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Abstract

Quantum electrodynamics (QED) is called the “jewel of atomic theory” because it allows for
quantitative predictions of a huge number of atomic states using quantum mechanics. Although the
QED techniques were adapted to the problems of nuclear theory in the 1950s, they did not lead to a
rigorous quantum nucleodynamics (QND). The core problem has been the assumption of a central
nuclear potential-well to bind nucleons together, in analogy with the Coulomb force that binds
electrons to the nucleus. By replacing that fictitious long-range nuclear potential-well with the
experimentally-known, short-range nuclear force, QND becomes possible.

l. Introduction

“Quantum nucleodynamics” (QND) is a phrase that was used sporadically in the 1950s to describe
the intended quantum mechanical formalization of nuclear structure theory along the lines of
quantum electrodynamics (QED). Unfortunately, despite the development of a quantum mechanical
foundation for modern nuclear theory, the nuclear version of QED turned out to be “so difficult that
no one has ever been able to figure out what the consequences of the theory are” (Feynman, 1963, p.
39) and the promise of a unified, quantitative explanation of the atomic nucleus has not been realized.
Already by the late-1950s, most theorists had turned their attention to high-energy particle physics
and, skipping over the chronic problems of nuclear structure theory, engaged in the development of
quantum chromodynamics (QCD). Meanwhile, the enticing QND phrase has been effectively
abandoned and was in fact last used in a physics publication by Feynman in 1963.

In the present essay, | argue that the early demise of QND can be attributed directly to
theoretical assumptions concerning the nuclear force. Specifically, the nuclear force in both the
independent-particle model (IPM) and the shell model (and their later variants) was postulated in the
1940s to be a long-range and centrally-located potential-well, in analogy with the central force that
binds electrons to their nuclei. That assumption was made despite the fact that the already well-
established liquid-drop model (LDM) had successfully described many nuclear properties based upon
the diametrically-opposite idea, i.e., a strong and short-range nuclear force that acted only among
nearest-neighbor nucleons. In other words, it was argued that, in order to use the Schrodinger
equation and quantum mechanical techniques at the nuclear level, the nucleus itself must be
considered to be a tiny gas of “point-like” protons and neutrons that freely orbit within the nuclear
interior. Although the analogy with atomic structure was admittedly dubious, it produced theoretical
predictions that were in spectacular agreement with experimental facts, and the IPM soon became the
central paradigm of nuclear structure theory.

Whatever the historical reasons for making experimentally counterfactual assumptions about
the nuclear force, the first indications that the predictive successes of the IPM could be maintained
without assuming a central nuclear potential-well did not emerge until the 1970s. Unfortunately,
already by the early 1960s a huge amount of theorizing based on the idea of a nuclear “gas” had
accumulated, more PhDs had been awarded in nuclear physics than in any other scientific field in
history, and the real-world politics of academia made skepticism concerning the nuclear force appear
to be crack-pot hallucinations. Had not nuclear physicists harnessed nuclear power? Had they not
effectively won the Second World War and given unlimited cheap energy to the world?



In hindsight, answers to those questions have become complex, but it is a historical fact that
the “effective” nuclear potential well used in the shell model (ca. 1949) played no role in the
development of nuclear bombs (ca. 1942) or in the design of the first nuclear reactors (ca. 1947). On
the contrary, it was the realistic, liquid-phase LDM that was used by Bohr and Wheeler (1939) to
predict the huge release of energy in nuclear fission and it is the LDM that is employed in modern-
day fission technology. In contrast, the “effective” nuclear force remains a theoretical toy, elaborated
on in the massively higher-dimensional parameter space that electronic computing has made possible,
but with no direct contacts with experimental reality. It is worth emphasizing that, unlike the short-
range “realistic” nuclear force that is known experimentally, the “effective” nuclear force is a purely
theoretical construct: it is surmised to be the “mean field,” time-averaged, net result of many local
nucleon-nucleon interactions, but it cannot be directly measured. For this reason, the “effective”
force is used primarily in an after-the-fact fashion to explain experimental findings, but has been
notably unsuccessful in predicting new phenomena (e.g., predicting the existence of stable or long-
life superheavy nuclei with Z>112, Kumar, 1989).

