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Abstract: Matching quantum behaviour with our ordinary macroscopic experience is commonly 
regarded to be impossible. The difficulty to relate the quantum world to common sense experience 
stems  partly  from  the  fact  that  classical  physics  was  not  sufficiently  advanced  to  deal  with 
macroscopic particle-wave systems at the birth of quantum mechanics. Physicists therefore lacked 
references to compare quantum with analogous macroscopic behaviour. After consideration of some 
recent experiments with droplets steered by waves, we examine possibilities to give some intuitive 
meaning to the rules governing the quantum world.

Introducing the essay question

Upon pondering over the question “What is ultimately possible in physics?”, various interrogations 
emerge. How could one interpret  ultimately? Is there an  ultimatum, a final statement in physics, 
after  which  one  could  say  “Physics  is  finished”?  Are  there  issues,  for  instance  fundamental 
principles, beyond which we could not go past? How can we describe the boundary between the 
possible and the impossible in physics? Anyway, does such a boundary exist? And if so what is at 
the edge?

If history has a lesson, it is certainly that prophesied terminations of physics end up entirely wrong. 
19th century physicists strongly believed that their understanding of nature was near to complete. 
According  to  Laplace,  an  all  knowing  intellect  (also  referred  to  as  Laplace's  demon)  “would 
embrace in a single formula the movements of the greatest bodies of the universe and those of the  
tiniest atom” [1]. In 1871, Maxwell testifies the opinion that “seems to have got abroad that in a  
few years all the great physical constants will have been approximately estimated, and that the only  
occupation which will then be left to men of science will be to carry on these measurements to  
another place of decimals” [2,  p. 244]. In the 20th century, physicists have become more prudent. 
For instance, Dirac advanced in 1979 : “It seems clear that the present quantum mechanics is not in  
its final form” [3]. So predicting what is ultimately possible in physics is a risky business. Today's 
consensus is  that  there  is  no end to physics.  Kristine Larsen related it  to  Popper's  falsifiability 
principle: “There is no end to scientific endeavor. A true scientific theory is always open to be  
disproved” [4]. Moreover, the craft of physics implies creative processes. So even if some final-
looking form of a theory of everything might emerge, that theory would allow to create and practice 
new physics that nobody has ever dreamed of. I will therefore focus on a slightly reformulated 
version of the essay question “What is possible in physics, that has been declared impossible?” I 
will investigate a famous impossibility declaration in quantum physics and illuminate it with some 
recent experiments that seem to contradict it. This reveals some room for possibilities.

Impossibility to explain quantum interference in any classical way

Since its inception, various impossibility and no-go statements have emerged in quantum physics. 
Probably,  the first  impossibility statement one comes across when being introduced to quantum 
physics,  is that  it  is impossible to fully understand quantum physics,  due to a lack of intuitive 
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representation of the on-going processes.

Richard Feynman's quantum lectures introduction may serve as an example: “We choose to examine  
a phenomenon which is impossible, absolutely impossible,  to explain in any classical way, and 
which has in it  the heart of quantum mechanics” [5, p. 1-1]. He first reminds us how classical 
entities behave when they are detected after crossing a screen with two holes. For bullets, “the 
probabilities just add together. The effect with both holes open is the sum of the effects with each  
hole open alone... So much for bullets. They come in lumps, and their probability of arrival shows  
no interference” [5,  p.  1-3].  For water  waves,  “the intensity  can have any value,  and it  shows 
interference” [5, p. 1-4]. Electrons, that serve as general example for quantum particles, behave 
differently. Although they arrive in lumps, their detection pattern is similar to that of waves. There 
is interference between the contributions of both holes. It is possible to detect electrons one by one, 
with  long  intervals  between  successive  electrons  and  still  an  interference  pattern  builds  up. 
Moreover it is impossible to track an electron's path without destroying the detection pattern. If one 
determines  through  which  hole  the  electron  goes,  the  interference  pattern  vanishes.  So  neither 
bullet-like analogies, nor wave-like analogies are complete. Feynman further warns “One might still  
like to ask: 'How does it work? What is the machinery behind the law?' No one has found any  
machinery behind the law. No one can 'explain' any more than we have just 'explained'. No one will  
give you a deeper representation of the situation. We have no ideas about a more basic mechanism  
from which these results can be deduced” [5, p. 1-10].

