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Abstract

Quantum mechanics places limits on what can be observed. Further, while it is a deterministic
wave theory, outcomes of specific measurements are purely stochastic. The geometry of quantum
entanglements, or quantum phases in general, describes a topological obstruction to unitary transfor-
mations between GHZ and W states or bipartite and tripartite entanglements. The momentum map
defined on Kirwan polytopes is in the framework of a fractal sets in state space has p-adic measure.
Axiomatic incompleteness of any p-adic algorithm illustrates how these define obstructions. This is
similar to how the Euclid 5th axiom is undecidable, and geometry has different model systems. This
is then argued to connect with quantum gravitation in how spacetime is an epiphenomenology from
entanglement.

1 Introduction

Quantum mechanics requires an extension of real variables of classical mechanics into complex variables.
This may be seen with the replacement of the Poisson bracket with the commutator {p, q} → i

~ [p̂, q̂] [1].
This extension is related to forcing in axiomatic set theory. This an extension of an axiomatic set theoretic
model to include additional axioms, often themselves undecidable statements. The extension of any
mathematics from strictly real variables to complex variables is related to forcing, where the i =

√
−1

is a general form of multiplication of a pair of real numbers. The axiomatic nature of numbers is more
general and additional structure arises. Forcing is often done with the inclusion of some self-referential
proposition in a set theory, such as the Bernays-Cantor consistency of the continuum hypothesis with
Zermelo-Fraenkel set theory, to extend a model [2]. This gives rise to some suggestion of a relationship
between quantum mechanics and Gödel’s theorem

The relationship between quantum mechanics (QM) and Gödel’s theorem (GT) has occurred to others
[3] [4]. There is the famous story of Gödel throwing John Wheeler out of his office for suggesting such a
connection. Yet there are some curious parallels between QM and GT, such as how QM is most difficult to
understand with measurements. Niels Bohr made an ancillary postulate that the world is both quantum
and classical, and measurements of a quantum system are done by a classical measurement apparatus.
Heisenberg pointed out an issue with any cut between the quantum and classical worlds is not sharp. A
measurement of any quantum system is where the quantum phase or superposition of states of a system is
transferred to an entanglement with some needle state. With a general apparatus we then have a needle
state that measures the needle state, so to speak, which involves larger mass or action. Photomultiplier
tubes used in nuclear and particle physics operate by generating a growing cascade of electrons between
grids in response to a single measurement. In this way the classical system is a large number of quantum
states that encode other quantum states, in particular the system detected, so the measurement is a sort
of Gödel number [5] encoded by quantum bits.
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The role of entanglement is important. Feynman said much of QM can be understood with the 2-slit
experiment, now considered. A quantum wave upon passing through the two slits, with state vectors |1〉
and |2〉 a distance d apart has the wave amplitudes exp(i~k · ~x) and exp(i~k′ · (~x+ ~d)) at the point x and
the state

|ψ〉 = e−f(x)(exp(i~k · ~x)|1〉 + exp(i~k′ · (~x+ ~d))|1〉),

For ef(x) a real valued envelope function. The modulus square of the wave is then

|ψ|2 = e−f(x){2 + cos[(~k − ~k′) · ~x+ ~k · ~d]Re(〈1|2〉) + i sin[(~k − ~k′) · ~x+ ~k · ~d]Im(〈1|2〉).

The resulting wave pattern is the interference observed by many instances on the screen. Now consider
the case where we place a spin at one of the slits to detect if a spin passed through. This means we
have spin states |+〉, |−〉 entangled with the slit states such that 〈±|±〉 = 1 and 〈±|∓〉 = 0. The
orthogonality of the spin states, which serve as needle states, means the modulus square of the entangled
state no longer exhibits an interference pattern.

