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Abstract. Besides the purely digital or analog interpretations of reality there is a third possible description which incorporates
important aspects of both. This is the cyclic interpretation of reality. In this scenario every elementary system is described by
classical fields embedded in cyclic space-time dimensions.We will address these cyclic fields as “de Broglie internal clocks”.
They constitute the deterministic gears of a consistent deterministic description of quantum relativistic physics, providing in
addiction an appealing formulation of the notion of time.

INTRODUCTION

Among the many starting points to motivate the possible cyclic nature of space-time, published in [1] (see also
[2] for more details) and presented to several international conferences [3–5], in this essay we adopt the ’t Hooft
determinism [6–8]. It states that there is a close relationship between the quantum harmonic oscillator with angular
frequencyω̄ = 2π/Tt , that is the mode of an ordinary quantum field with energyĒ = h̄ω̄ , and a classical particle
moving along a circle of periodicityTt . By assuming the time periodTt on a lattice withN sites, it turns out that
if the experimental time accuracy is∆t ≫ Tt , at every observation the system appears in an arbitrary phase of its
cyclic evolution,i.e on an arbitrary site of the lattice. Since the underlying periodic dynamics are too fast to be
observed, the evolution has an apparent aleatoric behavioras if observing a “clock under a stroboscopic light” [7].
The evolution operatorU (∆t = ε) = exp[− i

h̄H ε] is given in terms of aN ×N matrix and the model is analogous to
a harmonic system ofN masses and springs on a ring. In the limit of largeN, the frequency eigenvectors|φn〉 obey
to the relationH |φn〉 ∼ h̄ω̄ (n +1/2)|φn〉 which actually describes the energy eigenvaluesEn+1/2 = h̄ω̄ (n +1/2) of
a quantum harmonic oscillator with periodicityTt - apart for an “unimportant” phase in front of the operatorU(ε)
which reproduces the factor 1/2 in the eigenvalues [9–11] and which can be regarded a twist factor on the Periodic
Boundary Conditions (PBCs). The idea is that, due to the extremely fast cyclic dynamics, we loose information
about the underlying classical theory and we observe a statistical theory that matches QM. For this reason we speak
about deterministic or pre-quantum theories. Since the cyclic time intervalTt is supposed on a lattice, the t’ Hooft
determinism can be classified as purely digital. It recentlyevolved into the idea of “classical cellular automata” [12],
that is a deterministic model which shows interesting correspondences between elementary particles and black holes.
However, if we take the continuous limit of the t’ Hooft deterministic model by assuming an infinite number of lattice
sitesN → ∞, it is easy to see that the system of springs and masses turns out to be a vibrating string embedded in a
cyclic time dimension, that is a bosonic classical fieldΦ(x,t) embedded in a compact time dimension of lengthTt and
with PBCs. Formally, through discrete Fourier transform, to a compact variable corresponds a quantized conjugate
variable, that is a variable which takes discrete values. Hence, a compact dimension yields to a digital description
of the conjugate space. Considering the relationĒ = h̄ω̄ , in the specific case of an elementary cyclic system with
t ∈ [0,Tt ] there is associated the quantized energy spectrumEn = nh̄ω̄ = nh/Tt . The energy is the digital conjugate
variale of a cyclic time variable. More in general, since we observe an energy-momentum space on a lattice (quantized
energy-momentum spectrum) we try to describe QM in terms of cyclic space-time dimensions. In [1] we have shown
that, similarly to a particle in a box, relativistic fields can be actually quantized by imposing their characteristic de
Broglie space-time periodicities as constraints [1–5].