Although the debate concerning the nuclear force itself has never been satisfactorily resolved,
the IPM and shell model descriptions of nuclear spins, magnetic moments, shells, subshells and
parity states were simply too overwhelming to ignore. Without the independent-particle description
of individual nucleon states and their simple summation to describe nuclear states, how can the two
million-plus data points summarized in the Firestone Table of Isotopes (1996) be systematically
understood? If a central potential well and a gaseous nuclear interior are incorrect starting
assumptions, how can quantum mechanics be applied at the nuclear level? And if the IPM and shell
model are discarded, which of the other nuclear models can better explain the empirical data of
nuclear physics? Good questions and, until recently, there were no answers.

Despite those seemingly decisive obstacles to a theoretical reconstruction of nuclear theory in
the 21% century, it is surprisingly easy to show how the QED “jewel of atomic theory” can indeed be
replicated at the nuclear level. First of all, the fiction of the mean-field nuclear force must be rejected
in favor of the realistic, strong and short-range nuclear force that has already been well-studied
experimentally. In abandoning the gaseous-phase model of nuclear structure theory, we are, however,
not forced to retreat to earlier, less rigorous, non-quantum mechanical models of nuclear structure,
but rather can proceed directly to QND. The seemingly-paradoxical key to the reconstruction of
nuclear theory is to retain the IPM description of nucleon quantum states without insisting on the
fiction of a nuclear “gas”. Let us begin the reconfiguration of nuclear theory with a brief review of
the application of quantum theory to the problems of atomic structure.

I1. Quantum Electrodynamics

Since the beginnings of quantum theory, many conceptual insights, countless verifications and — not
to be overlooked — several profound philosophical debates concerning its interpretation have been
initiated. Controversial interpretations of quantum theory continue to be the source of interesting
speculations (parallel universes, time travel, parapsychology, and so on), but, as a matter of fact,
practicing physicists can rely on the mathematical formalism developed over the past century to
predict nuclear, atomic, molecular and solid-state phenomena. In that respect, there is no doubt that
quantum mechanics is correct, and has had its widest practical applications in the form of QED.
Notably, unlike the many debates concerning the interpretation of quantum phenomena (the collapse
of the wave function, the interpretation of the uncertainty principle, the wave-particle duality, the
stochastic nature of reality, etc.), there are today few dissenting opinions on the amazing precision of
QED. As a quantitative theory that allows for an understanding of the absorption or emission of



photons in terms of the transitions of electrons from one quantal state to another, QED remains
unchallenged.

The quantum mechanics of the atom is technically complex, but its conceptual simplicity can
be illustrated as in Figure 1. As first understood by Bohr in the 1920s, for a hydrogen-like atom in
which there is one electron orbiting around a central nucleus containing Z-charges, the entire set of
excited states, their transitions and light spectra can be calculated on the basis of certain quantal
assumptions (Figure 1A). Adding a second electron introduces electron-electron effects that can be
computed, and further electrons introduce screening effects that must be handled on an ad hoc basis,
but the fully developed theory of QED remains qualitatively accurate and, with suitable parameter
adjustments, quantitatively meaningful (Figure 1B).

Figure 1: (A) The energy states of Hydrogen — all of which can be calculated in quantum mechanics.
(B) Energy levels and allowed one-electron transitions of the sodium atom.

The most impressive results concern the light spectra, but, from a theoretical perspective, the
underlying quantal “texture” of the electron states is also significant. As illustrated in Figure 1, each
electron state is a specific configuration of n, I and m quantum numbers — that are used in the
calculation of the photon energies and of the allowed and forbidden transitions. The Schrodinger
equation that embodies the relationships among n, | and m is:

an,I,m =R n,l (I’) Ym,I (ea (I)) Eq.1

The permutations of n, I and m — and their dual occupancy with spin-up and spin-down electrons (s)
provides the entire theoretical framework for determining the energy states of electrons (Egs. 2-5,
Table 1). As stated in all textbooks on atomic theory, quantum numbers, n, I, m; and ms can take
certain integer or half-integer values:

n=1,2,3,4,.. Eq. 2
1=0,1,2,...,n-1 Eq. 3
m=-l,...,-2,-1,0,1,2, ..., Eq. 4

ms=s=1/2,-1/2 Eq.5



Based on the regularities of electron occupancy in the shells of Egs. 1-5, it became possible to
explain the length of the periods in the Periodic Table of the elements, and that theoretical
achievement was a decisive factor in establishing the quantum theory of the atom. Say what one will
about notions concerning the philosophical implications of quantum theory, the pattern of electron
states (Table 1) and its implications for light spectra are the bedrock of atomic theory, and the
foundation upon which the Periodic Table — and essentially all of chemistry — is now understood.
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Table 1. The full set of n-, |-, mi- and ms-quantal states of the first 86 electrons. The structural

complexity of the electron orbitals makes quantum mechanics mathematically difficult, but its
conceptual simplicity lies in the integer relationships among the quantum numbers.

I11. Quantum Nucleodynamics

Nuclear structure is both similar to atomic structure (in terms of quantal states) and different (in
terms of the forces holding these systems together), but the conventional view of the nuclear IPM
since the 1950s has been that the two systems are analogous even in terms of the underlying forces.
That is, by assuming a time-averaged nuclear potential-well that mimics a long-range force and,
moreover, by invoking the Pauli exclusion principle (that is presumed to “block” local nucleon-
nucleon interactions in the high-density nuclear interior), a theoretical model similar to that in atomic
theory was developed for use in nuclear theory. The theoretical contortions that have been devised to
maintain this low-density/high-density story for the nucleus are outlined in the textbooks, but there is
an alternative view that has been some decades in the making.

It began with Wigner’s Nobel Prize winning publications from the 1930s, and was developed
by Everling in the 1950s, Lezuo in the 1970s, and by Cook, Dallacasa, DasGupta, Musulmanbekov
and various others ever since. The key insight, stated by Wigner in 1937, is that the quantal
symmetries of nucleon eigenvalues correspond to the symmetries of a face-centered cubic (fcc)
lattice. Wigner himself was a mathematician and his discussion of nuclear states was in terms of an
abstract, multidimensional “momentum space,” but all subsequent developments of the lattice model
of nuclear structure have been in terms of coordinate space, i.e., 3D geometry. In retrospect, the early
emphasis on the common-sense geometry of the lattice model was perhaps a tactical mistake, because
the nucleus, whether a lattice or a diffuse gas, is a quantum mechanical object that defies common
sense in many respects. Moreover, the unfortunate, but inevitable first impression of (pre-)classical
physics and platonic solids made the lattice representation of nuclear symmetries appear to be wrong-
headed attempts to return to pre-modern ideas. Nonetheless, as demonstrated in dozens of
publications in the physics literature, there is a remarkable mathematical identity between nuclear
quantal states and the symmetries of an antiferromagnetic fcc lattice with alternating isospin layers.

From the perspective of the gaseous IPM, the lattice representation of nuclear symmetries
might be dismissed as a “lucky coincidence” without physical meaning, but the contrary view is
worth considering: Could it be that the gaseous-phase IPM fortuitously mimics the symmetries of the
lattice, rather than vice versa? In terms of the known dimensions of the nucleus, is the lattice not a far
more realistic (LDM-like) model of the nuclear texture than a Fermi gas? And, most pointedly, is it



not more reasonable to construct a nuclear theory on the basis of the known short-range nuclear force,
rather than construct de novo a theoretical long-range force in order to justify a gaseous model?

A. Theoretical framework

The significance of the identity between the IPM and the lattice is that every known nuclear state in
the IPM has a specific analog in 3D coordinate space. Every transition of nucleons from one quantal
state to another — explicable in terms of integral changes in the quantum numbers of the Schrodinger
equation — necessarily corresponds to a specific vector in the nuclear lattice space. As a consequence,
without resorting to the fiction of a nuclear “mean-field,” the quantum mechanics of the gaseous-
phase IPM can be reconstructed within the lattice. From a computational perspective, the most
interesting aspect of the lattice is that its inherent geometry leads to a fine-grained, realistic, local-
interaction version of the IPM, i.e., what might be considered to be the structural foundations of
QND.

