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Abstract. Besides the purely digital or analog interpretations ofityethere is a third possible description which incorpesat
important aspects of both. This is the cyclic interpretatdreality. In this scenario every elementary system isdesd by
classical fields embedded in cyclic space-time dimensleswill address these cyclic fields as “de Broglie internat&k”.
They constitute the deterministic gears of a consistergraenistic description of quantum relativistic physicsoyiding in
addiction an appealing formulation of the notion of time.

INTRODUCTION

Among the many starting points to motivate the possibleicythture of space-time, published ir [1] (see also
[2] for more details) and presented to several internationaferences.[3+5], in this essay we adopt the 't Hooft
determinism[6-8]. It states that there is a close relatignbetween the quantum harmonic oscillator with angular
frequencyw = 2m1/T;, that is the mode of an ordinary quantum field with enefgy: hw, and a classical particle
moving along a circle of periodicitil;. By assuming the time perio@ on a lattice withN sites, it turns out that

if the experimental time accuracy & > T;, at every observation the system appears in an arbitrargepbhits
cyclic evolution,i.e on an arbitrary site of the lattice. Since the underlyingiguic dynamics are too fast to be
observed, the evolution has an apparent aleatoric behasidrobserving a “clock under a stroboscopic light” [7].
The evolution operato# (At = €) = exp—.2¢] is given in terms of & x N matrix and the model is analogous to

a harmonic system dfl masses and springs on a ring. In the limit of laNjethe frequency eigenvectofg,) obey

to the relations’|gh) ~ hw (n+1/2) |¢gh) which actually describes the energy eigenvaligs, ;» = hw(n+1/2) of

a quantum harmonic oscillator with periodicify - apart for an “unimportant” phase in front of the operdte)
which reproduces the factor/2 in the eigenvalues|[9=11] and which can be regarded a tadsof on the Periodic
Boundary Conditions (PBCs). The idea is that, due to theeextty fast cyclic dynamics, we loose information
about the underlying classical theory and we observe astati theory that matches QM. For this reason we speak
about deterministic or pre-quantum theories. Since théicctime interval T; is supposed on a lattice, the t' Hooft
determinism can be classified as purely digital. It receetiylved into the idea of “classical cellular automaia’i [12]
that is a deterministic model which shows interesting gpomdences between elementary particles and black holes.
However, if we take the continuous limit of the t' Hooft detenistic model by assuming an infinite number of lattice
sitesN — oo, it is easy to see that the system of springs and masses tulrts loe a vibrating string embedded in a
cyclic time dimension, that is a bosonic classical fi@lg,t) embedded in a compact time dimension of leriftand

with PBCs. Formally, through discrete Fourier transformatcompact variable corresponds a quantized conjugate
variable, that is a variable which takes discrete valuesicdea compact dimension yields to a digital description
of the conjugate space. Considering the relafion hew, in the specific case of an elementary cyclic system with
t € [0, T;] there is associated the quantized energy speckym nhw = nh/T;. The energy is the digital conjugate
variale of a cyclic time variable. More in general, since ies@rve an energy-momentum space on a lattice (quantized
energy-momentum spectrum) we try to describe QM in termydfcspace-time dimensions. In [1] we have shown
that, similarly to a particle in a box, relativistic fieldsrche actually quantized by imposing their characteristic de
Broglie space-time periodicities as constraints [1-5].

Our assumption of dynamical periodic fields can be regardedcmmbination of the Newton'’s law of inertia and de
Broglie-Planck hypothesis of periodic matter wavaementary isolated systems must be supposed to have persistent
periodicitiesaslong asthey do not interact. Such an assumption of intrinsic periodicity is also imiplic the operative
definition of time (and for some aspect in the action-reackiov). Time can only be defined by counting the number
of cycles of isolated phenomenapposed to be periodic. For a consistent formalization of time, iiygihs there must
be an assumption of periodicity for free elementary systémsodern physics, a second is defined as the duration



of 9,192,631,770 characteristic cycles of the Cs atdg £ 10 1%). For the central role of time in physics, the
assumption of isochronism of the pendulum made by Galilethéncathedral of Pisa can be regarded as one of the
foundational acts of physics. Such an assumption of pergigteriodic phenomena allowed a sufficiently accurate
definition of time to study the motion of bodies and in turn foemulation of theories of dynamics. The definition
of relativistic clock given by A. Einstein [13] is: “by a cl&ave understand anything characterized by a phenomenon
passing periodically through identical phases so that wetrassume, by the principle of sufficient reason, that all
that happens in a given period is identical with all that repin an arbitrary period”. The whole information of
such a relativistic clock is contained in a single periodugtve say, using the language of extra dimensional theories,
that the period is a analog compact dimension with PBCs.igwtlay a non interacting cyclic field can be regarded
of as analog “de Broglie internal clocks” [14,115], that issay as relativistic fields with intrinsic de Broglie time
periodicitiesT; = h/E.