Our assumption of dynamical periodic fields can be regarded as a combination of the Newton’s law of inertia and de
Broglie-Planck hypothesis of periodic matter waves:elementary isolated systems must be supposed to have persistent
periodicities as long as they do not interact. Such an assumption of intrinsic periodicity is also implicit in the operative
definition of time (and for some aspect in the action-reaction law). Time can only be defined by counting the number
of cycles of isolated phenomenasupposed to be periodic. For a consistent formalization of time, in physics there must
be an assumption of periodicity for free elementary systems! In modern physics, a second is defined as the duration



of 9,192,631,770 characteristic cycles of the Cs atom (TCs ∼ 10−10s). For the central role of time in physics, the
assumption of isochronism of the pendulum made by Galileo inthe cathedral of Pisa can be regarded as one of the
foundational acts of physics. Such an assumption of persistent periodic phenomena allowed a sufficiently accurate
definition of time to study the motion of bodies and in turn theformulation of theories of dynamics. The definition
of relativistic clock given by A. Einstein [13] is: “by a clock we understand anything characterized by a phenomenon
passing periodically through identical phases so that we must assume, by the principle of sufficient reason, that all
that happens in a given period is identical with all that happens in an arbitrary period”. The whole information of
such a relativistic clock is contained in a single period. Thus we say, using the language of extra dimensional theories,
that the period is a analog compact dimension with PBCs. In this way a non interacting cyclic field can be regarded
of as analog “de Broglie internal clocks” [14, 15], that is tosay as relativistic fields with intrinsic de Broglie time
periodicitiesTt = h/Ē.

Since the measure of time is a counting process it also has a digital nature. This intrinsically contains the Heisenberg
uncertain principle. In fact, in a “ de Broglie clock”, to determine the energȳE = h̄ω̄ with good accuracy∆Ē we must
count a large number of cycles, that is to say we must observe the system for a long time∆t, according to the relation
∆Ē∆t & h̄. Moreover, since periodicity conditions mean that the onlypossible energy eigenmodes are those with an
integer number of cycles, we obtain the Bohr-Sommerfeld quantization condition (for instance, it can be shown that
the periodicity conditionEnTt = nh can be more in general written as

∮

Endt = nh for interacting systems). This allows
to solve many non-relativistic quantum problems [1, 2].

For the covariant formulation of the theory we must considerthat the de Broglie time periodicity induces spacial de
Broglie periodicitiesλ i, and that these space-time periodicities, as well as the energy-momentum quantized spectrum,
transforms under Lorentz. In other words, sinceTt = h/Ē, the de Broglie time periodicity must be regarded as
dynamical. As every time interval, the time periodicityTt transforms in a relativistic way. The proper-time intrinsic
periodicity Tτ fixes the upper bond of the time periodicityTt because the mass is the lower bond of the energy.
For instance, denoting the reference system by the spatial momentump̄, where pi = h/λ i, we haveTτ ≥ Tt(p̄)
and M̄c2 ≤ Ē(p̄). The heavier the mass the faster the proper-time periodicity. Hence, even a light particle such
as the electron has (in a generic reference frame) intrinsictime periodicity equal or faster than∼ 10−20s, i.e. the
time periodicity in a generic reference frame is always faster than its proper-time periodicity. It should be noted
that the periodicity is many orders of magnitude away from the characteristic time periodicity of the cesium atomic
clock, which by definition is of the order of 10−10s, and that it is extremely fast even if compared with the present
experimental resolution in time (∼ 10−17s). Thus, for every known matter particle (except the neutrino) we are in
the case of too fast periodic dynamics as in the ’t Hooft determinism. The de Broglie intrinsic clock of elementary
particles can also be imagined as a “de Broglie deterministic dice” [3], that is a dice rolling with time periodicityTt .
We inevitably have a too low revolution in time, so that at every observation the system appears in an aleatoric phase
of its evolution. As for a clock observed under a stroboscopic light or a dice rolling too fast, we can only predict
the outcomes statistically. For the results presented in [1] and summarized here we see that the statistical description
associated to intrinsically periodic phenomena actually matches ordinary QM [1]. We may also note that, on a cyclic
geometry such as a cylinder, there exist many possible classical paths, characterized by different winding (digital)
numbers, between every initial and final point. Thus a field with PBCs can self-interfere. Its evolution is described
by a sum over classical cyclic paths (characterized by digital numbers) which actually matches the ordinary Feynman
Path Integral of QM.

