be extended to general cases? In this essay, We
will try to answer these questions.

II. MOTIVATION

The development of quantum mechanics in the early twentieth century obliged physicists to radically
change some of the concepts they employed to describe the world. It challenged some of the accepted as-
sumptions physicists were using for a long time. Uncertainty principle and quantum entanglement are at the
heart of quantum physics, both for its conceptual foundations and for applications in quantum information.
Entanglement is a property unique to quantum systems. Two systems are said to be quantum entangled if
they are described by a joint wave function that cannot be written as a product of wave functions of each of
the subsystems.

Quantum entanglement was first viewed as a source of paradoxes, most noticeably the Einstein-
Podolsky-Rosen paradox (EPR) [1], which explicitly suggested that any physical theory must be both local
and realistic. Two main assumptions of Einsteins realism involve separability and locality principles.

Einstein has described his key point of reality as follows: ”This [simultaneous predictability] makes
the reality of P, and q, depend upon the process of measurement carried out on the first system which
does not disturb the second system in any way. No reasonable definition of reality could be expected
to permit this.” Einstein-Podolsky-Rosen paradox simply concludes that objective reality is incompatible
with the assumption that quantum mechanics is complete. This conclusion has not affected subsequent
developments in physics and it is doubtful that it ever will. As Pais tells us [2]: “We often discussed his
notions on objective reality. I recall that during one walk Einstein suddenly stopped, turned to me and asked
whether I really believed that the moon exists only when I look at it”. Moreover, Planck wrote “Is there an
external world?” Plancks and Einsteins question lies in the background behind the famous question: Can
quantum mechanical description of reality be considered complete?

As we read at Bells paper [3], the EPR conclusion serves to present “an argument that quantum mechan-
ics could not be a complete theory but should be supplemented by additional variables. These additional
variables were to restore to the theory causality and locality”. Moreover, Bell showed that the correla-
tions among the measurement outputs of space-like separated parties on some quantum states cannot be
reproduced by a local theory. Bell’s theorem is the first place where the locality assumption is quantified.
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These conditions then manifested themselves in the so-called Bell inequality [3], where locality is a crucial
assumption but is violated by quantum mechanical predictions. In the Bell’s terminology, quantum mechan-
ics is not a locally causal theory. In what has become standard terminology, this fact is often referred to as
quantum non-locality and has been recognized as the most intriguing quantum feature. Bell’s inequality has
been derived in different ways [4, 5]. Over the past thirty years a very large number of experiments have
been conducted with the aim of testing the predictions of quantum mechanics against those of local hidden-
variable theories [6]. All of them give strong indications against local hidden variable theories. Non-locality
is a fascinating chapter of physics and has attracted much attention since its discovery because it relates two
fundamental aspects of nature, special relativity and quantum mechanics.

Recently, the Bell’s original work has been extended to some classes which can be organized into three
different categories:

1- Nonlocal Hidden-Variable Theories. In 2003, Leggett proposed an alternative model for non-local
correlations which is incompatible with quantum predictions [7]. The Leggett’s model (LM) is based on the
following assumptions: (i) all measurement outcomes are determined by pre-existing properties of particles,
independently of the measurement (realism); (ii) physical states are statistical mixtures of subensembles
with definite polarization, where (iii) polarization is defined such that expectation values taken for each
subensemble obeys the Malus law [7, 8].

Afterwards, Gröblacher et al. have theoretically and experimentally shown that LM is incompatible with
the experimentally observable quantum correlations [8–10]. Moreover, Branciard et al. [11] and indepen-
dently Colbeck and Renner [12], have gone beyond LM and have considered general hidden variable models
which have both local and non-local parts. They have shown the existence of quantum correlations that are
incompatible with any hidden variable model having a non-trivial local part, such as LM. Conversely, others
have shown that this definitions of local part and trivial are not useful for addressing non-classical quantum
correlations [13]. Furthermore, they have considered contextual models in which the results of parties’
outputs depend explicitly and nontrivially on the local hidden variables [13, 14].

2- Simulating quantum correlation function. Some authors have extended Bell’s approach, by consid-
ering realistic interpretation of QM and using shared random variables augmented by classical communica-
tion or nonlocal effects and simulated the quantum correlation function (singlet state) [13–29]. Afterwards,
this approach has been extended to quantum predictions for all of product of Pauli operators on n-qubit
GHZ state [30] and graph states [31].