The needle state is coupled to another state with a larger mass or action. This results in principle
in a quantization of some massive needle state. However, such quantization on the large does not ordi-
narily exist, and the observed needle is in one classical-like state. This classical output is an einselected
state that is stable against quantum noise or environmental decoherence. The “avalanche,” similar to a
photomultiplier cascade, requires an open world system that permits a quantum state to encoded as a
type of Godel number. The reservoir of instrument or environmental states to record an outcome require
an energetic process, whether that be a chemical change in a photoplate emulsion, a flip of a solid state
device state or the photomultiplier cascade of electrons. This is somewhat different from the standard
view of quantum mechanics that views the evolution of a quantum state as a closed system. Decoherence
of a quantum state requires some reservoir of states that are not treated as the same closed system. This
means an additional requirement for nature to present a quantum outcome or so-called collapse. Since
the establishment of a classical-like needle state is associated with entanglement, the encoding of a Godel
number of a qubit is a physical analogue of incompleteness.

Szangolies presents another perspective on incompleteness in QM with a general framework on how
any observer acquires information, but in so doing must sometime sacrifice information acquired in the
past [6]. This is a sort of horizon perspective of physics that all observers are local, all physics observed
is local, and this locality is bounded by an epistemic horizon. It is possible to show that for programs
that compute states there is a Cantor diagonalization [6] [7]. The jth program that kth state is a tuple
that a function f acts on f(j, k) : N × N → {0, 1} formed as a diagonalization map D : N → N × N.
There is then the commutative map corresponding to the Cantor diagonalization of programs and states.
It is then possible to illustrate how there can never be a complete listing of all such programs. With
Spekkens toy model some aspects of QM are demonstrated.

This epistemic horizon has a similar construction in general relativity. Event horizon enforce limita-
tions on any observer’s ability to account for states. In the case of a black hole the quantum states of
the material that fell behind the horizon are hidden from view. Two black holes composed from entirely
different materials, one from dark matter and the other from luminous matter, will appear identical. The
quantum states of the material are hidden by the event horizon. The tortoise coordinate does mean some
aspect of any material is accessible, but this is so red shifted that only quantum gravitation oscillators
contribute to the exterior. Included with this are angular momentum and charge. This the no-hair theo-
rem result that short ranged charges and quantum states are not accessible. Yet if qubits are conserved
this quantum information is then not destroyed. It is simply converted into forms that local observers
can’t access.
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2 Observables and Causal Limitations in QM

Quantum mechanical theorems, such as Bell’s theorem and CSCH, invoke the concept of statistical
independence [8]. This states that given a hidden variable λ and devices, either state preparation systems
or detectors a and b that probability obeys p(a,b|λ) = p(λ). The probabilities are determined by the
density ρ as p = 〈ρ〉, and for quantum mechanics the implication is that quantum states have state
preparations independent of detection or similarly that multiple detectors have independent outcomes.

Superdeterminism is a proposal by ‘t Hooft [9] that quantum mechanics has some underlying structure.
The underlying structure is a form of cellular automata, there the assumption of statistical independence
no longer holds and p(a,b|λ) 6= p(λ). This is one reason superdeterminism is largely dismissed by physi-
cists. However, this has useful structure. The existence of an underlying “circuit board” behind QM runs
into questions of causality, such as faster than light propagation and retrocausality. Superdeterminism
may though be used to examine epistemic horizons and undecidability.

Invariant set theory (IST) was advanced by Palmer to resolve paradoxes with measurement of quantum
systems. This is a postulate on a relationship between fractal geometry and quantum mechanics. A state
space with a metric defines states that are ontological and those that are unreal. IST is a deterministic
theory and for some nonlinear and chaotic dynamics principles of this system are on a fractal set IU .
Quantum systems are strictly linear, where while an internal space can permit nonlinear dynamics the
exterior geometry or symmetries must be completely linear. Hence, this defines a measure of a state space
that has some nonlinearity. The dynamics of this fractal set are loops, or helixes lifted by a fibre, where
the dynamics are those of U(1), such as a line bundle, and where there is a Sierpinski-like self-similar set
of loops on loops, or that a helix has a path that on a smaller scale is a helix. This loop-helical structure
is tied to the Argand plane of complex numbers and is the ingredient that gives {p, q} → i

~ [p̂, q̂]. This is
similae to epicycles in the Ptolemaic world. This self-similar structure has fractal content for a nonlinear
process. For many nonlinear systems there is a violation of unitarity as well. Zurek makes this point in
his paper [10].

