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Abstract 
 
Quantum electrodynamics (QED) is called the “jewel of atomic theory” because it allows for 
quantitative predictions of a huge number of atomic states using quantum mechanics. Although the 
QED techniques were adapted to the problems of nuclear theory in the 1950s, they did not lead to a 
rigorous quantum nucleodynamics (QND). The core problem has been the assumption of a central 
nuclear potential-well to bind nucleons together, in analogy with the Coulomb force that binds 
electrons to the nucleus. By replacing that fictitious long-range nuclear potential-well with the 
experimentally-known, short-range nuclear force, QND becomes possible. 
 
I. Introduction 

 
“Quantum nucleodynamics” (QND) is a phrase that was used sporadically in the 1950s to describe 
the intended quantum mechanical formalization of nuclear structure theory along the lines of 
quantum electrodynamics (QED). Unfortunately, despite the development of a quantum mechanical 
foundation for modern nuclear theory, the nuclear version of QED turned out to be “so difficult that 
no one has ever been able to figure out what the consequences of the theory are” (Feynman, 1963, p. 
39) and the promise of a unified, quantitative explanation of the atomic nucleus has not been realized. 
Already by the late-1950s, most theorists had turned their attention to high-energy particle physics 
and, skipping over the chronic problems of nuclear structure theory, engaged in the development of 
quantum chromodynamics (QCD). Meanwhile, the enticing QND phrase has been effectively 
abandoned and was in fact last used in a physics publication by Feynman in 1963.  

In the present essay, I argue that the early demise of QND can be attributed directly to 
theoretical assumptions concerning the nuclear force. Specifically, the nuclear force in both the 
independent-particle model (IPM) and the shell model (and their later variants) was postulated in the 
1940s to be a long-range and centrally-located potential-well, in analogy with the central force that 
binds electrons to their nuclei. That assumption was made despite the fact that the already well-
established liquid-drop model (LDM) had successfully described many nuclear properties based upon 
the diametrically-opposite idea, i.e., a strong and short-range nuclear force that acted only among 
nearest-neighbor nucleons. In other words, it was argued that, in order to use the Schrodinger 
equation and quantum mechanical techniques at the nuclear level, the nucleus itself must be 
considered to be a tiny gas of “point-like” protons and neutrons that freely orbit within the nuclear 
interior. Although the analogy with atomic structure was admittedly dubious, it produced theoretical 
predictions that were in spectacular agreement with experimental facts, and the IPM soon became the 
central paradigm of nuclear structure theory. 

Whatever the historical reasons for making experimentally counterfactual assumptions about 
the nuclear force, the first indications that the predictive successes of the IPM could be maintained 
without assuming a central nuclear potential-well did not emerge until the 1970s. Unfortunately, 
already by the early 1960s a huge amount of theorizing based on the idea of a nuclear “gas” had 
accumulated, more PhDs had been awarded in nuclear physics than in any other scientific field in 
history, and the real-world politics of academia made skepticism concerning the nuclear force appear 
to be crack-pot hallucinations. Had not nuclear physicists harnessed nuclear power? Had they not 
effectively won the Second World War and given unlimited cheap energy to the world?  
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In hindsight, answers to those questions have become complex, but it is a historical fact that 
the “effective” nuclear potential well used in the shell model (ca. 1949) played no role in the 
development of nuclear bombs (ca. 1942) or in the design of the first nuclear reactors (ca. 1947). On 
the contrary, it was the realistic, liquid-phase LDM that was used by Bohr and Wheeler (1939) to 
predict the huge release of energy in nuclear fission and it is the LDM that is employed in modern-
day fission technology. In contrast, the “effective” nuclear force remains a theoretical toy, elaborated 
on in the massively higher-dimensional parameter space that electronic computing has made possible, 
but with no direct contacts with experimental reality. It is worth emphasizing that, unlike the short-
range “realistic” nuclear force that is known experimentally, the “effective” nuclear force is a purely 
theoretical construct: it is surmised to be the “mean field,” time-averaged, net result of many local 
nucleon-nucleon interactions, but it cannot be directly measured. For this reason, the “effective” 
force is used primarily in an after-the-fact fashion to explain experimental findings, but has been 
notably unsuccessful in predicting new phenomena (e.g., predicting the existence of stable or long-
life superheavy nuclei with Z>112, Kumar, 1989).  