Since the measure of time is a counting process it also hagtaldiature. This intrinsically contains the Heisenberg
uncertain principle. In fact, in a “ de Broglie clock”, to @einine the energf = hw with good accuracpE we must
count a large number of cycles, that is to say we must obshevsyistem for a long timét, according to the relation
AEAt > h. Moreover, since periodicity conditions mean that the grdgsible energy eigenmodes are those with an
integer number of cycles, we obtain the Bohr-Sommerfelchtjeation condition (for instance, it can be shown that
the periodicity conditiore, T = nh can be more in general written 4&,dt = nh for interacting systems). This allows
to solve many non-relativistic quantum problemrs 1, 2].

For the covariant formulation of the theory we must consitiat the de Broglie time periodicity induces spacial de
Broglie periodicitiest', and that these space-time periodicities, as well as thggmomentum quantized spectrum,
transforms under Lorentz. In other words, sinke= h/E, the de Broglie time periodicity must be regarded as
dynamical. As every time interval, the time periodiciytransforms in a relativistic way. The proper-time intrmsi
periodicity T; fixes the upper bond of the time periodicily because the mass is the lower bond of the energy.
For instance, denoting the reference system by the spatatentump, wherep; = h/A', we haveT; > Ti(p)
and Mc? < E(p). The heavier the mass the faster the proper-time perigdidiénce, even a light particle such
as the electron has (in a generic reference frame) intrimsie periodicity equal or faster than 10-%%, i.e. the
time periodicity in a generic reference frame is alwaysdiaghan its proper-time periodicity. It should be noted
that the periodicity is many orders of magnitude away fromc¢haracteristic time periodicity of the cesium atomic
clock, which by definition is of the order of 8%, and that it is extremely fast even if compared with the prese
experimental resolution in time~(10-1s). Thus, for every known matter particle (except the neojriwe are in
the case of too fast periodic dynamics as in the 't Hooft deteism. The de Broglie intrinsic clock of elementary
particles can also be imagined as a “de Broglie determiniitie” [3], that is a dice rolling with time periodicit}.

We inevitably have a too low revolution in time, so that atrgv@bservation the system appears in an aleatoric phase
of its evolution. As for a clock observed under a stroboscdight or a dice rolling too fast, we can only predict
the outcomes statistically. For the results presented]iariti summarized here we see that the statistical desariptio
associated to intrinsically periodic phenomena actualiyames ordinary QM [1]. We may also note that, on a cyclic
geometry such as a cylinder, there exist many possibleictdgsaths, characterized by different winding (digital)
numbers, between every initial and final point. Thus a fielthwdBCs can self-interfere. Its evolution is described
by a sum over classical cyclic paths (characterized byaligitmbers) which actually matches the ordinary Feynman
Path Integral of QM.

In this essay we will only describe some published resultmounce some others that will be published soon. The
reader interested in more technical details or to the madhierproofs may refers tol[1].

RELATIVISTIC GEARS

The relativistic generalization of the Newton’s law of itieican be formulated in the following way: every isolated el
ementary system has persistent four-momenpyre: {E/c,p}. On the other hand, the de Broglie-Planck formulation
of QM prescribes that a four-momentum must be associateuetfour-angular-frequency of a corresponding field,
according to the relatiomy, = p,,c/h. Here we will assume that every elementary system is destiibterms of in-

trinsically periodic fields whose periodicities are the alsie Broglie-Planck periodicitieB* = {1},7\x/c} =211/ Wy.
As the Newton’s law of inertia doesn’t imply that every popdrticle moves on a straight line, our assumption of
intrinsic periodicities does not mean that the physicalldvehould appear to be periodic. In fact, the four-peridslici



