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Abstract Our understanding of time from physics is through the combina-
tion of quantum mechanics and relativity. In quantum mechanics, measure-
ments are represented by operators. The state of a system is usually repre-
sented by a wave function which is operated on by the operators. This view
of time is compatible with relativity in that each event is assigned a unique
time coordinate; the wave function changes with time. The only difficulty is
the measurement or collapse process; this process must act outside of time as,
in the language of special relativity, it modifies our representation of a single
event, for example, a particle experiment, converting our representation from
a wave to a particle.

The density matrix and density operator formulation of quantum mechan-
ics is an alternative formulation that is compatible with all the old results of
wave functions. It has certain advantages over the usual formulation and it
gives a different view of time, one that suggests that our usual understanding
of time in phyiscs is over simplified.

We show that density formalism suggests an additional parameter in
quantum states giving the time of the observer. And we show that the non
Hermitian extension of density matrices give quantum states which include
an arrow of time.
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1 Complex Phases

Let ¢ (x,t) represent a particle state. For this section, this will be a complex
function of space x, and time t. The picture of the particle implied by the
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wave function picture is that of a wave which changes with time. At the
time ¢t = tp, it is natural to think of the particle as being represented by the
complex wave ¢(x) = 1(x,tg). As such, the quantum wave function picture
of a particle wave is analogous to the classical description of a wave function;
the wave function of a single particle has a structure no more complicated
than a movie, it consists of a series of still frames, each of them independent.

A wave function can always be multiplied by an arbitrary complex phase
without changing the state represented. Rather than using ¥ (z, o) to repre-
sent the particle at time ¢, we may as well use —¢(x,t), itp(z,t), etc.; any
observable is unchanged when the wave function is multiplied by a com-
plex phase. The situation is similar when one considers multiparticle states;
the state vector formalism of quantum mechanics appears to supply a single-
valued description of a particle state at a given time but the arbitrary complex
phase is always there.!

To convert a quantum wave function to a density operator, we take the
product of the wave function with its complex conjugate:

p(x’,t’;x,t) = 1/)($/at/)1/)(937t)*- (1)

Multiplying by the complex conjugate eliminates the arbitrary complex phase.
Unlike the wave function, the density matrix is a uniquely defined mathe-
matical object that we can associate with a quantum state. However, time
appears twice in this object; the quantum state can no longer be thought
of as a sequence of still frames in a movie. Instead, the wave function re-
quires two space-time coordinates. And while the arbitrary complex phase
is eliminated, the density operator is still complex; the complexity gives the
difference in phase between two points in space-time. Instead of viewing a
quantum state as a movie, a quantum state is a process. In fact, we can
obtain a wave function representation of the quantum state from the density
operator by choosing any arbitrary spacetime point (xg, tg) where the density
operator is not identically zero, and setting:

’(/J(SC,t) = P(%t)i/J(on’tO)» (2)

and adjusting normalization appropriately.

2 Collapse

It’s tempting to think of quantum collapse as a classical process similar to
how we would describe the position of a particle moving in response to non
deterministic or stochastic influences. After looking at the various things
that could happen, assigning probabilities to them, we could end up with a
probability density p(z,t). As with the wave function formulation of quantum

! Wave functions, as representations of reality, can be replaced by their equiva-
lence class under multiplication by arbitrary complex phases. This gives a unique
representative of a quantum state, but it creates other problems such as the loss of
linearity — the ability to add two states together to get a new state. And it gives
no better understanding of the nature of time.



mechanics, we would be describing reality as a sequence of still frames, a
movie.

The classical probability density p(z, t) can be obtained from the quantum
wave function v, or density matrix p as follows:

p(x,t) =" (z, )P(z, 1) = p(x, t;2,1). 3)

From the point of view of the classical non deterministic particle description,
the wave function is a sort of a square root. And from the density opera-
tor point of view, the classical probability density consists of the diagonal
elements of the density operator.

A wave function must follow the Heisenburg uncertainty principle (HUP),
which restricts how tightly one can spatially restrict a wave function with
limited momentum. This restriction is built into the mathematics; one cannot
construct a wave function ¢ (z,t) that violates the HUP even at a single
moment in time. A physical explanation for the HUP is that the act of
measuring the particle deflects it. For example, if we wish to use a bubble
chamber to track the position of a charged particle, the collisions with the gas
will deflect the particle and this will change its course. This is true before the
experiment, but afterwards, we can determine the path the particle took by
examining the track in the bubble chamber. The track has every appearance
of a classical description of the particle.

For the case of the bubble chamber, collapse converts the quantum parti-
cle into a classical path. We can model this as a sharpening of the probability
density p(z,t). One can imagine p(z, t) being so sharpened that it defines just
a single path, but in any real experiment, even with a very good bubble cham-
ber, we will have a more or less vague estimate of where the particle went
and we will have to make do with a probability density.

This suggests that to understand collapse, we need a way of transforming
the quantum description of the particle into a classical probability density,
and then we need to sharpen that probability density in the same way that a
classical probability for a non deterministic particle sharpens as the random
events effecting the particle take place.

The collapse problem relates to the fact that the best description of a
quantum event depends on the observer. But the dependence can be thought
of in a simple way; if the observer’s time T is less than the time of the event
t, then the observer is looking at an experiment to be run in the future. In
this case, the best description of the event is to use the wave function or
density operator. And if T' > ¢, then the best description is just the classical
density p(z,t).

