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There is a fundamental, but often overlooked assumption in the practice of science. This
is a simple belief that predictive accuracy is a good measure of representational accuracy.
The more a theory’s predictions are verified, the more we’re inclined to believe that the
theory describes what’s genuinely ‘out there’ in the world. Unfortunately, this assumption
isn’t as straightforward as it appears.

In 1930, Gödel famously proved that a sufficiently strong theory can’t prove every true
sentence in its language. This result has a surprisingly consequence, though. It forces us
to distinguish between sentences that are true ‘merely within’ a theory – true only about
the theory itself – from those that are true about the theory’s “subject matter”, to borrow
Boolos’s term [2]. But once we acknowledge this distinction, we find that lacking pre-
theoretic knowledge about a theory’s subject matter can make it difficult, if not impossible
to learn anything at all from how a theory represents its subject matter.

I’ll explain how this follows here, first by looking to Gödel’s theorem1 in the context of
arithmetic and then by extending the result to classical and relativistic physics, and finally
to quantum mechanics. As I do this, I’ll often refer to the structure of theories and subject
matters. This isn’t meant to carry any foundational or metaphysical weight. Rather, I
believe it’s simply a natural way to think about formal systems in the relevant manner. If
it helps, you might think of it as an abstraction of objects and relations that are relevant to
a theory or a domain of discourse.

I. GÖDEL’S INCOMPLETENESS AND WHAT A SENTENCE IS ABOUT

My first task is to explain how Gödel’s theorem forces us to distinguish between a sen-
tence’s being true only within a theory from its being true of the theory’s subject matter.
This is easiest to see in the case of arithmetic because we have a very clear concept of
its intended subject matter, the natural numbers (N). This allows us to keep clear about
what Gödel’s theorem does and doesn’t imply of arithmetic theories and of N. We can then
consider the implications of this distinction in other contexts.

There are many theories of arithmetic, each very different from the next. Just to mention
a few, Peano arithmetic (APn) contains the successor function, recursively defined addition
and multiplication, and a second-order induction axiom (which can be changed to a first-
order axiom schema). Robinson arithmetic (AR) includes the successor function, recursive
addition and multiplication, but not induction. Lastly, Presberger arithmetic (APb) includes
the successor function, addition, and a first-order induction axiom schema, but not multi-
plication. There are many other theories, of course, but I mention these because AR and APb

are subsets of APn, but both are complete.
Importantly, each of these is meant to represent the structure described by the Dedekind-
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Peano axioms.2 It may seem an odd point to raise, but I take it that this means that they all
aim to represent the natural numbers. That is, there aren’t different sets of natural numbers,
NAPn

, NAR
, etc., but rather a single N. I also take it that N exhibits a unique structure and

that any theory that can represent this structure can represent N.3

Gödel’s theorem states that given an axiomatic theory T that can represent APn in a
language L, there exist Gödel sentences – true sentences in L that T can’t prove. This
immediately raises a question though: given that there are true but unprovable sentences
in Peano arithmetic, does this mean that there are ‘true but unprovable’ sentences (or
predications, perhaps) about the natural numbers? In other words, does Gödel’s theorem
teach us about N?

I believe the answer here is “no”, but that we can only answer this because we have such
a clear concept of the structure of N. One way to see this is to consider two cases: Take G
to be a Gödel sentence in APb. Either G is in the language of at least one of AR or APb, or
it isn’t expressible in either. In both cases we see that the unprovability of G in APn doesn’t
tell us anything about N.

In the first case, if G is about N then it must be that its unprovability in APn is the
result of some additional structure afforded by the richer theory. That is, the fact that G
is expressible, (and thus provable) in AR or APb means that the proof must somehow ‘come
apart’ with the additional structure of APn. (Note that if G is about N then it can’t be true
in APn and false in AR or APb.)