In comparison to atomic theory, there are two factors that increase the complexity of the
nuclear version of the Schrodinger wave equation. The first is that the nucleus contains two types of
nucleon, protons and neutrons, that are distinguished in terms of the so-called isospin quantum
number, i. The second is the notion of the coupling of orbital angular momentum (l) with intrinsic
angular momentum (s) — giving each nucleon a total angular momentum quantum value (j=I+s). As a
consequence, the nuclear version of the wave-equation has two additional subscripts (Eq. 6) and a
slightly more complex pattern of shell/subshell occupancy (Table 2).

W onjargmi = Rnjassi (NY mjass).i (6, 9) Eq. 6

Despite those additional quantum numbers, the nuclear wave-equation holds the same promise of
QED in being a finite set of explicit quantal states into which nucleons can come and go with the
release or absorption of photons. The universally-acknowledged strength of the IPM (ca. 1950) lay in
the fact that each nucleon in the model has a unique set of quantum numbers, as specified in Eq. 6
and Table 2. Using that foundation for describing individual nucleons, the IPM makes it possible to
explain nuclear states as the simple summation of the properties of its “independent” nucleons
(Figure 2) and to compare theoretical predictions with experimental data. Those predictions were
great successes in the early 1950s and led to optimistic predictions about the impending development
of a rigorous, quantitative QND theory.
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Table 2: The quantum states of nucleons in the IPM. As in atomic physics the theoretical shells and
subshells can be adjusted to explain the existence of closed shells at the “magic” numbers.

Unfortunately, the IPM was based on the dubious assumption of a gaseous nuclear interior
with “point” nucleons orbiting unimpeded inside the nucleus. Although the central attractive force in
atomic physics — where the nucleus itself attracts the orbiting electrons — was well-founded and the
electron is small relative to the atomic volume, similar assumptions in nuclear theory have turned out



to be incorrect. Although not yet known in the 1930s, when the Fermi gas model was first considered,
the experimental work of Hofstadter in the early 1950s (Nobel Prize in 1961) showed that both the
proton and the neutron have hard-core particle structure and diameters of ~1.8 fm. Since a center-to-
center nearest-neighbor internucleon distance of 2.0 fm reproduces the known nuclear density (0.17
nucleons/fm?), it is neither true that nucleons can be thought of as “points” nor true that they are free
to “orbit” in the nuclear interior. To deal with those inconvenient facts, a huge industry of theoretical
developments ensued to explain the surprising successes of the IPM, but that effort has not led to
clarity concerning either the nuclear force or the multitude of known excited states (e.g., Figure 2).
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Figure 2: An example of the level of experimental detail in nuclear spectroscopy. The J-values,
parities, lifetimes, relative transition probabilities and energies of low-lying excited states of °N are
known. Total angular momentum J-values and parities are consistent with the IPM.

By the mid-1960s, nuclear structure theory had ossified into an utter paradox — an insoluble
enigma where the nucleus is said to be both a dense-liquid and a diffuse-gas and punctuated with
alpha-particle clusters. Paradoxes unlike anything in atomic theory remained. Considerations of
nuclear size, density and binding energies clearly demonstrated a high-density LDM-like nuclear
texture; considerations of alpha-decay and the binding energies of the small 4n-nuclei indicated the
presence of alpha particles in both stable and unstable nuclei; and considerations of nuclear spins,
magnetic moments and parities suggested the reality of a nuclear gas with each independent nucleon
having its own unique set of quantized characteristics. Although it was a convoluted theoretical story
(that is still reiterated in the textbooks), it was also true that the pace of developments in nuclear
weaponry, nuclear power and applications of nuclear isotopes made skepticism about nuclear theory
appear nonsensical. As a consequence of its quantum mechanical foundation, the IPM, rather than the
LDM or cluster models, became the centerpiece of nuclear structure theory and, ever since, theorists
have struggled to justify the assumption of a central nuclear potential-well in a substance that appears
to be a dense, chunky liquid.