Explaining the double-slit interference for quantum particles in a “clear and ordinary way”

John Bell,  who like  Feynman dug deep into  the  foundations  of  quantum physics,  had another 
opinion about possible machineries behind quantum interference patterns. Let me quote at length an 
instructive text from one of his papers dealing with the different interpretations of quantum physics 
[6]: “While the founding fathers agonized over the question 'particle' or 'wave', de Broglie in 1925 
proposed  the  obvious  answer  'particle'  and  'wave'.  Is  it  not  clear  from  the  smallness  of  the 
scintillation  on  the  screen  that  we  have  to  do  with  a  particle?  And  is  it  not  clear,  from  the  
diffraction and interference patterns, that the motion of the particle is directed by a wave? De  
Broglie showed in detail how the motion of a particle, passing through just one of two holes in  
screen, could be influenced by waves propagating through both holes. And so influenced that the  
particle does not go where the waves cancel out, but is attracted to where they cooperate. This idea 
seems to  me so natural  and simple,  to  resolve the wave-particle  dilemma in such a clear and 
ordinary way, that it is a great mystery to me that it was so generally ignored.”

Such peppered opposite viewpoints, Feynman's impossibility to give a deeper representation on one 
side and Bell's opinion of de Broglie's clear and ordinary explanation at the other side, are common 
in the field of foundational quantum physics. They feed famous controversies. The least one can say 
is that there seems to be room for unexplored possibilities, as confirmed by the numerous attempts 
for alternative interpretations and speculations.

Even before classical “hidden-variable” theories have been ruled out by modern violations of Bell-
type inequalities, there were at least two important obstacles that hindered the development of pilot 
wave theories1. Firstly, pilot wave theorists like de Broglie and Bohm did not come up with handy 
tools. Although they developed its dynamics, their competing arguments generally remained on a 
1 The pilot wave model is an example of a hidden-variable theory: a theory aiming at supplementing quantum 

mechanics with a classically deterministic framework. John Bell showed that such a theory could be tested 
experimentally against conventional quantum mechanics, with the help of an inequality that emerges from correlated 
measurements of entangled (= quantum-correlated) photons. Since the 1980s, numerous experiments have showed 
that the locally causal hidden-variable theories are ruled out.
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metaphysical  plane.  Theorists  like  Dirac  or  Feynman,  on  the  contrary,  developed  concise  ket 
algebra for the former, path-integral diagrams for the latter. For the professional physicist, tools2 are 
more  important  than  deeper  interpretations  of  quantum mechanics.  So  it  is  little  wonder  that 
Feynman's voice resonates stronger than de Broglie's.

The second main obstacle for pilot wave models is the fact that, at the birth of quantum theory, 
classical physics was not sufficiently advanced to handle ordinary pilot waves. Pilot wave based 
quantum theory could not  benefit  from any historical  classical  research on pilot  wave systems. 
Therefore one could hardly see any advantage to this model, certainly not the young theorists, like 
Pauli, Dirac, Heisenberg. Why use pilot waves, if there is not any analogous classical pilot wave 
theory which one could compare to quantum physical phenomena? De Broglie and Bohm focused 
on quantum world applications of pilot wave theories, but never tried to put them to the test with 
ordinary macroscopic physics.

Ordinary macroscopic pilot wave experiments

Louis  de  Broglie  first  invoked  the  idea  of  a  pilot  wave  in  1924  [8].  Incidentally,  the  first 
experiments on ordinary pilot waves with embedded particles were performed some 80 years later 
[9]. Yves Couder and his group managed to let droplets bounce on liquid oscillating surfaces for 
very  long  times.  The  wave  generated  by  the  droplet  steers  the  path  of  that  same  droplet  at 
consecutive bounces, causing it to become a so-called walker droplet [10]3. The wave steering the 
trajectory of the droplet is therefore a classical instance for a pilot wave. These experiments are an 
interesting example of what Maxwell  called “illustrative experiments”: “their  aim is  to  present  
some phenomenon to the senses of the student in such a way that he may associate with it the 
appropriate scientific idea” [2,  p. 243]. They are a nice pedagogical alternative to the dominant 
paradoxical bullet and wave analogues. The bouncing droplets arrive in lumps, they are sustained 
by  waves  and  are  themselves  sources  of  waves.  They  show  characteristic  interference  and 
diffraction patterns  for  dual  wave-particle  systems [11].  If  some external  influence disturbs the 
bouncing droplet, the wave and the droplet decohere and the interference pattern fades away. If one 
considers the interference effect, this system behaves just like the electrons in Feynman's lecture. 
Furthermore,  these  experiments  have  an  adjusting  value  for  pilot  wave  theories,  because  their 
experimental behaviour shows unexpected features. This might be taken into account by pilot wave 
theoreticians. In reality, pilot waves do not exactly behave the way de Broglie and Bohm theorized 
their behaviour in quantum physics. An interesting feature is that visited locations continue to act as 
wave-sources, providing non-local influences. Clustering occurs when nearby droplets get caught 
by  other  droplets'  wave-fields,  yielding  a  whole  set  of  quantized  orbitals  [12].  Unpredictable 
tunnelling takes places in the macroscopic domain when a bouncing droplet happens to approach 
close to  the barrier  [13].  This research field  is  wide open,  as concluding remarks  of  Ref.  [13] 
testify : “More work is needed to understand in depth the relation between the trajectories of the  
droplet  and its  waves.  Of  particular  interest  is  the  link  between the  memory  effect  due  to  the  
superposition of past waves and the observed uncertainty. Although our experiment is foreign to the  
quantum world, the similarity of the observed behaviours is intriguing.”