This fractal-like structure is associated with counterfactual measurements. While IST is Bell nonlocal,
it violates the factorization assumption of Bell’s theorem, it also does not obey statistical independence.
There can be correlations between apparatuses in an experimental set up. A detector outcome may be
established by an action at a distance interaction from the state preparation or by retrocausal means.
The self-similar structure of these loops and helices means the state space is best described by a p-adic
metric. This space has distance defined by a p-adic norm. A p-adic metric d(x, y) is a quadratic function
and its square is a quadratic equation. The metric is a form of Diophantine equation with a p-adic
solution.

The standard metric of quantum mechanics is the Fubini-Study metric [11] of CPn that obtains from
a line bundle fibration on Hilbert space π : H → PH,

ds2 =
1

2
∂i∂j̄(1 + |z|2)dzidzj̄ .

Entanglements have polytope realizations of states [12]. For tripartite entanglements these polytopes are
representations of the concurrences τi|(ψABC〉) with

τ1(|ψABC〉) =
1

3
(τA|BC + τB|CA + τC|AB)

τ2(|ψABC〉) =
1

3
(τA|B + τB|C + τC|A).

The first of these is a representation of entanglements with three states according to how each state is
entangled with the other two in an entanglement. The second describes three estates in entanglements
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purely according to bipartite entanglements. The difference τ1(|ψABC〉) − 2τ2(|ψABC〉) = τ3(|ψABC〉)
with

τ3(|ψABC〉) = τA|BC − τA|B − τA|C .

is an obstruction called the monogomy principle τA|BC ≥ τA|B + τA|C [13]. This is a residue of
entanglement called the 3-tangle that has no description in a 2-body system. τ1(|ψABC〉) ≤ τ1(|GHZ〉)
and τ2(|ψABC〉) ≤ τ2(|W 〉) are bounded above by the GHZ and W states respectively. This is an
obstruction to the holographic conservation of information in quantum gravitation, which leads to a
firewall.

The 3-tangle is a topological obstruction for a pure state |ψABC〉 written according to the matrix
Gijk. This matrix, an element of the unitary local group GL, defines the SLOCC that transforms an
initial state into a final state. This group, unlike unitary groups, is not necessarily compact and its orbits
may not be closed or obey Cauchy sequence ordering. One orbit can sit within the closure of another in
a complex and recursive topology. This is the sort of topology that is indicated by the loop-helix orbit
structure of IST. The concurrence or 3-tangle is proportional to the hyperdeterminant of this matrix as

τ3(|ψABC〉) = 4|Det3(G)|.

This is an invariant under the local unitary operators and SLOCC GL = GL(2, C)⊗3. This conserves
the distinguishable nature of GHZ and W states with τ3|GHZ → = 1 the upper bound. For SL(2, C)
on the magic square of Freudenthal and Tits this is the 3-matrix of elements of the C × C entry. The
octonions or octooctonians are the O × O entry. This cubic form is the Jordan matrix J3(O) with the
Freudenthal determinant of eigenvalues [15].

The transformation of states for m systems of size n are given by momentum maps with the Kirwan
polytope in Rm(n−1) as a map CPnm−1‘ → Rm(n−1) [14]. For a given qubit n = 2 we have CP 1 with
the line bundle fibration with C. The dynamics is U(1), with z = (q, p) variable(s). We then have for
zi a function Ji = Ji(p, q) that defines the transformation of coordinates by

δzi = {zi, ωkJk}, δJi = {Ji, ωkJk} = εijkω
kJj ,

where the last term is ωijJ
j . Here ωij is the transformation of an element ωj by the action adgγ, ω

i.
Here γ ∈ g∗ a vector space dual to g.