Although the debate concerning the nuclear force itself has never been satisfactorily resolved, 
the IPM and shell model descriptions of nuclear spins, magnetic moments, shells, subshells and 
parity states were simply too overwhelming to ignore. Without the independent-particle description 
of individual nucleon states and their simple summation to describe nuclear states, how can the two 
million-plus data points summarized in the Firestone Table of Isotopes (1996) be systematically 
understood? If a central potential well and a gaseous nuclear interior are incorrect starting 
assumptions, how can quantum mechanics be applied at the nuclear level? And if the IPM and shell 
model are discarded, which of the other nuclear models can better explain the empirical data of 
nuclear physics? Good questions and, until recently, there were no answers. 

Despite those seemingly decisive obstacles to a theoretical reconstruction of nuclear theory in 
the 21st century, it is surprisingly easy to show how the QED “jewel of atomic theory” can indeed be 
replicated at the nuclear level. First of all, the fiction of the mean-field nuclear force must be rejected 
in favor of the realistic, strong and short-range nuclear force that has already been well-studied 
experimentally. In abandoning the gaseous-phase model of nuclear structure theory, we are, however, 
not forced to retreat to earlier, less rigorous, non-quantum mechanical models of nuclear structure, 
but rather can proceed directly to QND. The seemingly-paradoxical key to the reconstruction of 
nuclear theory is to retain the IPM description of nucleon quantum states without insisting on the 
fiction of a nuclear “gas”. Let us begin the reconfiguration of nuclear theory with a brief review of 
the application of quantum theory to the problems of atomic structure. 

 
II. Quantum Electrodynamics 

 
Since the beginnings of quantum theory, many conceptual insights, countless verifications and – not 
to be overlooked – several profound philosophical debates concerning its interpretation have been 
initiated. Controversial interpretations of quantum theory continue to be the source of interesting 
speculations (parallel universes, time travel, parapsychology, and so on), but, as a matter of fact, 
practicing physicists can rely on the mathematical formalism developed over the past century to 
predict nuclear, atomic, molecular and solid-state phenomena. In that respect, there is no doubt that 
quantum mechanics is correct, and has had its widest practical applications in the form of QED. 
Notably, unlike the many debates concerning the interpretation of quantum phenomena (the collapse 
of the wave function, the interpretation of the uncertainty principle, the wave-particle duality, the 
stochastic nature of reality, etc.), there are today few dissenting opinions on the amazing precision of 
QED. As a quantitative theory that allows for an understanding of the absorption or emission of 
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Together with the Schrodinger equation itself, Eqs. 7-11 are essentially a concise statement of 
the established quantum mechanical structure of the nucleus. Both its IPM character and the “magic” 
numbers of the shell model can then be obtained by manipulations of the nuclear shells and subshells 
(Table 2). Historically, this was interpreted as “proof” of the gaseous nature of the nucleus, but it was 
later found that the entire pattern of quantal states of the nucleus can also be stated in terms of the 
lattice coordinates (x, y, z) for each nucleon (Eqs. 12-14):  

 
x = |2m|(-1)^(m-1/2)             Eq. 12 
y = (2j+1-|x|)(-1)^(i/2+j+m+1/2)       Eq. 13 
z = (2n+3-|x|-|y|)(-1)^(i/2+n-j+1)       Eq. 14 

 
And the Cartesian coordinates of the nucleons can then be used to define their quantal characteristics 
(Eqs. 15-19): 
 

n = (|x| + |y| + |z| - 3) / 2         Eq. 15 
j = (|x| + |y| - 1) / 2          Eq. 16  
m = |x| * (-1)^((x-1)/2) / 2                     Eq. 17 
s = (-1)^((x-1)/2) / 2             Eq. 18  
i = (-1)^((z-1)/2)                Eq. 19  
 