It’s very strange to think about a stronger theory ‘losing’ a proof that’s available in a
weaker one, but ignoring this difficulty, the fact that G is provable in some other theory
means that its unprovability in APn can’t teach us anything about N – it’s merely a fact
about APn. This might be clearer if we consider a more intuitive scenario: Imagine some
sentence P could be proven in some theory T1 but not in a weaker theory T2. We certainly
wouldn’t think that the unprovability of P in T2 would teach us anything about the subject
matter - it would just be the result of the T2’s weakness. The case here is exactly the same,
except that G is somehow provable in the weaker theory rather than the stronger one.

In the case where G isn’t expressible in the other theories, we can’t address what its
unprovability might imply without first considering this difference in expressibility. More
specifically, we must ask whether this difference implies anything about whether G is about
N. To do so, let’s simplify things a bit. Take an arbitrary sentence P that’s expressible in APn

but not APb. We might ask whether it’s possible that P expresses something about N that
can’t be captured in APb. If P is simple – perhaps “7 is prime” – this might seem obviously
true. However, if we consider that “prime” is only definable with recursive multiplication
then we see that the property can’t be captured with the structure of N alone. “7 is prime”
is not a statement in the language of the natural numbers – it is only a statement within a
theory that contains the right structural enrichment of N.

Of course, this sentence is true in virtue of something about N. We can even find a
sentence that is truth-functionally equivalent to P in APb (or a theory that closely resembles
APb). For example, we could extend APb into a theory A′Pb by adding non-recursive multipli-
cation in the form of axiomatic definitions of functions “·x” for each number x. “7 is prime”
would then be truth-functionally equivalent to the A′Pb sentence, “there are no numbers x

2 These are the axioms formalized by Peano (but attributed to Dedekind) to describe the natural numbers.

Peano arithemetic then adds recursive addition, recursive multiplication and induction to these axioms.

(See [18, p.90, ft.1], for example.)
3 This is not to claim anything about the existence of N (or its structure) independent of the theories that

represent it. Note, though, that when I talk about physics I do take the physical world to have a structure

independent of our theories.
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and y less than 7 such that x · y = 7 or y · x = 7.” But this doesn’t quite capture what it is
for a number to be prime. Note that the A′Pb sentences built like this to be truth-functionally
equivalent to “7 is prime” and “13 is prime” describe very different properties of 7 and 13.
The property described in the first, but not the property described in the second, would be
true of the number 77, for example. What we call “prime” would require an infinitely long
definition in A′Pb.

If my claim that “7 is prime” is only true within APn seems strange then consider a slightly
more obvious case – for example, the sentence that multiplication is commutative. Here it’s
a little clearer why the sentence is about the structural enrichment afforded by APn and not
the structure of N. To assert that multiplication is commutative is to say something about
recursively defined multiplication, and we know that this operation isn’t required to capture
N.

My point here is that if G is not expressible in AR or APb then if it were truly about N – if it
weren’t true merely within APn – then there would exist a sentence in the language of N that
would capture the content of G perfectly and completely. But if so, there would necessarily
be an equivalent (not merely truth-functionally equivalent) sentence in all theories that
represent N. In turn, this means that AR and APb would contain a sentence equivalent to
G, and moreover, that this sentence would be provable in these theories (because they’re
complete). Putting this all together then, if G isn’t expressible in the simpler theories then
it’s either true merely within APn or, as in the first case, its unprovability doesn’t teach us
anything about N.

In both cases then we find that the unprovability of the Gödel sentence tells us nothing
about the natural numbers. This isn’t a problem of course, and indeed it isn’t very surprising.
We have a very clear concept of N, and the Dedekind-Peano axioms describe it perfectly
(albeit not uniquely!), so we can always clearly see the differences between the structure of
N and the structures of the theories about it. However, taking a step back we realize that
provability of Gödel’s theorem itself demonstrates something we may not have expected,
which is that that our theories may contain provable sentences which have nothing to do
with their subject matter. That is, Gödel’s proof, qua proof of a sentence that describes
the existence of a Gödel sentence, proves a sentence that is not about the theory’s subject
matter, but rather about the theory itself.