3- Breaking the Bell barrier. Independently of the above developments, Popescu and Rohrlich [32]
have raised a question: can there be stronger correlations than the quantum mechanical correlations that
remain causal (i.e., that do not allow signaling)? They answered by exhibiting an abstract non-local box
wherein instantaneous communication remains impossible. This non-local box is such that the CHSH in-
equality is violated by the algebraic maximum value of 4, while quantum correlations achieve at most 2

√
2

[32–34]. There is a question of interest: Considering that perfect non-local boxes would not violate causal-
ity, why do the laws of quantum mechanics only allow us to implement non-local boxes better than anything
classically possible, yet not perfectly [35]? Recently, van Dam and Cleve considered communication com-
plexity as physical principle to distinguish physical theories from non-physical ones. They proved that the
availability of perfect non-local boxes makes the communication complexity of all Boolean functions triv-
ial [36]. Afterwards, Brassard et al. [35] showed that in any world in which communication complexity
is nontrivial, there is a bound on how much nature can be nonlocal. Besides, Pawlowski et al. [37] de-
fined information causality as a candidate for one of the foundational assumptions of quantum theory which
distinguishes physical theories from non-physical ones. In addition of this approach, there is another link
between the uncertainty principle and non-locality. This indicates that quantum mechanics cannot be more
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nonlocal with measurements that respect the uncertainty principle and the link between uncertainty and
non-locality holds for all physical theories [38]. In other words, the degree of non-locality of any theory is
determined by two factors: the strength of the uncertainty principle and the strength of a property called
steering, which determines which states can be prepared at one location given a measurement at another.

In the following, I briefly describe my recent works and future research plans.

My Research Statements

III. MY WORKS ON LEGGETT’S MODELS AND RELATED PAPERS

Although it seems assumptions of LM are “natural”, but they are in conflict with quantum predictions.
Does it mean one of these assumptions is in conflict with QM? Can Leggett’s inequality be extended to
non-local hidden-variable models such as LC’s model? In these part of work, we have tried to answer these
questions. Explicitly, we have demonstrated that the incompatibility of non-local hidden variable models
[7, 8, 11, 12] can be argued differently, without need to invoke violation of an inequality. I have proved
that validity of Malus law leads to an incompatible results with quantum correlation functions. Afterwards,
I have considered a new type of probability distribution function F (û, v̂) = F (û)δ(û + v̂) [39] and have
shown that this incompatibility is valid for new Leggett’s probability distribution function. Furthermore, I
try to extend LM to more general cases with minor assumptions (such as counterfactual definiteness) [14].

IV. THE BASIC PRINCIPLES AND SIMULATING QUANTUM CORRELATION FUNCTION

Although, a common sense doesn’t exist about violation of Bell’s inequality and scientists believed that
Bell’s inequality is based on different assumptions [40], however, we can find two common assumptions at
them, locality and reality.

The Bell-inequality violations for the vast majority of the quantum-foundations community is that it sig-
nals nature to be non-local. But non-locality is only one of two possible explanations for the violation. The
other is that quantum measurement results do not preexist in any logically determined way before the act of
measurement. In this part, we have gone to beyond of present approaches. Here, we consider models which
neither have trivial communication complexity [35, 36] nor break information causality principles [37]. For
example, I have considered the aforementioned principles and Boole’s inequality [41] and proved that it is
impossible to construct consistent shared random variable theories augmented by classical communications
[15]. Furthermore, we have reviewed all recent works on the simulation of singlet quantum correlation
function [13–29]. We have derived inequalities which are based on these models. These inequalities are
violated by quantum predictions.

To clarify our approach, here, we derive inequality which based on Toner and Bacon protocol [15] and
show that it is violated by quantum correlation function.

In the Toner and Bacon protocol Alice and Bob share two independent random variables λ̂1 and λ̂2

which are real three dimensional unit vectors. They are independently chosen and uniformly distributed
over the unit sphere (infinite communication at this stage). Alice measures along â, Bob measures along
b̂. They obtain α ∈ {+1,−1} and β ∈ {+1,−1} respectively, where α and β indicate whether the spin is
pointing along (+1) or opposite (−1) directions with respect to chooses to measure. TB protocol proceeds
as follows: (1) Alice’s outputs are α ≡ A = −sgn(â · λ̂1). (2) Alice sends a single bit c ∈ {−1,+1}
to Bob where c = sgn(â · λ̂1)sgn(â · λ̂2). (3) Bob’s outputs are β ≡ B = sgn[b̂ · (λ̂1 + cλ̂2)] =
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FIG. 1: (color online) Alice and Bob measurement settings are presented by â and b̂i, i = 1, 2 respectively which lie
in the y − z plane so that the angles â and b̂i i = 1, 2 being evenly spread as ∆ = b̂i − â = π − α. In this figure, −â
dived angle between b̂1 and b̂2 to two equal parts.

1+c
2 sgn[b̂ · (λ̂1 + λ̂2)] + 1−c

2 sgn[b̂ · (λ̂1 − λ̂2)], where sgn function is defined by sgn(x) = +1 if x ≥ 0
and sgn(x) = −1 if x < 0. The joint expectation value 〈AB〉 is given by equation (1) in [15].