In this essay we will only describe some published results orannounce some others that will be published soon. The
reader interested in more technical details or to the mathematic proofs may refers to [1].

RELATIVISTIC GEARS

The relativistic generalization of the Newton’s law of inertia can be formulated in the following way: every isolated el-
ementary system has persistent four-momentum ¯pµ = {Ē/c, p̄}. On the other hand, the de Broglie-Planck formulation
of QM prescribes that a four-momentum must be associated to the four-angular-frequency of a corresponding field,
according to the relation̄ωµ = p̄µc/h̄. Here we will assume that every elementary system is described in terms of in-

trinsically periodic fields whose periodicities are the usual de Broglie-Planck periodicitiesT µ = {Tt ,~λx/c} = 2π/ωµ.
As the Newton’s law of inertia doesn’t imply that every pointparticle moves on a straight line, our assumption of
intrinsic periodicities does not mean that the physical world should appear to be periodic. In fact, the four-periodicity



T µ is fixed dynamically by the four-momentum through the de Broglie-Planck relation

T µ =
2π
ω̄µ

=
h

p̄µc
. (1)

The variation of four-momentum occurring during interactions implies a variation of the intrinsic periodicities of the
fields. This guarantees time ordering and relativistic causality.

Similarly to the ’t Hooft deterministic model, the free cyclic field Φ(x,t) is a tower of frequency eigenmodesφn(x)
with energiesEn(p̄) = nh̄ω̄(p̄),

Φ(x,t) = ∑
n

Anφn(x)un(t) , where un(t) = e−iωn(p̄)t . (2)

By bearing in mind the relation̄E(p̄) = h̄ω̄(p̄), the quantized energy spectrumEn(p̄) is nothing else than the harmonic
frequency spectrumωn(p̄) = nω̄(p̄) of a vibrating string with time periodicityTt(p̄)1. This quantization is the field
theory analogous of the semiclassical quantization of a “particle” in a box, it also shares deep analogies with the
Matsubara and the Kaluza-Klein (KK) theory [16]. Since in this case the whole physical information of the system is
contained in a single four-periodT µ , our intrinsically four-periodic free field can be described by a bosonic action in
compact four dimensions with PBCs

Sλs =

∫ T µ

0
d4xLλs(∂µΦ,Φ) . (3)

It is important to note that PBCs minimize the action at the boundaries, in particular the ones of the compact time
dimension. Therefore PBCs have the same formal validity of the usual (Synchronous) BCs assumed in ordinary field
theory. This is an essential feature because it guarantees that all the symmetries of the relativistic theory are preserved
as in usual field theory. In particular it guarantees that thetheory is Lorentz invariant. For instance we can consider a
generic global Lorentz transformation

dxµ → dx′µ = Λµ
ν dxν , p̄µ → p̄′µ = Λν

µ p̄ν . (4)

By definition, T µ is such that the phase of the field is invariant under four-periodic translations exp[−ixµ p̄µ ] =
exp[−i(xµ + cT µ)p̄µ ] . In this way we see that the four-periodicity is actually a contravariant four-vector. It transforms
under global Lorentz transformations as every generic space-time interval

T µ → T ′µ = Λµ
ν T ν (5)

and the phase of the field is a scalar quantity under Lorentz transformations - de Broglie phase harmony. The space
time periodicityT µ can be thought of as describing a reciprocal energy-momentum lattice pnµ = np̄µ . This can be
also inferred by noticing that after the transformation of variables eq.(4), the integration region of the free action eq.(3)
turns out to be

Sλs =

∫ T ′µ

0
d4x′Lλs(∂

′
µ Φ,Φ) . (6)

Therefore, in the new reference system, the new four-periodicity T ′µ of the field is actually given by eq.(5), that is
eq.(6) describes a system with four-momentum ¯p′µ eq.(4).