One way to think of all this is that a theory’s axioms all stand on equal footing. There’s
no differentiation between those that capture the subject matter’s structure and those that
build on top of it. (Moreover, there’s no guarantee that such a delineation exists in the
axioms.) This means that we can’t expect a theory to ‘indicate’ which of its theorems
are about its subject matter and which aren’t. This may not be worrisome in the case of
arithmetic, but the consequences of this are troublesome when our knowledge of the subject
matter is at all obscured, as is the case in physics.

II. CLASSICAL AND RELATIVISTIC PHYSICS

I don’t want to enter into a discussion of scientific realism here, but many take it as the
goal of physics to represent the objects and properties that exist in physical reality. As
Einstein says, “the concepts of physics refer to a real external world, i.e. ideas are posited of
things that claim a ‘real existence’ independent of the perceiving subject.” [9] (as translated
by [13, p.190]). Unlike the case of arithmetic though, when it comes to physics our pre-
theoretic knowledge of the subject matter is at least somewhat obscured. In both classical
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and relativistic physics we have direct perceptual access to some of the subject matter – we
want to model the behaviors of systems that we experience, from tables and chairs to gases
and galaxies. However, there are also (1) cases where our theories add structure to that of
the subject matter, and (2) ‘blind spots’ in the structure of the subject matter that become
apparent when we consider some of the implications of our theories.

Cases of the prior include emergent macroscopic properties of microscopic ensembles. For
example, temperature, which we identify with average molecular kinematic energy, can’t play
a fundamental role in how systems evolve. This doesn’t mean that temperature isn’t real
or doesn’t have explanatory power, of course. Rather, the addition of temperature to the
fundamental structure of the universe is analogous to enriching the Dedekind-Peano axioms
with recursive addition. It expands our ability to predict and predicate over the subject
matter. Underlyingly, however, we take the microphysics of a system to give rise to its
thermodynamics just as summations are only true in virtue of the successor function.

These types of cases usually mark known distinctions between the structure of the subject
matter and the structure added by our physical theories. This is not so in the case of
‘blind spots’, which are somewhat trickier to point to just because the structure of the
physical universe is somewhat obscured. Some might be identifiable through ‘redundancies’
that appear in our physics. For example, Newton’s laws depend on the first and second
time derivatives of position, and we speak of physical systems as if they genuinely have
instantaneous velocities and accelerations within them somehow. However, it isn’t clear
that these properties are truly ‘out there’ in these systems. The laws may be correct and
may accurately predict physical evolutions and interactions, but this doesn’t necessitate
the metaphysical existence of these properties in the structure of the world. Differentiation
with respect to time could be to Newtonian physics as recursion is to Peano arithmetic – a
method of enriching the underlying structure of a subject matter.

Given that there is at least this ‘blurry’ line between the structure of the subject matter
and the theoretical enrichment afforded by our physics, we can now consider the results of
what we’ve seen above. First, note that the applicability of Gödel’s theorem is somewhat
easily satisfied. If a physical theory is a mathematical theory combined with physical laws
that constrain the evolution of some domain of objects, then all we need is for the mathe-
matical theory be at least as strong as Peano arithmetic (which is trivially true in the case
of physics), and that the laws be axiomatizable, which I take as granted here.4 Gödel’s
theorem then tells us that there exists true sentences in our physical theories that they can’t
prove.

Knowing a theory contains a Gödel sentence is one thing but identifying it can be a
different thing entirely. There is an alternative that will prove useful here, and this is to find
‘Gödel-like’ sentences – sentences which can be true despite being certainly unprovable in
our physical theories. There are two examples I wish to look at, both inspired by Barrow’s
discussion on the subject [1]:

The first derives from Norton’s dome [14], a theoretical dome designed so that if a sphere
were to roll up its side with the right initial velocity it would come to rest at its apex in a
finite amount of time. Norton describes the dome to highlight a difficulty with determinism
in Newtonian mechanics: Given that Newtonian laws are time-symmetric, if a sphere were
to be placed at the top of the dome it would be consistent with the theory that it wait for
some indeterminable period of time before spontaneously rolling down its side.