〈adgγ, ωi〉 = 〈γ, g−1ω1g〉 = 〈γ, g−1ωig〉

For g = eiω is then equal to

〈adgγ, ωi〉 = 〈γ, ωi〉 + i〈γ, [ω, ωi]〉,

With an implicit summation over indices with ω. This defines a Hamitlonian vector field or symplectic
form, and is a commutator element of a Lie algebra. For a single qubit this is SU(2) ' SO(3) , and the
orbit is generated by U(1). These are the loops and helices of IST.

The momentum map acts in a symplectic manner on elements x in a manifold M in a dynamics
x → Φg(x). The momentum map µ :M → g∗ with

µ(Φg(x)) = adg(µ(x)),

where the vector field of the Lie algebra is

ω(x) =
d

dt
Φeiωt(x)|t→0.
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This Hamiltonian vector field describes the evolution of µω = 〈µ(x), ω〉 which conserves the Kirwan
polytope, or upholds the monogamy principle, and physically defines the evolution of entanglement.

These dynamics have interpretations according to Morse theory, Floer cohomology and the dynamics
of gauge fields. It suggests a duality or complementary principle between entanglement and gauge fields.
This fits in well with the Jacobson and Raamsdonk thesis on the emergence of spacetime from entan-
glements of states. Entanglements and gauge symmetries are dual, complements or equivalent aspects
to physics. This is similar to the relationship between topological ordered states, that have long range
entanglements, and symmetry protected states with local entanglements. There is a prospect for a duality
between local physics of gauge interactions and nonlocal physics of entanglements. The connection to
the J3(O) means entanglement and the Chern-Simons Lagrangian over O are connected in some duality
with supergravity. See supplementary material for more.

3 Morse indices and entanglement

Exceptional eigenvalues and curvatures can derive topological indices and critical sets for the occurrence
of entanglements. The value of an entanglement is given by the extremal condition on a quantum overlap.
A basic quantum mechanical derivation is with the uncertainty spread. Given the quantum state |ψ(t)〉
its evolute overlaps with this by

〈ψ(t)|ψ(t + δt)〉 = 〈ψ(t)|ψ(t)〉 + 〈ψ(t)| ∂
∂t
ψ(t)〉δt +

1

2
〈ψ(t)| ∂

2

∂t2
ψ(t)〉δ

= 〈ψ(t)|ψ(t)〉 − i〈ψ(t)|Hψ(t)〉δt +
1

2
〈ψ(t)|H2ψ(t)〉δt2,

so that |〈ψ(t)|ψ(t + δt)〉|2 =
√
〈H2〉 − 〈|H|〉2δt2. This is the uncertainty spread in energy ∆E

a quantum system in a pure state, multiplied by the spread in time δt. This is invariant for a pure
state as the Fubini-Study metric. This is a measure of a quantum phase or entanglement. The mo-
mentum map derives a form of this overlap as a variance. The momentum map is the coadjoint action
µ([gv]) = Ad∗gµ([v]) for g ∈ K = exp(k) that maps the symplectic manifold M = (M, ω) into the
Cartan subalgebra, which is the K coadjoint orbit in M or µ : M → k∗. These orbits intersect the
positive Weyl chamber t+ so that the orbit space there is φ :M → t+ such that φ(x) = µ(K · x)∩ t∗+.
The reflection points define a Kiewan polytope, with vertices corresponding to the entanglement group.

The lie algebra of K has the adjoint and coadjoint representations on ik and ik∗ corresponding to the
elements 〈x| ξ〉 = x† · ξ as the invariant inner product. The momentum map is then

µ∗(x) =

dim K∑
n=1

(µ∗(x))† · ξnξn =

dim K∑
n=1

µ∗ξn(x)ξn

The modulus square of the momentum map is

||µ(x)||2 = (µ∗(x))† · µ∗(x) =
1

2

dim K∑
n=1

(
v† · ξv
v† · v

)2

The physical meaning of ||µ(x)||2 is equivalent to 〈|H|〉2 in the overlap of a wave function. With respect
to the group K the overlap is a variance σ(v)

σ(v) =

∑
n v
† · ξ2

nv

|v|
−
∑
n(v† · ξnv)2

|v|2
,
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which is identical in form of the quantum uncertainty definition ∆E∆t = ~. This is expressed according
to the momentum map as

σ(v) =

∑
n v
† · ξ2

nv

|v|
− 4||µ(x)||2(v)

where the first term is the evaluation of the Casimir operator. The meaning of this operator with respect
to the reflection on the Weyl chamber then determines the SLOCC group for the entanglement.