The underlying Minkowski metric induces the following constraint on the dynamical periodicities

1
T 2

τ
≡ 1

Tµ

1
T µ

which, considering the above de Broglie-Planck relation, is nothing else than the relativistic constraintM̄2c2 = p̄µ p̄µ .
The resulting compact 4D formulation reproduces, after normal ordering, exactly the same quantized energy

spectrum of ordinary second quantized fields. In particular, for a massive field with mass̄M we will find the energy
spectrum

Ēn(p̄) = n
√

p̄2c2 + M̄2c4

1 As we will see, the theory can be even regarded as a particularkind of string theory where there is a compact world-line parameter instead of a
compact world-sheet parameter.



of ordinary quantum field theory. Furthermore, it is easy to see that in the rest frame (p̄ ≡ 0) this quantized energy
spectrum isdual to the KK mass towerMn = En(0)/c2 = nM̄. Indeed, for such a massive field, the assumption of
periodicity along the time dimension means that in the rest frame the proper-timeτ there has intrinsic periodicity

Tτ = Tt(0) =
h

M̄c2

The invariant mass̄M is not a parameter of the action by it is fixed geometrically bythe reciprocal of the proper-time
intrinsic periodicityTτ of the elementary field. In other words, by imposing intrinsic time periodicity, the world-line
parameters = cτ turns out to be compact with PBCs. It behaves similarly to theXD of a KK field with zero 5D mass
and with fundamental mass̄M. As a consequence the world-line compactification lengthλs = cTτ is the Compton
wave length of the field. In order to bear in mind these analogies with an XD field theory we say that, the world-line
parameter play the role of aVirtual XD (VXD) with compactification lengthλs. It is interesting to note that, originally,
T. Kaluza introduced the XD formalism as a “mathematical trick” and not as areal XD [17].

QUANTUM GEARS

Now we briefly show that our cyclic description of reality provides a remarkable matching with the canonical
formulation of QM as well as with the Feynman Path Integral (FPI) formulation. The evolution along the compact time
dimension is described by the so called bulk equation of motions(∂ 2

t + ω2
n )φn(x,t) = 0 - for the sake of simplicity in

this section we assume a single spatial dimensionx. Thus the time evolution of the energy eigenmodes can be written
as first order differential equationsih̄∂tφn(x,t) = Enφn(x,t). The periodic field eq.(2) is a sum of on-shell standing
waves. Actually this is the typical case where a Hilbert space can be defined. In fact, the energy eigenmodes form a
complete set with respect to the inner product

〈φ |χ〉 ≡
∫ λx

0

dx
λx

φ∗(x)χ(x) . (7)

Therefore the energy eigenmodes can be defined as Hilbert eigenstates〈x|φn〉 ≡ φn(x)/
√

λx. On this base we can
formally build a Hamiltonian operatorH |φn〉 ≡ h̄ωn |φn〉 and a momentum operatorP |φn〉 ≡ −h̄kn |φn〉, where
kn = nk̄ = nh/λx. Thus the time evolution of a generic state|φ(0)〉 ≡ ∑n an|φn〉 is actually described by the familiar
Schrödinger equation

ih̄∂t |φ(t)〉 = H |φ(t)〉. (8)

Moreover the time evolution is given by the usual time evolution operatorU (t ′; t) = exp[− i
h̄H (t − t ′)] which turns

out to be a Marcovian operator:U (t ′′; t ′) = ∏N−1
m=0U (t ′ + tm+1; t ′ + tm − ε) whereNε = t ′′− t ′ .