4 See [1, p.10] for a discussion of the applicability of the theorem to physics. Note that I don’t mean to

trivialize Hilbert’s sixth problem! I take independent axiomatizations of classical, relativistic and quantum

mechanics as sufficient here.
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Now, say such a dome were built and sphere placed at its apex. Ignoring microfluctua-
tions, etc., if the sphere doesn’t sit at this point indefinitely then we know there would be
a true sentence that is unprovable in Newtonian physics – the one that describes the time
the sphere begins to move. And now we can ask, does the fact that physics can’t establish
the truth of this sentence represent a fact about reality, or merely a fact about the theory?
More fundamentally, does the fact that Newton’s laws are provably time-symmetric repre-
sent a property of the physical world or merely a property of the theory we use to describe
it? Without some independent, pre-theoretical knowledge of the structure of the physical
universe, it isn’t at all clear how we might even begin to answer this question. That is, we
can’t know whether statements about time-symmetry represent anything about the universe
at all. It may be that these represent only properties of our model.

An analogy may be helpful here: Recall that we need recursive multiplication to define
‘prime’. We saw that this doesn’t mean that a weaker theory can’t express some truth-
functionally equivalent sentence to one of the form “n is prime”. Similarly, it may be that
the structure of the universe describes each system as exhibiting time-symmetric evolution,
but that it does not contain the structure required to describe time-symmetry. (Note, for
example, that such a property seems to be second-order. It’s a constraint on the constraints
on physical evolution.)

The second example of a Gödel-like sentence follows from the hole argument. In de-
veloping general relativity Einstein noticed that with general covariance came an under-
determination of how the metric field in an empty region of spacetime would ‘sit’ on the
spacetime manifold [19]. This has led to a renewed debate between spacetime substantival-
ism and relationalism.5 It may be obvious how this relates to our discussion: given that
we are unsure of the true ontology of spacetime, it isn’t clear how we should interpret this
under-determination. More in line with how I’ve been speaking, it’s possible that there is
a true sentence that (uniquely) describes how the metric field attaches to the manifold in
such a region, but such a sentence is certainly unprovable in our physics. Again, we’re left
unsure about whether this under-determination represents merely a feature of the theory or
whether it reflects a true freedom in the physical universe.

I’m not the first to raise this point in regard to the hole argument. Curiel [7] argues
something very similar:

just because the mathematical apparatus of a theory appears to admit particular
mathematical manipulations does not eo ipso mean that those manipulations
admit of physically significant interpretation.. . . The mathematical formalism by
itself cannot tell us what manipulations it admits have physical significance; one
must determine what one is allowed to do with it – ‘allowed’ in the sense that
what one does respects the way that the formalism actually represents physical
systems. [7, p.452].

Without pre-theoretic knowledge of the structure of spacetime – knowledge of what is “al-
lowed”, as Curiel says – we don’t know what to make of this mathematical freedom.

Now my point here isn’t simply about Norton’s dome or the hole argument. The point
is that our theories contain provable sentences which might not reflect anything about the
structure of the physical universe. The fact that we don’t have clear access to this structure

5 The original substantivalist/relationalist debate provides further examples of a Gödel-like sentences, but

it seems better to look to relativity theory given its success.
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precludes us from confidently differentiating between whether certain sentences are true
merely within the theories or true of their subject matters.

Admittedly, just as in the case of arithmetic, these cases might not cause much concern.
Our knowledge of the subject matter of classical and relativistic physics may be slightly
obscured, but at the end of the day we have a good idea of what to make of most of what
these theories say: We know how tables and chairs behave, even if we can’t give them robust
microscopic descriptions. We know how a gas disperses in a room even if we can’t trace its
microscopic evolution. We even know exactly how two observers will disagree about what
they observe even though we can’t know whether or not there exists a privileged inertial
frame. Things become much worse when we consider quantum mechanics, however.