So, what are the overwhelming strengths of the IPM that make it so important? To begin with,
the known range of nucleon quantum numbers can be explained in close analogy with the quantal
characteristics of electrons:

n=0,1,2,... Eq. 7
j=1/2,3/2,5/2, ..., (2n+1)/2 Eq. 8
m=-j,...,-5/2,-3/2,-1/2,1/2, 3/2,5/2, ..., | Eq. 9
s=1/2,-1/2 Eqg. 10

i=1 -1 Eq. 11



Together with the Schrodinger equation itself, Eqs. 7-11 are essentially a concise statement of
the established quantum mechanical structure of the nucleus. Both its IPM character and the “magic”
numbers of the shell model can then be obtained by manipulations of the nuclear shells and subshells
(Table 2). Historically, this was interpreted as “proof” of the gaseous nature of the nucleus, but it was
later found that the entire pattern of quantal states of the nucleus can also be stated in terms of the
lattice coordinates (X, y, z) for each nucleon (Egs. 12-14):

X = 12m|(-1)N(m-1/2) Eq. 12
y = (2j+1-x[)(-1)"(i/2+j+m+1/2) Eqg. 13
Z = (2n+3-|x|-|y])(-1)™(i/2+n-j+1) Eq. 14

And the Cartesian coordinates of the nucleons can then be used to define their quantal characteristics
(Egs. 15-19):

n=(x|+|yl+]|z|-3)/2 Eqg. 15
i=(x+lyl-1)/2 Eqg. 16
m = |x| * (-1)M(x-1)/2) | 2 Eq. 17
s=(-1™M(x-1)/2) 1 2 Eq. 18
i = (-1)™(z-1)/2) Eq. 19

The significance of Eqgs. 12~19 lies in the fact that, if we know the IPM (i.e., quantum
mechanical) structure of a nucleus, then we also know its lattice structure, and vice versa. The known
pattern of quantum numbers and the occupancy of protons and neutrons in the n-shells and j- and m-
subshells are identical in both descriptions, but, in coordinate space, the abstract symmetries of the
Schrodinger equation exhibit familiar geometrical symmetries, as well. The n-shells and, j- and m-
subshells have spherical, cylindrical and conical symmetries, respectively, while s- and i-values
produce orthogonal layering. Examination of the symmetries in relation to the Cartesian coordinates
shows the validity of Egs. 12-19 (see the Appendix) and the quantal structure of even the large nuclei
can be easily analyzed using software designed for that purpose (Cook et al., 1999). The
mathematically unambiguous isomorphism between quantum space and lattice space has been
elaborated on in many publications over the past three decades, and recently summarized in a
monograph (Cook, 2010). The implications for the establishment of QND are, however, new and are
outlined below.

B. Relation to nuclear states

The essential difference between the conventional IPM of the nucleus and its lattice version lies in
the assumptions concerning the nuclear force. They both produce — identically — the same set of
quantal states for any given number of protons and neutrons and are equivalent descriptions of the
known independent-particle character of nuclei, but there is nonetheless a huge difference between
the two. That is, in the conventional IPM, there is no realistic possibility of calculating the local
forces acting on nucleon a because nucleon a is assumed to be imbedded in the “mean field” of all
other nucleons orbiting within the nucleus and interacting with other nucleons, b, c, d, ..., z to
varying and completely unknown degrees. In contrast, the same nucleon state in the lattice has an
explicit set of local nucleon-nucleon interactions for 1%, 2" and 3™ (etc.) nearest-neighbors, as is
implied by the lattice geometry. Computationally, that difference is significant because the lattice
geometry is a (fairly complex, but) tractable problem. What that implies is that, for a given number of
protons and neutrons, either approach can account post hoc for the experimentally-known set of



excited states with specific energies, J-values, parities and magnetic moments, but only the lattice
version can state unambiguously that nucleon a with known gquantal characteristics and known
position within the lattice is a specific distance and orientation in relation to nucleon b with its own
quantal characteristics — and similarly for nucleons c through z, and beyond.

In this regard, it should be said that the conventional IPM is essentially correct in its quantal
description of nuclear states. However, in utilizing a mean-field nuclear force, the conventional
model is inherently incapable of specifying the nature of the local nucleon-nucleon interactions for
any particular nucleon. On the other hand, because of the lattice geometry, the lattice version of the
IPM necessarily includes a complete specification of all of the local nucleon-nucleon interactions that
any particular nucleon imbedded in the lattice experiences. The nuclear lattice does not of course
address issues of nucleon substructure or the interpretation of quantum theory itself, and many
aspects of quantum “weirdness” remain enigmas in the lattice. Nevertheless, the nucleon lattice has a
comprehensible substructure that is entirely absent in a nuclear “gas.”