In the TB model, we consider two sets of measurement settings (â, b̂1) and (â, b̂2) in the x− y plane so
that −â dived angle between b̂1 and b̂2 to two equal parts (2α = 6 (b1 − b2)) as show Fig. (1). We take
upper bound of the LM for these measurement settings and obtain

|A(â, λ̂1)−B(â, b̂i, λ̂1, λ̂2)| ≤ 1−A(â, λ̂1)B(â, b̂i, λ̂1, λ̂2), i = 1, 2. (1)

For simplicity, we represent the parties outputs by B(â, b̂i, λ̂1, λ̂2) ≡ Bi. According to TB outputs, the
above inequalities transformed to

|A−Bi| ≤ 1−ABi, i = 1, 2. (2)

Summing up two inequalities together, one obtains:

|B1 −B2| ≤ |A−B1|+ |A−B2| ≤ 2−AB1 −AB2. (3)

|1 + c

2

{
sgn[b̂1 · (λ̂1 + λ̂2)]− sgn[b̂2 · (λ̂1 + λ̂2)]

}
(4)

+
1− c

2

{
sgn[b̂1 · (λ̂1 − λ̂2)]− sgn[b̂2 · (λ̂1 − λ̂2)]

}
| ≤ 2−AB1 −AB2

Integrating over the constant probability distribution F (û, v̂) = 1
(4π)2

, we have

1
(4π)2

∫
dλ̂1

∫
dλ̂2|1 + c

2

{
sgn[b̂1 · (λ̂1 + λ̂2)]− sgn[b̂2 · (λ̂1 + λ̂2)]

}
(5)

+
1− c

2

{
sgn[b̂1 · (λ̂1 − λ̂2)]− sgn[b̂2 · (λ̂1 − λ̂2)]

}
| ≤ 2− 〈AB1〉 − 〈AB2〉,

The l.h.s. can be calculate directly, however, according to Fig. (2), we can calculate l.h.s. which

4



Akbar Fahmi August 29, 2012

1c

1c

2

ˆ

1c

1

ˆ

1c

FIG. 2: The shared unit vectors λ̂1 and λ̂2 described in the text divide the Bloch sphere into four quadrants, as shown.
Alice’s and Bob’s actions depend on which quadrant their respective measurement axes lie in, and in Bob’s case,
the bit he receives from Alice. If â lies in the shaded region, Alice sends c = −1 and if her measurement axis lies
unshaded region she sends c = +1 to Bob. Toner and Bacon deduce that Bob obtains no information about Alice’s
output from the communication.
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FIG. 3: (color online) In this plot, the blue and the red lines show l.h.s. and r.h.s. of inequality (6). The inequality is
violated for 0 < α < π/2 interval, where, α = tπ, and 0 ≤ t ≤ 1.

is equal to one 1
2π

∫ 2π
0 dϕ

∫ π/2
0 sin θdθ = 1 by taking â in the ŷ direction. In the second integral,

we take b̂1 − b̂2 = 2(1 − cos 2α)ĉ, ĉ = ẑ and â = ŷ directions, therefor, integral is equal to 1
2π2(1 −

cos 2α)
∫ π
0 dϕ

∫ π
0 sin θ| cos θ|dθ = 1− cos 2α. Therefore, Eq. (5) becomes

4α

π
≤ 2− 〈AB1〉 − 〈AB2〉, (6)

With using quantum correlation function 〈A2i−1B2i〉 = − cos(a2i−1− b2i) = cos δ, the above inequality is
transformed to 1− cos 2α ≤ 2− 2 cos δ which is clearly violated over finite range of 0 < α < π/2.

V. QUESTIONS AND OUTLOOKS

These results raise some questions: Can quantum predictions are simulated by nonlocal realistic models?
On the other hand, can this approach be extended to general cases? Recently, an operational definition of
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contextuality are introduced. In an operational interpretation of a physical theory, the primitive elements
are preparation procedures, transformation procedures, and measurement procedures [43–46]. In the next
step, we try to extend our approach to these contextual models and answer to these questions.

In other hand, recently, researchers take their attention to find a complete set of natural and information-
theoretic principles that clarify relation between non-locality and quantum mechanics. This new approach
aims to derive connections between quantum mechanics (its application in quantum information and quan-
tum computing) and some basic principles which are independent from quantum theory and its mathematical
structures. These attempts have been based on the new principles which comes from computer science or
information theory. The communication complexity [36] the information casuality [37] provided us with
some rationale for why limits on quantum theory may exist. But evidence suggests that many of these
attempts provide only partial answers.