TH is fixed dynamically by the four-momentum through the de Besglanck relation

2 h
Wy puc
The variation of four-momentum occurring during interans implies a variation of the intrinsic periodicities oéth
fields. This guarantees time ordering and relativistic abiys
Similarly to the 't Hooft deterministic model, the free cigcfield ®(x,t) is a tower of frequency eigenmod@sx)

with energiesEn(p) = nhaw(p),

() =3 Ash(X)Un(t),  where un(t) = e P, )

By bearing in mind the relatioB (p) = hw(p), the quantized energy spectriizg(p) is nothing else than the harmonic
frequency spectrumx(p) = nw(p) of a vibrating string with time periodicity}(ﬁ)ﬂ. This quantization is the field
theory analogous of the semiclassical quantization of atitga” in a box, it also shares deep analogies with the
Matsubara and the Kaluza-Klein (KK) theoty [16]. Since iistbase the whole physical information of the system is
contained in a single four-perio!, our intrinsically four-periodic free field can be descddsy a bosonic action in
compact four dimensions with PBCs

TH
Py = d*x %, (0uP, D). ©)
JO

It is important to note that PBCs minimize the action at tharmaries, in particular the ones of the compact time
dimension. Therefore PBCs have the same formal validithefusual (Synchronous) BCs assumed in ordinary field
theory. This is an essential feature because it guarariteealt the symmetries of the relativistic theory are preser

as in usual field theory. In particular it guarantees thatlleery is Lorentz invariant. For instance we can consider a
generic global Lorentz transformation

dxt — dxH = Ay dx” Pu— Py =N} Pu. (4)

By definition, TH is such that the phase of the field is invariant under fouieplés translations exp-ix“p,] =
exp[—i(x* +cTH)p,]. In this way we see that the four-periodicity is actually atcavariant four-vector. It transforms
under global Lorentz transformations as every genericesiate interval

THSTH=ATY (5)

and the phase of the field is a scalar quantity under Loreatistormations - de Broglie phase harmony. The space
time periodicityTH can be thought of as describing a reciprocal energy-momettiice p,, = npy. This can be
also inferred by noticing that after the transformationafiables eqg{4), the integration region of the free actip{®

turns out to be
T/H

Sy, = /0 d*X % (3P, ®). ©6)

Therefore, in the new reference system, the new four-pigitgdl ' of the field is actually given by e@(5), that is
eq.[®) describes a system with four-momentpigreq.(3).
The underlying Minkowski metric induces the following ctraént on the dynamical periodicities

1_11
T2 T, TH

which, considering the above de Broglie-Planck relatismdathing else than the relativistic constraiftc? = pH Pu-
The resulting compact 4D formulation reproduces, aftemmadrordering, exactly the same quantized energy
spectrum of ordinary second quantized fields. In partigéidara massive field with madd we will find the energy

Spectrum _
En(P) = nv/p2c2 + M2c4

1 As we will see, the theory can be even regarded as a partikinidrof string theory where there is a compact world-lineapaeter instead of a
compact world-sheet parameter.



of ordinary quantum field theory. Furthermore, it is easyde that in the rest frame & 0) this quantized energy
spectrum isdual to the KK mass toweM, = E,(0)/c?> = nM. Indeed, for such a massive field, the assumption of
periodicity along the time dimension means that in the neshé the proper-time there has intrinsic periodicity

h

Tr:Tt(o): W

The invariant masM is not a parameter of the action by it is fixed geometricallyh®yreciprocal of the proper-time
intrinsic periodicityT; of the elementary field. In other words, by imposing intrintsme periodicity, the world-line
parametes = cT turns out to be compact with PBCs. It behaves similarly toXBeof a KK field with zero 5D mass
and with fundamental madd. As a consequence the world-line compactification length: cT; is the Compton
wave length of the field. In order to bear in mind these ana®uiith an XD field theory we say that, the world-line
parameter play the role ofartual XD (VXD) with compactification lengths. It is interesting to note that, originally,
T. Kaluza introduced the XD formalism as a “mathematicaldtiand not as aieal XD [[L7].