From the fact that the spatial coordinate is in this theory a cyclic variable; by using the definition of the expectation
value of an observablēh∂xF(x) between to generic initial and final states|φi〉 and |φ f 〉 of this Hilbert space; and
integrating by parts eq.(7), we find

〈

φ f |h̄∂xF(x)|φi
〉

=
〈

φ f |PF(x)−F(x)P|φi
〉

. (9)

Assuming now that the observable is such thatF(x) = x [18] we obtain the usual commutation relation of ordinary
QM: [x,P] = ih̄. With this result we have checked the correspondence with canonical QM. Furthermore, it is possible
to prove the correspondence with the FPI formulation. In fact, it is sufficient to plug the completeness relation of the
energy eigenmodes in between the elementary time evolutions of the Marcovian operator. With this elements at hand
and proceeding in a complete standard way we find that the evolution of the cyclic fields turns out to be described by
the usual FPI which, in phase space, can be written in this way

Z = lim
N→∞

∫ λx

0

(

N−1

∏
m=1

dxm

)

N−1

∏
m=0

〈φ |e− i
h̄ (H ∆εm−P∆xm) |φ〉 . (10)

This important result has been obtained without any furtherassumption than PBCs and has a simple classical
interpretation. In a cyclic geometry there is an infinite setof possible classical paths with different winding numbers
that link every given initial and final points. If we imagine to open this cyclic geometry we obtain a lattice with period



T µ of initial and final points linked by classical paths. Thus there are many possible classical evolutions of a field
from an initial configuration to a final configuration, which can self-interfere similarly to the non-classical paths of
the FPI. However there is a fundamental conceptual difference with respect to the usual Feynman formulation: all
these possible paths are classical paths, that is they are classical paths with different winding numbers. This means
that in this path integral formulation it is not necessary torelax the classical variational principle in order to have
self-interference.

The non-quantum limit of a massive field, that is the non-relativistic single particle description, is obtained by
putting the mass to infinity so that, as shown in [1, 2], in an effective classical limit, only the first level of the energy
spectrum must be considered. This leads to a consistent interpretation of the wave/particle duality and of the double
slit experiment. The quantities describing only the first energy level are addressed by the bar sign. For instance, the
Lagrangian of the fundamental modēΦ(x) is L̄λs(∂µ Φ̄(x),Φ̄(x)). Note that the fundamental modēΦ(x) coincides
with the mode of Klein-Gordon field with energȳE and mass̄M. Therefore it can be always quantized through second
quantization. It can be shown that the analysis of the geometrodynamics of the de Broglie periodicities that we will
perform below can be extended to ordinary field theory. On theother hand a massless field has infinite Compton
wavelength and thus an infinite proper-time periodicity. Its quantum limit is at high frequency where, in fact, the PBCs
are important. In this limit we have discretized energy spectrum, in agreement with the ordinary description of the
black-body radiation (no UV catastrophe). The opposite limit described by a continuous energy spectrum is when time
periodicity tends to infinity.

In the original ’t Hooft toy model the periodTt was assumed to be of the order of the Planck time and its cyclic
dynamics associated to some sort of hidden variables [19]. Furthermore the Hamiltonian operator was not positive
defined. In our case, the assumption of intrinsic periodicities comes from PBCs. Therefore we have the remarkable
property that QM emerges without involving any hidden-variable. The theory can in principle violates the Bell’s
inequality and we can actually speak about determinism. Moreover, similarly to the KK theory where there are no
tachyons, a cyclic field can have positive of negative frequency modes but the energy spectrum describes always
positive energies and the Hamiltonian operator is positivedefined.

GEOMETRODYNAMICS

To introduce interactions we must bear in mind that the four-periodicity T µ is fixed by the inverse of the four-
momentum ¯pµ according to the de Broglie-Planck relation eq.(1)2. As already said, an isolated elementary system
(i.e. free field) has persistent four-momentum. On the other hand,an elementary system under a generic interaction
scheme can be described in terms of corresponding variations of four-momentum along its evolution with respect to
the free case

p̄µ → p̄′µ(x) = ea
µ(x)p̄a . (11)

In other words we describe interactions in terms of the so called tetrad (or virebein)ea
µ(x). Thus the interaction scheme

eq.(11) turns out to be encoded in the corresponding variation of the space-time periodicities

T µ → T ′µ(x) ∼ eµ
a (x)T a , (12)

that is in the corresponding deformation of the compactification lengths of a periodic field. Roughly speaking,
interactions can be thought of as stretching of the compact dimensions of the theory. Equivalently, the interaction
eq.(11) turns out to be encoded in the corresponding curved space-time background, which in the limit of weak
interaction can be approximated as