The significance of Eqs. 12~19 lies in the fact that, if we know the IPM (i.e., quantum 

mechanical) structure of a nucleus, then we also know its lattice structure, and vice versa. The known 
pattern of quantum numbers and the occupancy of protons and neutrons in the n-shells and j- and m-
subshells are identical in both descriptions, but, in coordinate space, the abstract symmetries of the 
Schrodinger equation exhibit familiar geometrical symmetries, as well. The n-shells and, j- and m-
subshells have spherical, cylindrical and conical symmetries, respectively, while s- and i-values 
produce orthogonal layering. Examination of the symmetries in relation to the Cartesian coordinates 
shows the validity of Eqs. 12-19 (see the Appendix) and the quantal structure of even the large nuclei 
can be easily analyzed using software designed for that purpose (Cook et al., 1999). The 
mathematically unambiguous isomorphism between quantum space and lattice space has been 
elaborated on in many publications over the past three decades, and recently summarized in a 
monograph (Cook, 2010). The implications for the establishment of QND are, however, new and are 
outlined below. 

 
B. Relation to nuclear states 
 
The essential difference between the conventional IPM of the nucleus and its lattice version lies in 
the assumptions concerning the nuclear force. They both produce – identically – the same set of 
quantal states for any given number of protons and neutrons and are equivalent descriptions of the 
known independent-particle character of nuclei, but there is nonetheless a huge difference between 
the two. That is, in the conventional IPM, there is no realistic possibility of calculating the local 
forces acting on nucleon a because nucleon a is assumed to be imbedded in the “mean field” of all 
other nucleons orbiting within the nucleus and interacting with other nucleons, b, c, d, …, z to 
varying and completely unknown degrees. In contrast, the same nucleon state in the lattice has an 
explicit set of local nucleon-nucleon interactions for 1st, 2nd and 3rd (etc.) nearest-neighbors, as is 
implied by the lattice geometry. Computationally, that difference is significant because the lattice 
geometry is a (fairly complex, but) tractable problem. What that implies is that, for a given number of 
protons and neutrons, either approach can account post hoc for the experimentally-known set of 
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excited states with specific energies, J-values, parities and magnetic moments, but only the lattice 
version can state unambiguously that nucleon a with known quantal characteristics and known 
position within the lattice is a specific distance and orientation in relation to nucleon b with its own 
quantal characteristics – and similarly for nucleons c through z, and beyond. 

In this regard, it should be said that the conventional IPM is essentially correct in its quantal 
description of nuclear states. However, in utilizing a mean-field nuclear force, the conventional 
model is inherently incapable of specifying the nature of the local nucleon-nucleon interactions for 
any particular nucleon. On the other hand, because of the lattice geometry, the lattice version of the 
IPM necessarily includes a complete specification of all of the local nucleon-nucleon interactions that 
any particular nucleon imbedded in the lattice experiences. The nuclear lattice does not of course 
address issues of nucleon substructure or the interpretation of quantum theory itself, and many 
aspects of quantum “weirdness” remain enigmas in the lattice. Nevertheless, the nucleon lattice has a 
comprehensible substructure that is entirely absent in a nuclear “gas.” 

In effect, both the conventional and the lattice versions of the IPM can be used to describe 
any nuclear state and the transitions among the stable and excited states that are allowed, forbidden or 
super-allowed. But drawing parallels between the experimental data and theory is not proof of either 
structure. Both versions exhibit the same quantal descriptive powers, but the lattice also makes 
possible the calculation of local two-body nucleon-nucleon interactions. It is for this reason that the 
lattice version has the potential for being the basis for a rigorous QND, whereas the gaseous version 
remains inherently “too difficult” – even with supercomputer assistance – and ends up with, at best, a 
vast array of adjustable parameters that must then be “fitted” without theoretical foundation to the 
empirical data. 