The reflections correspond to the extremal condition on Σ(v). This is defined according to a Morse
index. The extremal condition is then computed by looking at the differential of ||µ(x)||2

d||µ(x)||2 = 2

dimK∑
n=1

µ†ξn(x) · dµξn(x).

Since dµξn = ω(−iξn, · ), The evaluation of this on a vector iξ
′

gives dµξniξ
′ = iω(−iξn, ξ′). This is

then by tr(A ◦ Pλ) = 2ω(ξ, ξ′) for this case with a sum on n = 1, . . . , dim K is a set Ric(ξn, ξ
′) =

λg(ξn, ξ
′). The Hessian of ||µ(x)||2 is then

H||µ(x)||2 = 2

dimK∑
n=1

dµ†ξn(x)⊗ dµξn(x) + 2

dimK∑
n=1

µ†ξn(x) ·Hµξn(x).

A minimal critical point is evaluated on µξn(x) = 0, which means that for all n the second term vanishes.
The general result is that

H||µ(x)||2 = 2

dimK∑
n=1

dµ†ξn(x)⊗ dµξn(x) + 2||µ(x)||Hµξ

The eigenvalues are further realized from µ∗(v)v = λv, which are associated with the Ricci curvature
and symplectic form. See supplementary material for more.

4 p-adic locality and undecidability of IST quantum fractal

The role of loops and helicies in entanglement is laid bare, where these are also an aspect of IST. If
these orbits are recursive they may have a fractal type of geometry. This geometry in IST leads to a
nonlinearity, which QM is not well suited to. There is then some correspondence between quantum states
and a nonlinear system. This is like the complementarity of Bohr, which correlates with the concept
of spacetime physics, can be nonlinear and built up from entanglements. This fractal dynamics is best
worked with p-adic number theory, which has a way of “flipping” any series that is very divergent or
where a metric separation approaches “∞” to a form that is finite. It is a way of working with metric
spaces and corresponds to solutions to polynomials or equivalently Diophantine equations.

The Cantor set, such as the standard derived with the removal of the middle third of an interval, and
then the iteration with the remaining intervals leads to a set that is ”dust.” This splitting of the interval
is a C2 set, which can be studied with 2-adic numbers. The Cantor set could describe a hopping system,
where a particle can hop between the first two intervals or probabilities (1/3, 2/3), then with the next
iteration hopping between intervals 1/9, 3/9, 6/9, 8/9) and so forth. A system with a set of bifurcating
frequencies might also suffice. This is physically what happens with these cycles and helicies, where there
is a branching bifurcation of frequencies or frequency multiplications in a system. Given any x, x′ ∈ C2

elementary operations on these do not lie in the C2, and any operations between these two elements is
impossible to define in a standard manner. However, in a 2-adic setting this set can be closed under
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operations of +, × and their inverses as a proper mathematical field. For any periodicity or equivalently
Cn then for a prime decomposition of the Cantor set a p-adic number system may be used.

The momentum map with an action K, or group action with a lattice space, on a space s with
symplectic form ω gives a set of Kähler forms ωi define the curvature −2πiωi on a line bundle Li. Let σ
be a holomporphic section of a line bundle, ni a positive integer then for si ∈ σ(s, Li)

K the fibre metric
is 〈si, sj〉 = |si|2δij . The Lie derivative on this metric with V is then

LV 〈si, sj〉 = − 4πniΦ
V
i 〈si, sj〉,

with V = ∇ΦV . This holds for each Kähler form ωi for ω then s = s
n/n1

1 ⊗ sn/n2

2 ⊗ · · · ⊗ sn/nm,
n = n1n2 . . . nm and define a function f = 〈s1, s1〉x1/n1〈s2, s2〉x2/n2 . . . 〈sm, sm〉xm/nm . The general
Lie derivative is then

LV (f) = − 4π

m∑
i=1

aiΦ
V
i

Kirwan found that for the Fubini-Study metric semi-stability is equivalent to semi-stability for integer
Käler metric [14].