III. LEARNING FROM QUANTUM MECHANICS

There is a very interesting and highly relevant fact about the development of quantum
mechanics. In 1925 and 1926, two independent formulations were developed to describe
our empirical results, Heisenberg’s matrix mechanics [12] and Schrödinger’s wave mechanics
[15]. Of course, Schrödinger immediately demonstrated that the two were equivalent [16],
but nonetheless we have two theories that offer very different representations of quantum
systems. (And I haven’t even considered Feynman’s path integral formulation!)

The existence of these competing pictures reflects something quite obvious: When it
comes to quantum mechanics, we barely have any pre-theoretic knowledge of the theory’s
subject matter. We may have concepts of the particles and interactions the theory seems to
represent, but these conceptual particles can fluctuate between being wave-like and particle-
like as required by the problem or situation in front of us. Similarly, we move back and forth
between using matrices and wave mechanics knowing full well that the result of a particular
calculation won’t depend on which we use. Although this mental flexibility has proven
immensely productive in our ability to predict measurement outcomes, it also demonstrates
that these concepts bear no resemblance to the objects that we aim to represent. It is (by a
very strong assumption I think!) impossible for a quantum system’s wave/particle nature to
actually fluctuate in the way our concepts of them can, and it is certainly not the case that
this nature changes because of how we calculate predictions about it. Of course, it may be
that the true state of a quantum system is entirely unlike the concepts we use to represent
them, but this only further demonstrates our ignorance of the true structure of our theory’s
subject matter.

This observation isn’t new, of course. Only nine years after Schrödinger completed his
wave mechanics did he use his famous cat thought experiment to demonstrate that näıve
quantum state realism contradicts our experience and experimental data [17]. And as we
know well, this discrepancy between the quantum state and our observations is at the root
of the measurement problem. In fact, there is a sense in which the measurement problem
is even worse than it appears at first. We might think that the problem is merely about
how we can describe the evolution of a quantum superposition into a single measurement
outcome given that the theory only permits reversible dynamics. However, if we consider
a measurement of position, for example, we find that not only is there this ‘dynamical
divergence’ between the quantum mechanical evolution and our observations, but there is
also a kinematic one. Our classical concept of a position is perfectly precise – Euclidean
positions are zero-dimensional points in space. However, position eigenstates, qua delta
functions in position space, are not physically permitted in quantum mechanics. (They are
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not normalizable, and hence unphysical). This means that our conceptual picture of the
structure of these objects is even further away from their true structure than we might have
thought.

Given that the subject matter of quantum mechanics is so obscured, what should we say
about whether we learn from quantum theory? One path forward might be to again look for
Gödel or Gödel-like sentences to see where the theory and subject matter might come apart.
And one possible case becomes immediately apparent if we consider sentences that describe
single measurement outcomes. Say an x-spin measurement on a |z+〉 electron results in
|x+〉. The sentence describing this result is certainly unprovable in quantum mechanics.
But this case is importantly different from the ones we saw in the discussion of classical and
relativistic physics. There it wasn’t clear whether a sentence, for example about the time-
symmetry of physical laws, was true outside of our theory. Here we’re outright denying our
theory from the start by positing something the it explicitly precludes, so using such a case
to show that we can’t learn from quantum mechanics would be entirely question-begging.

In fact, this is the fundamental problem with trying to learn from quantum mechanics.
No matter which ‘language’ we pick to describe the theory (i.e. matrices, wave functions,
path integrals or even fields) there will always be a significant discrepancy between what the
theory describes and what we observe. In the case of arithmetic, and to some degree in the
case of classical physics, we were able to consider how the content of a Gödel or Gödel-like
sentence might relate to the intended subject matter. In the case of quantum mechanics,
not only do we have no direct access to the structure of the subject matter, but we know
that our concepts of the subject matter cannot represent its actual structure. (And this is
worsened by the fact that there isn’t even a unique picture drawn by the theory given its
different formulations.) As such, it begins to look like we have very good reason to worry
about taking the theory to reflect the structure of its subject matter.