I have asked a question: Is there some “natural” principles that restricts the degree non-locality of nature?
Here, we take a very different approach and get very interesting primary results. My Principles are angular
momentum quantization and conservation laws. My initial results have shown some of non-local models
which simulate quantum correlation functions are not consistence with this principles and we have extended
my approach to some simple types of non-local boxes.

These arguments indicate that we must have a deeper understanding of the notions of non-locality,
reality and entanglement. Therefore, this research is expected to provide insights in many other areas of
fundamental physics and to contribute to the development of a new informational view of nature.
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[8] S. Gröblacher, et al., Nature 446, 871, (2007).
[9] A. Aspect Nature 446, 866 (2007).

[10] T. Paterek, et al., Phys. Rev. Lett. 99, 210406 (2007); C. Branciard, et al., Phys. Rev. Lett. 99, 210407 (2007).
[11] C. Branciard, et al., Nature Physics, 4, 681-685, (2008).
[12] R. Colbeck, R. Renner, Phys. Rev. Lett. 101, 050403 (2008).
[13] J. A. Larrson and A. Cabello, arXiv:0907.2619 v3.
[14] F. De Zela, J. Phys. A: Math. Theor. 41, 505301 (2008).
[15] B. F. Toner, and D. Bacon, Phys. Rev. Lett. 91, 187904 (2003).
[16] M. J. W. Hall, Phys. Rev. Lett. 105, 250404 (2010).
[17] The supplementary information part I of [8].
[18] G. Brassard, R. Cleve, and A. Tapp, Phys. Rev. Lett. 83, 1874 (1999).
[19] P. R. Holland, Quantum Theory of Motion., Sections 11.2 and 11.3, (Cambridge Univ. Press, Cambridge, 1993).
[20] D. Rodriguez, quant-ph 1108.4823 v1.
[21] A. Montina, Phys. Rev. A 84, 042307 (2011); Phys. Rev. A 84, 060303 (R) (2011); quant-ph 1206.2961 v1.
[22] M. Steiner, Phys. Lett. A 270, 239 (2000); M. Feldmann, Found. Phys. Lett. 8, 41 (1935).
[23] G. Ghirardi, and R. Romano quant-ph 1203.3093, Phys. Rev. A 85, 042102 (2012).
[24] David Craig, et al., J. Phys. A: Math. Theor. 40 501523 (2007).
[25] J. Degorre, S. Laplante and J. Roland, Phys. Rev. A 75, 012309 (2007); ibid 72, 062314 (2005).
[26] N. Gisin, quant-ph 1002.1390 v1.

6



Akbar Fahmi August 29, 2012

[27] A. Di Lorenzo J. Phys. A: Math. Theor. 45, 265302, (2012).
[28] Recently, C. Branciard, et al., quant-ph 1203.0445, tried to simulate entanglement swapping with a non-local

hidden variable theory. It seems that this protocol has some defects, for example, Alice outputs are constant and
do not depend to hidden variable λ.

[29] C. Branciard, and N. Gisin, Phys. Rev. Lett. 107, 020401 (2011).
[30] T. E. Tessier, C. M. Caves, I. H. Deutsch, B. Eastin, and D. Bacon, Phys. Rev. A 72, 032305 (2005).
[31] J. Barrett, C. M. Caves, B. Eastin, M. B. Elliott, and S. Pironio, Phys. Rev. A 75, 012103 (2007).
[32] S. Popescu, and D. Rohrlich, Found. Phys. 24, 379 (1994).
[33] N. S. Jones and Ll. Masanes, Phys. Rev. A 72, 052312, (2005).
[34] K. Svozil, Phys. Rev. A 72, 050302(R) (2005); ibid 75, 069902(E)(2007).
[35] G. Brassard, et al., Phys. Rev. Lett. 96, 250401 (2006).
[36] W. van Dam, PhD thesis, Univ. Oxford (2000); quant-ph/0501159.
[37] M. Pawlowski et al., Nature 461, 1101, (2009).
[38] J. Oppenheim and S. Wehner, Science 330, 1072 (2010).
[39] This probablility distribution is kindly suggested by A. J. Leggett.
[40] M. Schlosshauer (ed.), Elegance and Enigma, The Quantum Interviews, (Springer-Verlag Berlin Heidelberg)

(2011), pp161-180.
[41] G. Boole. An investigation of the laws of thought. Dover edition, (New York, 1958).
[42] N. Cerf et al. Phys. Rev. Lett. 94, 220403 (2005).
[43] N. Harrigan, R. W. Spekkens, Found. Phys. 40, 125 (2010).
[44] R. W. Spekkens, Phys. Rev. A 71 052108 (2005).
[45] N. Harrigan, T. Rudolph, arXiv:0709.4266.
[46] M. S. Leifer, and O. J. E. Maroney arXiv:1208.5132.

7