The integers define the lattice space for a Weyl chamber or Kirwan polytope. The solution to a
polynomial equation on K then defines the Kirwan polytope or the roots of a Weyl chamber. However,
for the fractal case here, this polygon can only be solved in a p-adic number system. In general, with
the equation above we have a summation of eigenvalued-like equations, which hold for n a prime decom-
position. The Riemann ζ-function by hypothesis defines the distribution of prime numbers, and so the
fundamental quantum numbers of the universe are defined accordingly.

This is where undecidability enters the picture. Hilbert’s 10th problem was to find a global solution to
all possible Diophantine equations. These polynomials have their equivalence with Diophantine equations.
The MDPR theorem illustrates how the set of prime numbers is a Diaphantime set, and Matiyasevich
proved in general there is no global solution method for Diophatine equations [16]. Consequently, such
solutions can only be locally defined or by specific instances.

Consequently, it is not physically possible to extend the locality of any fractal set to another in
some global manner, This connects us with the nature of the 3-tangle; τ1(|ψABC〉 and τ2(|ψABV 〉) have
independent polytopes and thus separate primes or Diophantine sets. The two in general are not computed
in equivalent ways, and any nonlinear fractal set for measurements with a GHZ state is different from a
W state. This topological obstruction that prevents a bipartite state from evolving into a tripartite state
is a consequence of incompleteness of Diophantine sets to any global solution. This may be generalized
for a quadpartite entanglements as well[citekey-17, which may be generalized further.

5 Undecidability at the heart of the quantum

This started with the two-slit experiment. Feynman once said that all of quantum physics might be found
there. The paths through the two slits from the source to a spot on the screen form a loop with a nontrival
homology and homotopy. The two slits form a topological obstruction that defines the superposition.
Then with a needle state this is converted to entanglement; the quantum phase for the superposition is
converted to entanglement. The 3-tangle is an inherent property of what is quantum, what separates one
type of entanglement from another and is tied to undecidability of propositions associated with fractal
sets of paths. Solutions to Diophantine equations, which are associated with the nested frequencies or
periodicities of orbits, can be solved locally, but there is no global solution method. This is a form of
Szangolies’ epistemic horizon [6]. The Cantor set here then has some undecidable properties in the p-adic
setting, where any global field of numerical operations in a p-adic setting is incomplete.
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Wheeler with his question, “Why the quantum,” pondered whether quantum mechanics was built from
more elementary nuts and bolts. In the old Oxford symposium book on quantum gravitation Wheeler
speculated quanta were built from some undecidability of an elementary system [18]. Wheeler was
thrown out of Gödel’s office for asking this question, and for anyone who has pondered this and deigned
to mention this, it is often greeted with disapproval. Szangolies presents arguments for undecidability by
considering an elementary model and a Cantor diagonalization [6]. This leads to a form of information
barrier or epistemic horizon. In this paper it is argued that different entanglements are obstructed away
from each other. This obstruction is fundamentally the same as the epistemic horizon is what keeps two
entanglement types topologically separate. In what is presented here the door is further opened into not
just the underlying structure of quantum mechanics, but possibly quantum gravitation as well.

With a measurement there is a growth of entanglement, which accompanies a process such as the
avalanche of electrons in a photoelectric tube. This results in a large N -tanglement, and the above
result illustrates there is no comprehensive system for a solution set. This illustrates there are limits
to what can be predicted and information stored. The holographic black hole is also a large N -qubit
system that has entanglement, and this too has limits. This limit entails these topological obstructions,
such as the 3-tangle. This means the conservation of quantum information and the equivalence principle
should be seen in a different light. Spacetime built from entanglements or QM equivalent to GR means
conservation of quantum information and the equivalence principle are either equivalent themselves or
are in some duality with each other.