One thing I should make explicit here is that Gödel’s theorem has merely offered a
reference or ‘proof of concept’ in what I’ve described, and this is because its proof is based
entirely on the formal structure of a theory (independent of its subject matter). As such,
it offers a good general direction for finding cases where it can be difficult to know whether
or not a sentence is true merely within the theory (assuming the subject matter is at all
obscured). But there is no reason to think that it’s a unique source for these cases. Just as
Gödel’s proof demonstrates the existence of Gödel sentences, the provability of the theorem
demonstrates the existence of sentences merely within the theory. And it isn’t difficult to
see that if these exist, then without clear pre-theoretical knowledge of the structure of the
subject matter there is no way to determine whether a given sentence in the theory reflects
anything about its subject matter at all. What this means is that projects that attempt to
retrieve our classical observations from quantum state ontologies, for example, seem to be
fundamentally misguided. They begin by assuming that the theory provides insight into the
structure of the quantum world, and we’ve seen that this is certainly not something we can
take for granted.

I highlight this detail both for clarity and because there has recently been some discussion
in the quantum foundations literature that significantly mirrors the claims I’ve made here,
albeit from an entirely different direction. In 2016, a manuscript by Frauchiger and Renner
[10] claimed to prove that no single world theory of quantum mechanics could consistently
maintain the universality of unitary evolution. (This was later revised into [11].) In response
to this, Bub offered his own interpretation of their result, which parallels the opinions of
Schrödinger in 1935. As Bub explains [3–6], Frauchiger and Renner prove that any (non-
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Bohmian) theory which maintains the universality of unitarity and the existence of single
measurement outcomes must take quantum mechanics to be a probabilistic theory, not a
representational one. In other words, if we wish to accept our experience and empirical data
(of single measurement outcomes) without ‘breaking’ quantum mechanics or adding new
measurement dynamics to it, then we must give up any attempt to learn metaphysical or
ontological lessons from the theory. Although we may use the theory to make highly accurate
predictions, our assumption that this indicates some sort of successful representation of the
‘true nature’ of the world is unjustified – and can lead to unwanted conclusions, be they
inconsistencies, branching universes, or perhaps extreme solipsism. As a result, we’re forced
to approach any attempt to learn from the theory’s representation of its subject matter with
a strong skepticism.

IV. CONCLUSION

We’ve seen from the relatively simple case of arithmetic that Gödel’s theorem inadver-
tently proves a weakness of a sufficiently strong formal theory – it will be able to prove
sentences that have nothing to do with the theory’s subject matter. This may not be wor-
risome when we know the subject matter independently of the theory, as in the case of N,
but when we turn to physics this result has some deep implications. We find here that our
ability to learn about the structure of the physical universe can be at best hindered, as in
the case of classical and relativistic physics, and at worst blocked completely, as may be the
case in quantum mechanics.

Admittedly, this skepticism is unsatisfying. It doesn’t seem that this is what physics is
for – it feels like it’s meant to represent and inform us about the structure of the physical
world, not merely to predict our observations of it. In the context of quantum physics
alone this seems to describe part of the progress that’s been made at least since Dirac’s
prediction of the anti-electron in 1931 [8]. However, it’s a mistake to confuse accurate
prediction with accurate representation. The Standard Model provides us with predictions
of observations in particular experimental circumstances, and what we have seen here is that
this is not the same as providing a list of fundamental particles that necessarily exist and
have properties in the way that tables and chairs do. Of course, this is not to call any of the
theory’s predictions into question. Were they inaccurate then we would know our model to
be incorrect and would be forced to reevaluate it entirely. Rather, what is left unknown is
how we might begin to learn about the parts of reality that we don’t already know about,
from nomological possibility to spacetime ontology to the fundamental nature of quantum
systems.
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