In effect, both the conventional and the lattice versions of the IPM can be used to describe
any nuclear state and the transitions among the stable and excited states that are allowed, forbidden or
super-allowed. But drawing parallels between the experimental data and theory is not proof of either
structure. Both versions exhibit the same quantal descriptive powers, but the lattice also makes
possible the calculation of local two-body nucleon-nucleon interactions. It is for this reason that the
lattice version has the potential for being the basis for a rigorous QND, whereas the gaseous version
remains inherently “too difficult” — even with supercomputer assistance — and ends up with, at best, a
vast array of adjustable parameters that must then be “fitted” without theoretical foundation to the
empirical data.

V. Conclusion

Subsequent to the (re)discovery of the fact that the internal symmetries of an fcc lattice reproduce the
well-established symmetries of the IPM, the lattice model has been developed in a variety of ways.
Arguments concerning the “unification” of the nuclear models and visualization of nuclear structure
remain of peripheral interest, but a far more valuable step would be the accurate prediction of nuclear
properties on the basis of lattice symmetries without going through the theoretical contortions of the
fictitious long-range nuclear force of the gaseous IPM. In that respect, the establishment of a
computational, lattice-based QND should be welcomed by theorists of all backgrounds and would
essentially eliminate the need to choose a nuclear model before engaging in quantitative work: One
“chooses” quantum mechanics and then calculates the full set of two-body interactions implied by the
lattice representation of IPM. Three-body and higher-order interactions within the lattice might
provide greater precision, but the known lattice dimensions and symmetries already provide a first-
order description of nuclear states that is deducible solely from two-body interactions.

Given the identity between a gaseous-phase IPM and a lattice IPM, the theoretical situation in
nuclear structure physics in the early 21% century is curiously similar to that in chemistry in the
middle of the 19™ century. In both fields a foundation of empirical findings was first established from
painstaking laboratory work, where the primary data were masses and dissociation energies. Initially,
3D configurations of particles were not thought to be either realistic as depictions of the physical
reality or useful as heuristics for theoretical study. The most notorious example of the disregard for
geometrical considerations in chemistry concerns the benzene molecule. On the basis of experimental
work, benzene had been determined to consist of 6 carbon atoms and 6 hydrogen atoms, CgHe.
Kekulé proposed a hexagonal ring of carbons, but for decades the academic authorities in chemistry
rejected all notions of molecular structure — both Kekulé’s structure for benzene and van’t Hoff’s
notion of a geometrically asymmetrical carbon atom. Journal editors, such as A.W.H. Kolbe,



famously argued that stereochemistry was “loose speculation parading as theory” indulged in by
those with “no liking for exact chemical investigation.” Eventually, of course, Kekulé became known
as “the father of modern stereochemistry,” and three of his students, including van’t Hoff, won Nobel
Prizes in chemistry in the early 20" century.

It is relevant to note that the rejection of notions of 3D structure in 19" century chemistry had
nothing to do with the philosophical quandaries of the interpretation of the uncertainty principle, the
wave/particle dilemma or the collapse of the wave equation, etc. Indeed, quantum mechanics did not
emerge until several decades later, but there was nonetheless, already in the mid-19" century, a
strong reluctance among practicing chemists to “speculate” about spatial structure. Understandably,
perhaps, most chemists were wary of the daunting complexity of the structural permutations implied
by stereochemical considerations, but eventually inclusion of the constraints of molecular geometry
proved necessary. Ultimately, the blanket dismissal of the complexities of 3D structure by “old
school” laboratory chemists proved to be unfounded, and stereochemistry has of course become a
mainstream issue in all aspects of chemistry, biochemistry and molecular biology.