6 Supplementary Material

Consider the exceptional Jordan eigenvalue problem Av = λv{key-19. This is evaluated with the Jordan
product A ◦ B = 1

2AB + BA, so that for V = vv† A ◦V = λV. From the Jordan product the
Freudenthal product is defined

A ∗B = A ◦B − 1

2
(ATr(B) + Btr(A)) +

1

2
(tr(A)tr(B) − tr(A ◦B).)

Now build up the characteristic equation

A3 − (trA)A2 + σ(A)A − (detA)I,

for σ(A) = tr(A ∗A). This cubic matrix equation for the matrix Av − λv gives

−det(A − λI) = λ3 − (trA)λ2 + σ(A) − (detA)I

which vanishes for λ eigenvalues of the matrix A. For real eigenvalues this equation is not zero, but
rather det(A − λI) + z = 0.

The matrix A = (u, v, w), composed of the three column vectors, transformations of a vector
u 7→ u + δu are given by

ξ =
d

dt
X(t)

∣∣
t=0

= i
deiξt

dt

∣∣
t=0

where the map is v → v + ξvδt. The variation in the vector v
′

= v + ξv means the operator X on
V = v†v is

V
′

= Xvv†X ' (1 − iξδt)vv†(1 + ξδt)

for δt small. The variation in the matrix δV = V
′ − V gives

δV

δt
= − i[ξ, V ],
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which in the limit δt → 0 gives
∂V

∂t
= i[V, ξ],

The trace of this derivative tr(∂V∂t ) = v(∂V∂t )v† vansishes

tr

(
∂V

∂t

)
= i(v†ξv − v†ξv)v†v = 0

With two variations Xξ1 and Xξ2 it is easy to compute a second order equation based on variations of
the vector v along ξ1 and ξ2

tr

(
∂ξ1∂ξ2
∂t

V

)
= [[ξ2, V ], ξ1].

The Jacobi identity shows this vanishes. The annulment of [[ξ1, ξ2], V ] = 0 illustrates V is in involution
with the symplectic matrix

ω([ξ1, ξ2]) =
iv†[ξ1, ξ2]v

2v†v
.

and constant with respect to variations with respect to V , or ∂vω = 0. Thus the phase space volume is
invariant, and in a quantum mechanical setting it is equivalent to unitarity.

The replacement of the vector ξ2 → iξ2 leads to

ω([ξ1, iξ2]) =
v†ξ2vv

†ξ1v

v†v
= g(ξ1, ξ2)

which is the metric of the gauge-like space that parameterizes these motions. Also the variation in the
symplectic form translates into dg = 0 so the metric is covariantly constant.

This machinery is established to look at the dynamics of quantum entanglements. A quantum en-
tanglement group is defined at a certain minimum region that has a Morse index. The above dynamics
permits us to look at the quantum entanglements according to topological indices or think of ξ ∈ k.
The momentum map and this vector projected onto each other is

〈dp†v|ξ〉 =
〈e−iξtv|eiξt〉
〈v†v〉

∣∣∣
t→0

= i〈v|ξv〉 + − i〈ξv|v〉 = 0

and for ξ → iξ
〈dp†v|iξ〉 = 2i〈v|ξv〉

which the momentum map [14] redefines as

µ(v) =
1

2

i〈v|ξv〉
〈v|v〉

=
1

2

iv†ξv

v†v
=

1

4

dpv
v†v

.