QUANTUM GEARS

Now we briefly show that our cyclic description of reality pides a remarkable matching with the canonical
formulation of QM as well as with the Feynman Path Integr&ljFormulation. The evolution along the compact time
dimension is described by the so called bulk equation of anstid? + w?) g (x,t) = 0 - for the sake of simplicity in
this section we assume a single spatial dimengidrhus the time evolution of the energy eigenmodes can béanrit
as first order differential equationBs; ¢n(x,t) = Engn(X,t). The periodic field edq?2) is a sum of on-shell standing
waves. Actually this is the typical case where a Hilbert spean be defined. In fact, the energy eigenmodes form a
complete set with respect to the inner product

Ax
o= [ Fe wxx. )

Therefore the energy eigenmodes can be defined as Hilbenstaesx|@) = ¢h(X)/v/Ax. On this base we can
formally build a Hamiltonian operator? |@) = hwn |@h) and a momentum operata? | @) = —hky |@h), where
kn = nk = nh/Ay. Thus the time evolution of a generic stagg0)) = 5 ,an| @) is actually described by the familiar

Schrddinger equation
ihd[@(t)) = 7| (1)) (8)

Moreover the time evolution is given by the usual time eviolubperatorZ (t';t) = exp[—lﬁ (t —t’)] which turns
out to be a Marcovian operato# (t”;t') = N3 % (t' +tmi1;t' +tm— &) whereNe =t” —t’ .

From the fact that the spatial coordinate is in this theorydic variable; by using the definition of the expectation
value of an observablediF (x) between to generic initial and final statlg) and|¢r) of this Hilbert space; and
integrating by parts edl(7), we find

(@t [ROF (x)|@) = (@t| ZF (x) —F(x) Z|@) . 9)

Assuming now that the observable is such thét) = x [L€] we obtain the usual commutation relation of ordinary
QM: [x, &2] = ih. With this result we have checked the correspondence witbrdaal QM. Furthermore, it is possible
to prove the correspondence with the FPI formulation. I, fiaés sufficient to plug the completeness relation of the
energy eigenmodes in between the elementary time evofutibthe Marcovian operator. With this elements at hand
and proceeding in a complete standard way we find that theignlof the cyclic fields turns out to be described by
the usual FPI which, in phase space, can be written in this way

Ax (Nl )Nl e )
Z = lim dXm (@|e R hem=T D) | @) (10)
0 rrl;ll I_lo
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This important result has been obtained without any furtesumption than PBCs and has a simple classical
interpretation. In a cyclic geometry there is an infinite @gpossible classical paths with different winding numbers
that link every given initial and final points. If we imaginedpen this cyclic geometry we obtain a lattice with period



TH of initial and final points linked by classical paths. Thusréh are many possible classical evolutions of a field
from an initial configuration to a final configuration, whichrcself-interfere similarly to the non-classical paths of
the FPI. However there is a fundamental conceptual diffszanith respect to the usual Feynman formulation: all
these possible paths are classical paths, that is theyassicdl paths with different winding numbers. This means
that in this path integral formulation it is not necessarydtax the classical variational principle in order to have
self-interference.

The non-quantum limit of a massive field, that is the nontigktic single particle description, is obtained by
putting the mass to infinity so that, as shownlinl|1, 2], in dedive classical limit, only the first level of the energy
spectrum must be considered. This leads to a consistenpiiatation of the wave/particle duality and of the double
slit experiment. The quantities describing only the firstrgly level are addressed by the bar sign. For instance, the
Lagrangian of the fundamental modgx) is .2) (9, ®(x), P(x)). Note that the fundamental mod#x) coincides
with the mode of Klein-Gordon field with energgyand mas$/1. Therefore it can be always quantized through second
guantization. It can be shown that the analysis of the gemmghamics of the de Broglie periodicities that we will
perform below can be extended to ordinary field theory. Ondtier hand a massless field has infinite Compton
wavelength and thus an infinite proper-time periodicitygtiantum limit is at high frequency where, in fact, the PBCs
are important. In this limit we have discretized energy speua, in agreement with the ordinary description of the
black-body radiation (no UV catastrophe). The opposité lgdascribed by a continuous energy spectrum is when time
periodicity tends to infinity.

In the original 't Hooft toy model the periott was assumed to be of the order of the Planck time and its cyclic
dynamics associated to some sort of hidden variables [18fh&rmore the Hamiltonian operator was not positive
defined. In our case, the assumption of intrinsic perioggicomes from PBCs. Therefore we have the remarkable
property that QM emerges without involving any hidden-abte. The theory can in principle violates the Bell's
inequality and we can actually speak about determinism.elgler, similarly to the KK theory where there are no
tachyons, a cyclic field can have positive of negative fregyemodes but the energy spectrum describes always
positive energies and the Hamiltonian operator is posdafned.