ηµν → gµν(x) ∼ ea
µ(x)eb

ν(x)ηab . (13)

This result can be double checked by considering the transformation of space-time variables

dxµ → dx′µ(x) ∼ ea
µ(x)dxa . (14)

Under the approximation of weak interaction we are assumingthat theT µ transforms as an infinitesimal intervaldxµ .
After this transformation of variables (diffeomorphism) with determinant of the Jacobian

√

−g(x), the free action

2 For the sake of simplicity, we work in the approximation of weak interactions so thatT µ transforms as an infinitesimal intervaldxµ , but the
results can be extended to the general case.



eq.(3) turns out to be

Sλs ∼
∫ eµ

a (x)T a

d4x
√

−g(x)Lλs(e
a
µ(x)∂aΦ(x),Φ(x)) . (15)

Therefore, the periodic field which minimizes this action has four-periodicityT ′µ , eq.(12), or equivalently has four-
momentum ¯pµ , eq.(11). We conclude that a field under the interaction scheme eq.(11) is described by the solutions of
the bulk equations of motion on the deformed compact background eq.(13) and compactification lengths eq.(12).

This geometrodynamical approach to interactions is interesting because it actually mimics very closely the usual
geometrodynamical approach of GR. In fact, if we suppose a weak Newton potentialV (x) = −GM⊙/|x| ≪ 1, we find
that the energy on a gravitational well varies (with respectto the free case) as̄E → Ē ′ ∼ (1+ GM⊙/|x|) Ē. According
to eq.(12) or eq(1), this means that the de Broglie clocks in agravitational well are slower with respect to the free
clocks Tt → T ′

t ∼ (1−GM⊙/|x|)Tt . Thus we have a gravitational redshift̄ω → ω̄ ′ ∼ (1+ GM⊙/|x|) ω̄. With this
schematization of interactions we have retrieved two important predictions of GR.

Besides this we must also consider the analogous variation of spatial momentum and the corresponding variation of
spatial periodicities [20]. According to the relation eq.(13) the weak newtonian interaction turns out to be encoded in
the usual Schwarzschild metric

ds2 ∼
(

1− GM⊙
|x|

)

dt2−
(

1+
GM⊙
|x|

)

dx2 . (16)

We have found that the geometrodynamical approach to interactions actually can be used to describes linearized gravity
and that the geometrodynamics of the compact space-time dimensions correspond to the usual relativistic ones.

As well known, see for instance [20], it is possible to retrieve ordinary GR from a linear formulation by including
self-interactions. More naively, as we will show in detail in a forthcoming paper, we can add “by hand” a kinetic
term (with appropriate coupling) to the Lagrangian in curvespace-time eq.(17) in order to describe the dynamics of
the metricgµν which is the newd.o.f. of the theory. Thus, in order to neglecting quantum corrections we replace the
Lagrangian

√−gLλs of eq.(17) with its non-quantum limit
√−gL̄λs and we add the kinetic term (with appropriate

coupling 16πGN) for the metric tensor obtaining the Hilbert-Einstein Lagrangian

L̄HE =
√−g

[

−gµνRµν

16πGN
+ L̄λs(e

a
µ∂aΦ̄(x),Φ̄(x))

]

. (17)

This naive procedure is similar to what we usually do in electromagnetism when we add the termFµνFµν/−4e2 to
describe the kinematics of the gauge field. Intuitively, because of its geometrical meaning, the Ricci tensor is the correct
mathematical object to describes the variations of the space-time compactification lengths at different space-time
points. Bearing in mind eq.(1), we note that actually such a kinetic term must encode the content of four-momentum in
different space-time points. By varying the metric eq.(17)yields to the usual Einstein equationRµν = −8πGNT µν .
Here we do not discuss issues related to the variation of boundary terms of the Hilbert-Einstein action and related
BCs [21]. As well known the Einstein equation can be obtainedfrom different action formulations which different by
boundary terms. With these simple and heuristic arguments we have shown that field theory in compact space-time is
in agreement not only with special relativity but also with GR.