A similar calculation for πv = (gv)(gv)†, a matrix and for g = eiξt , leads to a similar result that

dπv
dt

∣∣∣
t→0

= 2i
(
ξvv† + v(vξ)†

)
=

vv† ◦ (ξv)(ξv)†(ξv)†

v† · (ξv)

For u = ξv this is the identity for the Jordan product 2uu† ◦ vv† = (u† · v)(uv† + vu†)

This matrix is a projector operator and the eigenvalues for exceptional algebras can be constructed.
The Freudenthal product between two projectors is

uu† ∗ vv† = uu† ◦ vv† − 1

2

(
uu† tr(vv†) + vv† tr(uu†)

)
+

1

2

(
tr(uu†)tr(vv†) − tr(uu† ◦ vv†)

)
I
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where tr(uu† ◦ vv†) = (u† · v)2. This is equivalent to (uu† ∗ vv†) = (u × v)(u × v)†. With the
transformation matrix ξ this is also (uu† ∗ vv†) = (u× ξu)(u× ξu)†. The Jordan product A ◦V gives
the eigenvalue equation

Avv† + vv†A = 2λvv†

where we consider the matrix A = dξ + [ξ, ξ
′
]. The trace of this equiaton then results in

v†dξv

v†v
+

v†[ξ, ξ
′
]v

v†v
= λ

where the right hand side gives the symplectic form ω(ξ, ξ
′
). For the replacement ξ

′ → iξ
′

this defines
the metric g(ξ, ξ

′
) = λ, and the Ricci tensor is Ric(ξ. ξ

′
) = λg(ξ, ξ

′
).

The determinant of the eigenvalue equation A − λI

det (A − λI) = (A − λI) ◦ ((A − λI) ∗ (A − λI))

is expressed according to the projector Pλ = (A − λI) ∗ (A − λI) = v†v/(v†v) as

det (A − λI) = (A − λI) ◦ Pλ

The trace tr(A ◦ Pλ) = 2ω(ξ, ξ
′
) and for ξ

′ → iξ
′

this is the Ricci scalar curvature tr(A ◦ Pλ) =
R(ξ, ξ

′
) The projectors Pλ and Pλ′ are orthogonal. We have then that

Pλ ◦ (A ◦ Pλ′ ) = (Pλ ◦A) ◦ Pλ′ → λPλ ◦ Pλ′ = λ
′
Pλ ◦ Pλ′ .

However, λ 6= λ
′

which leads to Pλ ◦ Pλ′ = 0. This is the orthogonality condition on the projector
operators. It is now possible to compute tr ((A − λI) ◦Pλ),

tr ((A − λI) ◦Pλ) = R(ξ, ξ
′
) − 2λtr(A) + 3λ2.

This is the 2 × 2 eigenvalued equation. The Ricci scalar is equal to 1
2

(
tr(A)2 − tr(A)2

)
, which is the

same form as the Ricci curvature scalar for the extrinsic tensor K = dn in ADM general relativity. This
equation leads to the final Freudenthal determinant or characteristic equation for the 3 × 3 octonionic
eigenvalued problem

−det ((A − λI)) = λ3 − tr(A)λ2 + R(ξ, ξ
′
)λ − det(A)

The 3× 3 matrix A

A =

 x1 O1 O∗2
O∗1 x2 O3

O2 O∗3 x3

 ,

where O1, O2, O3 ∈ J3(O). The trace and determinant conditions are

tr(A) = x1 + x2 + x3

σ(A) =
1

2

(
(tr(A)2 − tr(A2)

)
= x1x2 + x2x3 + x3x1 − |O1|2 − |O2|2 − |O3|2

det(A) = x1x2x3 + O1(O3O2) + O∗2(O∗1O∗3) − x1|O3|2 − x2|O2|2 − x3|O1|2

The determinant characteristic equation is then in general given by det(A − λI) = − x, where x is
one of two roots of the equation

x2 + 2Re ([O1, O2]O3) −
∣∣[O1, O2, O3]

∣∣2
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where [O1, O2, O3] = (O1O2)O3 − O1(O2O3). The roots are

x = Re ([O1, O2]O3) ±
√
Re ([O1, O∗2]O3)

2 −
∣∣[O1, O2, O3]

∣∣2
which are zero only if Re ([O1, O∗2]O3)

2
=
∣∣[O1, O2, O3]

∣∣2 = 0. The real valued x determines real
eigenvalues for the 3×3 octononic matrix. This matrix with the three 8×8 E8 matrices is then a 24×24
matrix with real eigenvalues.
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