The characteristic feature of these ordinary pilot wave experiments is the periodical motion of a 
particle (= the droplet) that serves as a source for the wave, which in turn feeds back to the motion 
of the particle. Therefore, a wave embedding a bouncing droplet exhibits unexplored wave-particle 
2 See David Kaiser's Drawing theories apart [7] for an exemplar study of the influence and dispersion of tools in 

physics.
3 Bouncing and walker droplets in pilot-waves may be viewed in the video conferences available on internet: Une 

dualité onde-particule à échelle macroscopique ? Yves Couder, 19 octobre 2006, and La goutte, un exemple de 
dualité onde matière, Yves Couder, 9 mai 2007
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duality.

In principle, ordinary pilot wave systems are not limited to droplets and liquid surfaces. We could 
imagine  other  wave  environments  embedding  other  little  travelling  objects,  whose  periodical 
motions have same phase. Little oscillating springs, vibrating strings or rotating needles in a radio-
wave environment  might  do.  David Bohm and Basil  Hiley suggested a  pilot  wave with active 
information [14]. With the technological advancement in radio frequency signals, steering the phase 
of a particle seems to be attainable in physics. It is worthwhile to perform research on such systems, 
not  only as pedagogical  illustrative experiments,  but  also in  order to  test  to  which extent  they 
simulate quantum behaviour.

So, contrarily to the situation at the birth of quantum mechanics, ordinary pilot waves are now in 
the experimental domain. The de Broglie - Bohm interpretation, which was speculative in the 20th 

century,  has  therefore  become testable  for  macroscopic  systems.  It  is  of  interest  to  reconsider 
quantum pilot waves with this return of experience.

Tools for ordinary quantum analogues

The other obstacle, the lack of computational tools for pilot wave theories, remains. In order to fully 
apprehend the features of real ordinary pilot waves, more experimental research is needed. New 
theoretical  tools  will  probably emerge for  their  description.  This  undoubtedly will  take several 
years.

Upon closer examination of the several possible ordinary pilot waves, there may however be cases 
for which existing quantum tools are suited. For example, a system where rigid straight line-shaped 
particles, say needles, are embedded in a cloud of identical needles seems particularly suited to be 
described by conventional  quantum computational  tools.  Each needle  may be represented by a 
vector of same length superposed on the needle. For instance, a needle whose centre is located at 
(x,y,z), may be represented by a vector  u(x,y,z,φ) with centre at (x,y,z) directed along the spatial 
orientation  φ of the needle. Classical models have already been developed in this sense [15][16]. 
However,  determining  the  dynamics  in  such systems  is  no simple  matter  due  to  the  rotational 
motion and the line-shape of the needles. Mukoyama and Yoshimura report that “the scattering 
process is very sensitive to the rotational phase” [17].

Alternatively, we could apply the whole quantum mechanical machinery to this system4. We rewrite 
vector u(x,y,z,φ) as a quantum-mechanical ket-vector |x,y,z,φ>. We define a measurement process as 
the determination of impact positions on a screen. So, observing the trajectory of a needle by sight 
is not allowed as a measurement process. The measurement result is then determined by a point 
localizing  the  impact.  Because  the  needle  has  some  length,  the  result  will  always  show  an 
indetermination  equal  to  the  length  of  the  needle.  There  is  an  unbeatable  uncertainty  in 
measurement  processes  for  needles,  that  emerges  from  the  fact  that  the  observable  “impact 
position” never gives a full picture of the needle. The possible measurement results are spread out 
over the volume swept by the needle. Furthermore, as long as we have not detected a needle with 
another needle, its state is unknown. So the state may be represented mathematically by a weighted 
sum of all  possible  locations  and orientations.  Formally,  it  is  in  a  state  of  superposition of all 
possible states:

4 The vector is the mathematical abstraction for an arrow. In quantum mechanics, vectors are named kets and written 
as |label>, where “label” specifies the arrow, for example with physical properties or with a greek letter. An 
illustration of the description of a needle with ket-vectors may be found in the video “Quantum probabilities with 
ordinary objects”, Arjen Dijksman, January 1st 2009, available on internet.
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|ψ> = sum (ai |xi,yi,zi,φi>) (1)

where  ai denotes the normalizing weight of each possible location and orientation.  So |ψ> is a 
statical snapshot description of our knowledge of the system.