In forthcoming papers we will show that, by writing eq.(11) as a minimal substitution, such a geometrodynamical
approach to interactions can be also used to describe ordinary gauge interactions. Gauge fields will turn out to “tune”
the variation of periodicities, allowing a semi-classicalinterpretation of superconductivity [2]

A cyclic field turns out to be dual XD theory where the world-line parameter play the role of a VXD. On the other
hand we have shown that it also matches ordinary quantum fieldtheory [1]. From the dualism to XD theories and
from the geometrodynamical approach to interactions described above, we aspect to find that the classical evolution
of the periodic fields along a deformed VXD background corresponds to the quantum behaviors of the corresponding
interaction scheme. Since, by using Witten’s words, in AdS/CFT “quantum phenomena [...] are encoded in classical
geometry” we find that a relativistic field theory in compact 4D provides the possibility of an intuitive interpretation
of the Maldacena conjecture. We will apply this idea to a simple Bjorken Hydrodynamical Model for Quark-Gluon-
Plasma (QGP) logaritmic freeze-out [22]. In first approximation the energy momentum of the QGP can be supposed
to decay exponentially (similarly to the Newton’s law of cooling for a thermodynamic system [23]). This interaction
scheme is described by the conformal warped tetradea

µ = δ a
µe−ks, wheres is the proper time, that is by avirtual AdS

metric. Actually, we find the classical configurations of cyclic fields in such a deformed background reproduces basic
aspects of AdS/QCD.



CONCLUSIONS

The formalism of cyclic space-time dimensions provides a consistent description of both the digital aspects arising
from QM and the analog aspects typical of relativity. Must benoted that (general and special) relativity sets the
differential structure of space-time without giving particular prescriptions for BCs. On the other hand, BCs have
played an important role since the earliest days of QM (for instance as in the Bohr atom or as in the particle in a box).
We have seen that relativity is compatible with cyclic analog space-time dimensions, since the periodicities transform
in a covariant way. In the limit of infinite time periodicity,that is in the case of low energy massless fields such as
the IR electromagnetic fields of a Black-Body radiation, we have a purely analog limit where the elementary system
is described by fields with approximatively a continuous energy spectrum. In the case of small time periodicity, for
instance as in a UV electromagnetic field in the black body radiation with respect to the thermal noise, the analog
field description of the theory is gradually replaced by digital corpuscular aspects: the energy spectrum turns out to be
quantized and the initial and final configurations of the fields form a periodic lattice, so that the evolution is described
by a sum over classical paths with different winding numbers.

These intrinsic time periodic fields can be identified with the so call “de Broglie internal clocks”. Similarly to an
analog or digital stopwatch, every moment in time is determined by the combination of the phases or the “ticks” of
periodic cycles (typically: years, months, days, hours, minutes and seconds). Every value of our external temporal axes
(defined with reference to the digital “ticks” of the Cs-133 atomic clock) is characterized by a unique combination
of the “ticks” of all the “de Broglie internal clocks” constituting the system under investigation. In this scenario
the long time scales are provided by massless fields with low frequencies (long time periodicities). This, however,
is an oversimplified picture since, as we have seen, the clocks can vary periodicity through interaction (exchange
of energy) and that periods depends dynamically on reference systems according to the relativistic laws. Moreover
the combination of two or more clocks, that is to say a non elementary system, with irrational ratio of periodicities
gives ergodic, or even more chaotic, evolutions. Independently of the assumption that the de Broglie internal clocks
are clockwise or anticlockwise, the flow of time is uniquely determined by the combinations their “ticks” and the
variations of their periodicities. Hence, the flow of time can be effectively described in terms of the “ticks” of these de
Broglie internal clocks. This formulation is particularlyinteresting for the problem of the time arrow in physics.
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