To get this idea to work, we have to add T' to the parameters for the
density operator. Suppose that an observer at time T = ¢ — 7 represents
the event as a wave function, and an observer at the later time T =t + 7
represents the event as a classical probability. Then we can model the collapse
of the wave function by adding the new variable T" to the density matrix as
follows:

p(l‘/,t/;l‘,t) if t<T_T’
pla' a5 T) = | f(@/ 2, 6T) i T—r<t<T+r,  (4)
p(:c,t;x,t) if t>T+4T.



where the middle function f(z’,t'; , t; T') smoothly transitions from p(z’, t'; x, t)
to p(x,t;x,t) = p(x,t) in the interval T — 7 < t < T + 7. The above is not a
prescription for making predictions; the eventual probability density p(z,t)
is sharper than the HUP would provide so this is not possible. Instead, it’s a
description of how to get from the quantum description of the system, which
requires phase information, to a collapsed description — without changing the
nature of the mathematics.

3 A Reinterpretation of Bohmian Mechanics

We can slightly modify the ontology of Bohmian mechanics[3] using these
principles. Bohmnian mechanics was originally presented as a wave function
theory but recently, the attraction of the density matrix approach has been
appreciated in the literature.[1,2] Bohmian mechanics does not use an ex-
tra (observer) time variable T'. Instead, a single particle quantum state is
modeled with both a wave function and a classical particle path. The wave
function follows the usual rules of quantum mechanics. The classical particle
follows the probability current of the wave equation. The probability currents
define flow lines that do not intersect, and that preserve probability density
so we can suppose that if the particle was chosen from an initial density
that matches the usual probability density of quantum mechanics, then the
density will continue to obey the rules of quantum mechanics.

One of the intriguing variations of Bohmian mechanics assumes that there
is some non determinism in the particle’s path. This allows the probability
currents to mix and so even if the initial probability density does not match
the assumptions of quantum mechanics, as time goes on, the mixture will
fill all states with their appropriate density. Another alternative is to sup-
pose that the mixing is deterministic but chaotic. This variation of Bohmian
mechanics provides the mathematical tools necessary to convert the density
matrix to collapsed form.

Let’s take the case where the particle begins at a single point in the
probability density, say it is at xy at time ty. At some later time tg + 7, the
probability density widens out to the full quantum mechanical probability
density p(x,tg + 7;x,t0 + 7). If the boundary conditions do not depend on
time, say the particle is in a box, or we are modeling all the relevant particles
as quantum states, then we can rewrite this process as that of a quantum
state at fixed time ¢g, but looked at by observers with changing time 7. When
T < tg — 7, the observer uses the full quantum mechanical description of the
situation. As T increases to tg, the wave function collapses and the observer
is left with a classical probability density. Finally, the particle ends up at xg.

David Bohm’s ontology for Bohmian mechanics requires a preferred ref-
erence frame; otherwise the paths taken by the quantum particles depend on
the choice of reference frame. Adding the variable T" has a similar effect. To
obtain Lorentz invariance, we have to assume that the laws of physics, other
than wave function collapse, do not depend on T'.



4 The Arrow of Time

Any spinor state can be converted into a density matrix but the reverse is
not true. Since density matrices are more general, it’s possible that a theory
that is very complicated when written in the spinor language becomes simple
when written in density matrix form.

The usual extension that density matrices provide over spinors are sta-
tistical mixtures. Less well known are the non Hermitian density matrices.
These define states with an inherent arrow of time.

A way of defining the pure density matrices is that one takes all possible
spinors, and converts them to density matrix form. This will provide the
Hermitian density matrices only. These density matrices are characterized
by three properties. First, they are idempotent, that is, they are projection
operators and satisfy pp = p. Second, they have trace = 1. And finally, they
are Hermitian. In defining the non Hermitian density matrices, we keep the
first two characterizations, but remove the third.

Let p, be the density matrix in the Pauli algebra for spin in the u direc-

tion. We will use:
10
P+z = (0 0) ’
(11

11
204 2p42 = (0 0) ) (6)

is a projection operator, and has trace = 1, but it is not Hermitian. More
generally, the product of any two pure density matrices is a real multiple,
possibly zero, of a not necessarily Hermitian density matrix. And in general,
any density matrix, Hermitian or not, can be written as the real multiple of
the product of two Hermitian density matrices in exactly one way.

The essence of the density matrix view of quantum mechanics is that
quantum states are processes. Complex phases of quantum states are defined
by the difference between the phase at one point in space-time and the phase
at another. Non Hermitian density matrices generalize this principle from
being a statement about the U(1) symmetry of the complex phase, to being
a statement about, in the above example, the SU(2) symmetry of Pauli spin.

Instead of a quantum state having a specific complex phase or a specific
spin at a specific time ¢, the (non Hermitian) density matrix approach defines
the quantum state as being a process which defines the change in complex
phase between two points, and the change in spin orientation between two
points. As such, non Hermitian density matrices are the natural extension of
density operators which correspond to the extension of the Abelian symmetry
U(1) to higher symmetries.

When one defines a non Hermitian density matrix as a product of two
Hermitian density matrices such as kp,p,, for k some real constant, one is
defining a quantum state which has an orientation in time. In the language

Then twice the product:



of spinors, such a state takes a quantum state v as its input and produces a
quantum state u as its output. This can be a method of defining elementary
particles which violate time symmetry.

5 Conclusion

The lesson from density formalism is that time is more complicated than it
appears. In addition to the (x,t) of the usual space-time, there may be an
additional time variable. We’ve written the above argument as if that time 7'
is the time of the observer. However, in this model observers do not interact
per se, and consequently we may as well make the simplifying assumption
that all observers have the same T. Then T becomes an attribute of the
universe as a whole, and an explanation for that persistent human insistence
on free will and the uniqueness of the present.
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