The advantage of using quantum-mechanical state vectors is that the dynamical parameters of the 
needles may be included in the ket notation. If the needle is travelling with a velocity v and rotating 
at angular velocity  ω about a given axis, we abstract it into the vector |x,y,z,φ,v,ω>5. The generic 
snapshot 3-dimensional vector  |x,y,z,φ> therefore is  in fact  a short  hand notation for the set  of 
dynamical states |x,y,z,φ,v,ω1>, |x,y,z,φ,v,ω2>, |x,y,z,φ,v,ω3>, etc.

So again, if we do not know the exact dynamical state of the needle, formally, it might be seen as a 
weighted sum over all possible states :

|ψ> = sum (ai |xi,yi,zi,φi,vi,ωi>). (2)

In this way, a single needle is described in an infinite dimensional vector-space, taking account of 
all  its  physical  properties.  Moreover,  the whole cloud of needles may also be represented by a 
vector (i.e. a vector of vectors).

Freely rotating needles rotate about their centre. In the frame of reference of a needle, the velocity 
of the tips of the needle is directed perpendicularly to the needle itself. Therefore, using the head to 
tail rule, the vector difference d|ψ> = |ψ2 >-|ψ1 > between two subsequent snapshots of |ψ> will make 
a  90°  angle  with  |ψ>,  in  the  limit  that  the  snapshots  are  taken  infinitesimally  proximate. 
Mathematically, with dφ the small angle over which the needle has rotated, this may be written with 
complex notation6:

exp(jπ/2).d|ψ> = |ψ>.dφ (3)

This trivial differential equation may be written in different ways. The first factor may be written as 
the imaginary unit j. Depending on the varying quantities, we could express the infinitesimal angle 
dφ as a product  ω.dt of instantaneous angular velocity and infinitesimal time (provided we have 
defined time)  or  as a  product  kx.dx of  instantaneous wave number and infinitesimal  coordinate 
difference directed along the x-axis, etc. We could also multiply both sides by a constant number. A 
suggestive way to write the differential equation of evolution of needle-like objects is :

j h d|ψ>/dt = h ω |ψ> (4)

where the inserted constant may have any appropriate value that transforms angular velocities into 
another physical quantity. In this form, physicists will immediately recognize the similarity with the 
time-dependent  Schrödinger  equation  which  describes  the  behaviour  of  quantum particles  and 
which has been discovered along a completely different path in 1926 [18].

If the needle is placed in a dense field of other needles, it will constantly be disturbed by collisions. 

5 Freely rotating needles have in fact 2 degrees of independent rotational freedom. It would be more precise to write : 
|x,y,z,φ,ωf,ωs>. The same is valid for the orientation in 3D, which should be written with respect to two axes 
(declination and right ascension).

6 This equation means that if we rotate the little arrow joining the tips of two subsequent snapshots of the needle by a 
an angle of π/2 radian (= 90°), we get an arrow that represents the needle times half the measure of the little angle 
over which the needle has been rotated. The letter j denotes the imaginary unity (i is already used as index for the 
possible states).
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The instantaneous angular velocity ω must therefore be decomposed into several components, each 
component describing the influence of each external perturbation. The dynamics become tricky but 
the general form remains.

j h d|ψ>/dt = (h ω0 + h ω1 + h ω2+ h ω3 + ...) |ψ> (5)

The  different  ωi-components  denote  the  constituent  internal  motions  of  the  needle,  due  to 
interaction potentials in the cloud of pervading needles, so we could write it equivalently as some 
sort of energy or potential terms.

j h d|ψ>/dt = (E0 + E1 + E2+ E3 + ...) |ψ> (6)

Written under this form, it is a truly unifying equation describing the way objects of two different 
domains  evolve:  quantum  particles  in  the  microscopic  domain  and  rod-like  objects  in  the 
macroscopic domain.  However different macroscopic needles might be from quantum systems, the 
analogy is manifest. The evolution of macroscopic needles follows the same general mathematical 
rule  as  the  evolution  of  quantum  systems.  Unlike  its  quantum  counterpart,  the  macroscopic 
formulation has a straightforward interpretation, which may be expressed in ordinary words7. We 
could  say  for  example  that  the  velocity  of  the  needle  tips  due  to  self-rotation  is  always 
perpendicular to the arrow itself, and that this velocity is proportional to the product of 3 numbers: 
the angular velocity, the infinitesimal time over which this difference has been taken and the length 
of the needle.