GEOMETRODYNAMICS

To introduce interactions we must bear in mind that the feeniodicity TH is fixed by the inverse of the four-
momentump,, according to the de Broglie-Planck relation EH(Bs already said, an isolated elementary system
(i.e. free field) has persistent four-momentum. On the other haneklementary system under a generic interaction
scheme can be described in terms of corresponding varsatibfour-momentum along its evolution with respect to
the free case

Pu — Py (X) = €} (X)Pa- (11)

In other words we describe interactions in terms of the sedattrad (or virebeingf, (x). Thus the interaction scheme
eq.[11) turns out to be encoded in the corresponding vaniati the space-time periodicities

TH = TH(x) ~ el (x)T?, (12)

that is in the corresponding deformation of the compactificalengths of a periodic field. Roughly speaking,
interactions can be thought of as stretching of the compactmkions of the theory. Equivalently, the interaction
eq.[T1) turns out to be encoded in the corresponding curpadestime background, which in the limit of weak
interaction can be approximated as

Nuv — Guv(X) ~ eﬁ(X)eB(X)nab- (13)
This result can be double checked by considering the tramsfiion of space-time variables
dxy, — dxg, (x) ~ € (X)dXa. (14)

Under the approximation of weak interaction we are assutfiagtheTH transforms as an infinitesimal interwd*.
After this transformation of variables (diffeomorphismithvdeterminant of the Jacobiay—g(x), the free action

2 For the sake of simplicity, we work in the approximation ofakeinteractions so thaf* transforms as an infinitesimal intervatk#, but the
results can be extended to the general case.



eq.[3) turns out to be
Frae [ G0 2,65 0040000,6). 15)

Therefore, the periodic field which minimizes this actiors faur-periodicityT’#, eq.[IR), or equivalently has four-
momentumpy, eq.[I1). We conclude that a field under the interactionrseheq I[(Tl1) is described by the solutions of
the bulk equations of motion on the deformed compact backuteq[[IB) and compactification lengthseg.(12).
This geometrodynamical approach to interactions is isterg because it actually mimics very closely the usual
geometrodynamical approach of GR. In fact, if we supposeakwewton potentiaV (x) = —GMg /|X| < 1, we find
that the energy on a gravitational well varies (with respethe free case) & — E’ ~ (1+ GM/|x|) E. According
to eq.[I2) or edl), this means that the de Broglie clocks gmaaitational well are slower with respect to the free
clocks Tt — T/ ~ (1—- GM/|x|) T;. Thus we have a gravitational redshift — ' ~ (1+ GMg/|x|) . With this
schematization of interactions we have retrieved two irtgrtpredictions of GR.
Besides this we must also consider the analogous variatispedial momentum and the corresponding variation of
spatial periodicities [20]. According to the relation &) the weak newtonian interaction turns out to be encoded in

the usual Schwarzschild metric oM oM
ds? ~ (1— @)dtz—<1+ G')dxz. (16)

x| x|

We have found that the geometrodynamical approach to irtteres actually can be used to describes linearized gravity
and that the geometrodynamics of the compact space-timengions correspond to the usual relativistic ones.

As well known, see for instanck [20], it is possible to retei@rdinary GR from a linear formulation by including
self-interactions. More naively, as we will show in detaila forthcoming paper, we can add “by hand” a kinetic
term (with appropriate coupling) to the Lagrangian in cuspace-time ed.{17) in order to describe the dynamics of
the metricg,,, which is the newd.o.f. of the theory. Thus, in order to neglecting quantum coroestiwe replace the
Lagrangian,/—g.%), of eq.[I¥) with its non-quantum limif/—g.%), and we add the kinetic term (with appropriate
coupling 161Gy) for the metric tensor obtaining the Hilbert-Einstein Laiggian

_ glJV%
LeE=vV—0|— 167Gn —l—f)\s(eadafb() ()) . a7)