In the early 21* century, nuclear physics has arrived at a similar fork in the road, where “old
school” experimentalists would maintain that there is no nuclear substructure inherent to the pattern
of data, such as shown in Figure 2. In effect, they argue that the structural deconvolution of the wave-
equation into structural subcomponents is impossible. Many theorists are in fact hopeful that
longstanding theoretical difficulties might eventually be overcome by developments in computer
hardware without addressing issues of 3D structure and some are even convinced that the very idea
of nuclear substructure “violates” quantum mechanics. The lattice representation of the nuclear IPM
symmetries, however, indicates a possible way forward for those who are willing to “speculate” on
the internal structure of the atomic nucleus. Whether or not quantitative QND lies just over the hill
remains to be seen.
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Appendix
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14 3 3 -1 1 1 1 ¥z -x2 2 1 -1 3 -1 1 ok
15 4 -1 -3 -1 1 1 . w2 o2 A -1 -1 -3 -1 ok
16 4 -1 3 1 1 1 ¥z w2 R 1 -1 -1 3 1 ok
17 5 3 1 -1 1 1 . -x2 2 A -1 3 1 -1 ok
18 5 -3 1 1 1 1 R T T 1) 1 -1 -3 1 1 ok
19 [ -3 -1 -1 1 1 R T T 1) -1 -1 ok
20 G 1 -3 1 1 1 R T T T 1 -1 ok
21 T -1 1 3 1 0 12 2 2 A -1 ok
22 7 1 1 -3 1 0 102 2 12 1 -1 ok
23 8 1 -1 3 1 0 102 2 12 -1 -1 ok
24 8 -1 -1 -3 1 0 10 -2 -2 1 -1 3 ok
25 5 3 -3 -1 2 2 sz -x2 o2 A 1 3 -3 —T"‘H ok
26 9 3 3 1 2 2 sz -x2 2 1 1 3 3 1 \
27 10 -3 3 -1 2 2 sz 2 e -1 1 -3 3 -1 ok
28 10 -3 -3 1 2 2 T T S 14 1 1 -3 -3 1 ok
29 11 5 -1 -1 2 2 Sz S22 -1 1 5 -1 -1 ok
30 11 5 1 1 2 2 Sz S22 1 1 5 1 1 ok
31 12 -5 1 -1 2 2 sz w2 2 A 1 -5 1 -1 ok
£ 12 1 5 1 2 2 CYC O Vel T 1 1 1 5 1 ok
23 13 1 -5 -1 2 2 CYC O Vel T -1 1 1 5 -1 ok
24 13 -1 -5 1 2 2 52 w2 1 1 -1 5 1 ok
E1 14 -1 5 -1 2 2 LY [ B V| 1 -1 5 -1 ok
ET 14 5 -1 1 2 2 LT B V] 1 1 5 -1 1 ok
a7 15 3 1 3 2 1 T T B V| 1 3 1 3 ok
Ex:4 15 -1 3 -3 2 1 ST [ B V] 1 1 -1 3 -3 ok
25 16 1 3 3 2 1 ¥ ouz oz -1 1 1 3 3 ok
40 16 1 -3 -3 2 1 ¥ ouz oz 1 1 1 -3 -3 ok
41 17 -1 -3 3 2 1 T [ B Ve | 1 -1 -3 3 ok
42 17 3 -1 -3 2 1 ST T B 1] 1 1 3 -1 -3 ok
43 18 -3 -1 3 2 1 . oozoo2 -1 1 -3 -1 3 ok
44 18 -3 1 -3 2 1 . oozoo2 1 1 -3 1 -3 ok
45 19 -1 1 5 2 0 | i o B V| 1 -1 1 5 ok
45 19 1 1 5 2 0 12 2 12 1 1 1 1 5 ok
47 20 1 -1 5 2 0 12 2 12 -1 1 1 -1 5 ok
48 20 -1 -1 5 1 2 0 12 -2 A2 1 1 -1 -1 5 ok
23| ProtonMo. Neutronlo.| X v ZzZ [N\g L j m s i pagh| x ¥ z Check

Snapshot of a spreadsheet in which nucleon quantum values (Columns F~L) are calculated from the
lattice coordinates (Columns C~E). Just as there are no two nucleons with identical Cartesian
coordinates, there are no two nucleons with the same set of quantum numbers. The spreadsheet and
computer algorithms (in the C-language) for calculating nuclear lattice properties can be downloaded

at http://www.res.kutc.kansai-u.ac.jp/~cook/40%20NVSDownload.html.
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