Two needles may simply scatter with gain or loss of rotational motion. Two needles may also scatter 
with  multiple  successive  contacts,  which  are  known as  chattering  collisions  [17]  and  so  form 
temporary composite systems. Vortices may occur [19]. Three needles may aggregate strongly. And 
aggregates of aggregates may form even bigger structures. There are various similarities with the 
quantum  world  which  may  be  specified  more  precisely  through  experimental  and  theoretical 
research on interactions in dense clouds of line-shaped particles.

The pilot wave approach for clouds of needles is of interest when the orientation of the needle 
varies in phase with collective motions of the surrounding needles. The evolution equation (6) can 
then  be  seen  as  a  wave equation  describing  as  well  the  dynamics  of  the  single  needle  as  the 
collective motion of the surrounding needles. The needle orientation and the phase of the wave 
evolve in coherence. The orientation φ may be seen as a wave property and abstracted as a complex 
exponential  exp(jφ) outside the ket.  Only those needle orientations that are compatible with the 
wave are physically relevant for pilot-wave systems. The normalization coefficient in equation (2) 
therefore becomes complex :

|ψ> = sum (ai exp(jφi ) |xi,yi,zi,vi,ωi>) (7)

The projection of  a  needle  on a given axis  will  evolve sinusoidally.  This  will  affect  scattering 
probabilities. Two needles will therefore collide with a probability proportional to the projection of 
the first  needle times the projection of the second needle  on the axis  perpendicular to the line 
joining the centres of both needles. As all needles evolve in phase with the same pilot wave, the 
probability to detect a needle with another needle is therefore equal to the square of the normalized 

7 There are popular quotes attributed to Rutherford or Einstein that say: “If you can't explain something to a six-year-
old, you really don't understand it yourself”, “You do not really understand something unless you can explain it to  
your grandmother”, “If you can't explain your physics to a barmaid it is probably not very good physics”... With 
ordinary analogues, quantum mechanical principles may be explained to grandmothers, to children and to barmaids.
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wave-function, a result which is analogous to Born's interpretation of quantum probabilities.

A pilot wave also reduces considerably the number of possible composite needle systems mentioned 
earlier.  The  spinning  degrees  are  then  no  longer  independent,  but  related  to  the  fundamental 
frequencies of the pilot wave and therefore induce discrete spinning ratios. This is a feature that is 
also present  in quantum particle physics,  but not in classical  bullet  or billiard ball  physics.  So 
intuitively, the physics of dense clouds of rotating needles is nearer to quantum physics than to 
classical physics. Although their behaviour may be handled as well with classical as with quantum 
computational  tools,  my  preference  goes  to  the  latter  because  they  are  operational  in  both 
microscopic  and  macroscopic  domains  and  help  to  grasp  intuitively  some  weird-declared 
behaviours of quantum systems. It is a nice manner to “provide a sensible language for the theory” 
and “a new way of reading the equations”8[20].

A complete description of the behaviour of needle-shaped objects goes behind the scope of this 
essay. All in all, it is an example among others that reveals room for possibilities, even beyond 
declared impossibilities.

Conclusion

We started with an impossibility statement that forbids giving deeper representations of quantum 
processes.  We  then  noticed  that  there  are  actually  classical  experiments  which  give  results 
analogous to the quantum world and ended up with an ordinary system with everyday objects that 
may  be  described  with  the  help  of  quantum  mechanical  computational  tools.  The  declared 
impossibility to give a deeper representation of single particle interference may therefore be seen, 
not as a scientifically proven impossibility, but rather as a cultural one, emerging probably from our 
physics education that prescribes that macroscopic objects be described with classical physics tools. 
Our ordinary macroscopic world is however neither classical nor quantum-mechanical. It simply is. 
For most practical purposes, classical tools are best suited to describe macroscopic phenomena, but 
there are some macroscopic wave-particle systems that may as well be investigated using quantum 
tools.  It is therefore doubtful that ordinary representations of quantum mechanics belong to the 
realm of impossibilities.  Faraday noted in his laboratory book: “still  try,  for who knows what's  
possible” [21]. This requires that one doubts certainties, constantly. Ultimately in physics, it will 
always be possible to question acquired knowledge.

“Thus the questions (and the quest) go on.” ~ George Sudarshan [22]

8 Lee Smolin identified five problems in contemporary physics. The second problem deals with the foundations of 
quantum mechanics and might be resolved “by making sense of the theory as it stands”.
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