 
V. Conclusion 
 
Subsequent to the (re)discovery of the fact that the internal symmetries of an fcc lattice reproduce the 
well-established symmetries of the IPM, the lattice model has been developed in a variety of ways. 
Arguments concerning the “unification” of the nuclear models and visualization of nuclear structure 
remain of peripheral interest, but a far more valuable step would be the accurate prediction of nuclear 
properties on the basis of lattice symmetries without going through the theoretical contortions of the 
fictitious long-range nuclear force of the gaseous IPM. In that respect, the establishment of a 
computational, lattice-based QND should be welcomed by theorists of all backgrounds and would 
essentially eliminate the need to choose a nuclear model before engaging in quantitative work: One 
“chooses” quantum mechanics and then calculates the full set of two-body interactions implied by the 
lattice representation of IPM. Three-body and higher-order interactions within the lattice might 
provide greater precision, but the known lattice dimensions and symmetries already provide a first-
order description of nuclear states that is deducible solely from two-body interactions. 

Given the identity between a gaseous-phase IPM and a lattice IPM, the theoretical situation in 
nuclear structure physics in the early 21st century is curiously similar to that in chemistry in the 
middle of the 19th century. In both fields a foundation of empirical findings was first established from 
painstaking laboratory work, where the primary data were masses and dissociation energies. Initially, 
3D configurations of particles were not thought to be either realistic as depictions of the physical 
reality or useful as heuristics for theoretical study. The most notorious example of the disregard for 
geometrical considerations in chemistry concerns the benzene molecule. On the basis of experimental 
work, benzene had been determined to consist of 6 carbon atoms and 6 hydrogen atoms, C6H6. 
Kekulé proposed a hexagonal ring of carbons, but for decades the academic authorities in chemistry 
rejected all notions of molecular structure – both Kekulé’s structure for benzene and van’t Hoff’s 
notion of a geometrically asymmetrical carbon atom. Journal editors, such as A.W.H. Kolbe, 
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famously argued that stereochemistry was “loose speculation parading as theory” indulged in by 
those with “no liking for exact chemical investigation.” Eventually, of course, Kekulé became known 
as “the father of modern stereochemistry,” and three of his students, including van’t Hoff, won Nobel 
Prizes in chemistry in the early 20th century.  

It is relevant to note that the rejection of notions of 3D structure in 19th century chemistry had 
nothing to do with the philosophical quandaries of the interpretation of the uncertainty principle, the 
wave/particle dilemma or the collapse of the wave equation, etc. Indeed, quantum mechanics did not 
emerge until several decades later, but there was nonetheless, already in the mid-19th century, a 
strong reluctance among practicing chemists to “speculate” about spatial structure. Understandably, 
perhaps, most chemists were wary of the daunting complexity of the structural permutations implied 
by stereochemical considerations, but eventually inclusion of the constraints of molecular geometry 
proved necessary. Ultimately, the blanket dismissal of the complexities of 3D structure by “old 
school” laboratory chemists proved to be unfounded, and stereochemistry has of course become a 
mainstream issue in all aspects of chemistry, biochemistry and molecular biology.  

In the early 21st century, nuclear physics has arrived at a similar fork in the road, where “old 
school” experimentalists would maintain that there is no nuclear substructure inherent to the pattern 
of data, such as shown in Figure 2. In effect, they argue that the structural deconvolution of the wave-
equation into structural subcomponents is impossible. Many theorists are in fact hopeful that 
longstanding theoretical difficulties might eventually be overcome by developments in computer 
hardware without addressing issues of 3D structure and some are even convinced that the very idea 
of nuclear substructure “violates” quantum mechanics. The lattice representation of the nuclear IPM 
symmetries, however, indicates a possible way forward for those who are willing to “speculate” on 
the internal structure of the atomic nucleus. Whether or not quantitative QND lies just over the hill 
remains to be seen. 
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Appendix 

 
 
Snapshot of a spreadsheet in which nucleon quantum values (Columns F~L) are calculated from the 
lattice coordinates (Columns C~E). Just as there are no two nucleons with identical Cartesian 
coordinates, there are no two nucleons with the same set of quantum numbers. The spreadsheet and 
computer algorithms (in the C-language) for calculating nuclear lattice properties can be downloaded 
at http://www.res.kutc.kansai-u.ac.jp/~cook/40%20NVSDownload.html.  