This naive procedure is similar to what we usually do in etsoagnetism when we add the tefp, FHY / — 4€? to
describe the kinematics of the gauge field. Intuitivelydaese of its geometrical meaning, the Ricci tensor is theecorr
mathematical object to describes the variations of the estiate compactification lengths at different space-time
points. Bearing in mind edl(1), we note that actually suchatic term must encode the content of four-momentumin
different space-time points. By varying the metric EJ.({i€)ds to the usual Einstein equatigft’¥ = —8nGy.7H".
Here we do not discuss issues related to the variation of deyrterms of the Hilbert-Einstein action and related
BCs [21]. As well known the Einstein equation can be obtaiinech different action formulations which different by
boundary terms. With these simple and heuristic argumeatsave shown that field theory in compact space-time is
in agreement not only with special relativity but also witRG

In forthcoming papers we will show that, by writing dql(1%)aminimal substitution, such a geometrodynamical
approach to interactions can be also used to describe oydiaage interactions. Gauge fields will turn out to “tune”
the variation of periodicities, allowing a semi-classiicaérpretation of superconductivityl [2]

A cyclic field turns out to be dual XD theory where the worlddiparameter play the role of a VXD. On the other
hand we have shown that it also matches ordinary quantumtfielory [1]. From the dualism to XD theories and
from the geometrodynamical approach to interactions destrabove, we aspect to find that the classical evolution
of the periodic fields along a deformed VXD background cqroesls to the quantum behaviors of the corresponding
interaction scheme. Since, by using Witten’s words, in A& “quantum phenomena [...] are encoded in classical
geometry” we find that a relativistic field theory in compaEt grovides the possibility of an intuitive interpretation
of the Maldacena conjecture. We will apply this idea to a $erjorken Hydrodynamical Model for Quark-Gluon-
Plasma (QGP) logaritmic freeze-out[22]. In first approxiimathe energy momentum of the QGP can be supposed
to decay exponentially (similarly to the Newton’s law of tiag for a thermodynamic systern_|23]). This interaction
scheme is described by the conformal warped tetfae 5f}e*ks, wheresis the proper time, that is by\artual AdS
metric. Actually, we find the classical configurations oflayfields in such a deformed background reproduces basic
aspects of AdS/QCD.



CONCLUSIONS

The formalism of cyclic space-time dimensions provides astgient description of both the digital aspects arising
from QM and the analog aspects typical of relativity. Mustrimged that (general and special) relativity sets the
differential structure of space-time without giving pediar prescriptions for BCs. On the other hand, BCs have
played an important role since the earliest days of QM (fetance as in the Bohr atom or as in the particle in a box).
We have seen that relativity is compatible with cyclic agadpace-time dimensions, since the periodicities transfor
in a covariant way. In the limit of infinite time periodicitthat is in the case of low energy massless fields such as
the IR electromagnetic fields of a Black-Body radiation, veédna purely analog limit where the elementary system
is described by fields with approximatively a continuousrggpespectrum. In the case of small time periodicity, for
instance as in a UV electromagnetic field in the black bodyataxh with respect to the thermal noise, the analog
field description of the theory is gradually replaced by @ibtorpuscular aspects: the energy spectrum turns out to be
guantized and the initial and final configurations of the dtmrm a periodic lattice, so that the evolution is described
by a sum over classical paths with different winding numbers

These intrinsic time periodic fields can be identified witke o call “de Broglie internal clocks”. Similarly to an
analog or digital stopwatch, every moment in time is detaediby the combination of the phases or the “ticks” of
periodic cycles (typically: years, months, days, hoursiutés and seconds). Every value of our external temporal axe
(defined with reference to the digital “ticks” of the Cs-138raic clock) is characterized by a unique combination
of the “ticks” of all the “de Broglie internal clocks” constiting the system under investigation. In this scenario
the long time scales are provided by massless fields with teguencies (long time periodicities). This, however,
is an oversimplified picture since, as we have seen, the €loak vary periodicity through interaction (exchange
of energy) and that periods depends dynamically on referegstems according to the relativistic laws. Moreover
the combination of two or more clocks, that is to say a non elgary system, with irrational ratio of periodicities
gives ergodic, or even more chaotic, evolutions. Indepettglef the assumption that the de Broglie internal clocks
are clockwise or anticlockwise, the flow of time is uniquebtermined by the combinations their “ticks” and the
variations of their periodicities. Hence, the flow of timendze effectively described in terms of the “ticks” of these de
Broglie internal clocks. This formulation is particulaityteresting for the problem of the time arrow in physics.
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