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Abstract 

In this essay I propose that a subtle but universal principle of binary 

conciseness lies behind the most powerful and insightful equations in 
physics and other sciences. The principle is that if two or more precise 
descriptive models (theories) address the same experimental data, the 

theory that is more concise in terms of Kolmogorov complexity will 
also be more fundamental in the sense of having the deepest insights. 

The World’s Most Famous Equation 

It is arguably the best known and most often quoted equation in the world: 

 𝐸 = 𝑚𝑐2 

Its dual association with the genius of Albert Einstein [1] and the power of nuclear 
energy makes it unforgettable. It is the only physics equation that can be heard 

regularly in non-technical conversations, where it is used as shorthand to refer to 
levels of intellectual insights far beyond everyday norms. Its message is easy to 

understand and deeply unexpected: Stodgy, static mass and dynamic, moving 
energy are in some mysterious way two aspects of a single quantity. 

Another compelling feature of 𝐸 = 𝑚𝑐2 is its conciseness. It needs only three letters, 
a number, and two high-school level algebraic operations. It is so concise that it 
was easier for me to embed it in the previous paragraph than to reference it as a 

separate figure. It is also concise at the concept level, altering the perspective of its 
more avid recipients until they reflexively interpret mass and energy as a single 

pool of resources rather than as two separately tracked issues. 
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Fundamental Means Mathematically Concise 

The claim of this essay is that the conciseness of 𝐸 = 𝑚𝑐2 is not an accident, but an 
example of a subtle but universal principle of binary conciseness. The principle is 
this: If two or more precise descriptive models (theories) address the same data, 

then the theory that is more concise in terms of Kolmogorov complexity [2] is more 
fundamental. That is, the theory whose form is closest to the Kolmogorov minimum 

will provide the deepest, most insightful understanding of that topic. 

Kolmogorov Complexity as Data Compression 

So what then is Kolmogorov complexity? While it is not usually presented as such, 
Kolmogorov complexity is simply a mathematically precise model for how to do 
lossless data compression.[3] Its precision is made possible by requiring that the 

compressed file be written and interpreted as a computer program, one which when 
executed exactly reproduces the original data set. The Kolmogorov minimum (or 

descriptive minimum) is simply the maximally compressed form of the original file, 
that is, the shortest computer program capable of reproducing the original data set. 

The idea of compressing data by converting it into a computer program sounds 

exotic, but in fact is so easy and commonplace that people do it without realizing it. 
For example, if someone asked you to write a program to replace a gigabyte file 

containing one billion copies of the bit string 01001101, what would you suggest? 
You just read one possible answer: “one billion copies of the bit string 01001101”. 
Even in English this phrase is an unambiguous executable program capable of 

reproducing the original file. Since it uses only 45 characters or bytes, the result is 
a compression ratio of over 22 million to 1. A very modest effort to shorten this 

program even further gives “10^9*01001101” with a length of 13 bytes, which 
achieves a compression ratio of almost 77 million to one. 

Two observations are worth making about such Kolmogorov programs. The first is 
that factoring is one of the most common and fundamental ways to compress data, 
though not the only one. Factoring looks for “something” that occurs multiple times 

in a data sequence. This allows it to be represented just once, with pointers to the 
other locations. The “something” is not necessarily as simple or obvious as a string-

level repetition of bits, however. The second observation is that when the data file 
becomes more complex, the process of factoring it into smaller pieces also becomes 
more complex. This is why commercial data compression programs require more 

time and computer resources to achieve higher levels of data file compression. 

Compression as an Exponentially Difficult Asymptotic Limit  

Given how easy it was to make the earlier gigabyte file program more concise, it 
seem likely that it could be compressed even more. Alas, this is where the “shortest 

possible program” aspect of Kolmogorov reduction starts getting tricky. Andrey 
Kolmogorov in fact proved that it is undecidable whether any given program is 
“the” shortest compression possible. 

The problem is that there is no way to prove that some unexplored domain of math 
or logic might not provide even greater compression. For example, the 20 digit 
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sequence 66276378959982317513 looks fully random and thus uncompressible. 

However, a broader search of mathematics shows this sequence is a substring of 𝜋 

occurring at position 39,025,353. Thus the 20 digit sequence could in principle be 

replaced by a short binary program that generates and indexes 𝜋. 

Such examples suggest a strategic rule of thumb for extreme compression: 

The closer you get to the Kolmogorov minimum, the more you will need to 

explore novel data transformations and mathematical options. 

There was nothing in the 20 digit sequence that hinted that it might be part of 𝜋, 

yet the definition of 𝜋 turns out to be its best option for compression. The only way 
to find such cryptic opportunities is to broaden the search. Similarly, as the search 

for repetition becomes harder, it will become necessary to transform the data in 
new ways that bring out hidden connections and redundancies. 

Pragmatically, all of this translates into a simple but unfortunate rule of thumb: 

The closer you get to the Kolmogorov minimum, the higher the cost will be in 
terms of resources needs, time used, creativity required, and failure rates. 

If theories are messages, then these heuristics provide a different way of looking at 
why it is hard to derive new, truly fundamental theories. Fundamental theories are 
well-factored theories, and so are likely to be near their Kolmogorov limits. This in 

turn means that any further reductions of their size and complexity usually require 
novel interpretations, more resources, and greater tolerance for failure. Given these 

counterincentives, it will always be easier to stop searching at a point where the 
theory is compact, but still relatively far from its Kolmogorov minimum. 

Physics as Information Theory 

The universe indisputably possesses a wide range of well-defined structures and 
behaviors that exist independently of human knowledge and actions. In a nutshell, 

the role of science is first to identify such pre-existing structures and behaviors, 
and then to document them in sufficient detail to understand and predict how they 

work. The resulting data sets can be massive and complex, but ultimately they are 
just data and thus qualify as messages. I will at times refer to them as foundation 
messages to emphasize that their content must reflect only content from the as-is 

universe, despite the extensive work that humans must perform to obtain them. 

It is worth pointing out that it is in their handling of foundation messages that 

mathematics and physics are most sharply distinguished from each other. In 
mathematics the sole criterion for whether a theorem is correct is whether it can be 
derived from a small set of previously agreed-to axioms. In physics the sole 

criterion for whether a theory is correct is whether it accurately reproduces the data 
in foundation messages. Unlike an axiom set, that data can contain disturbing and 

unexpected surprises that are contrary to the axioms of otherwise closely related 
mathematical methods. One particularly notable example of axiomatic instability in 



4 

physics occurred when Einstein found it necessary to violate Euclid's fifth “parallel 
lines” postulate to create the curved spacetime of General Relativity.[4] 

While the need for physics to predict and replicate data in foundation messages 
distinguishes it from axiomatic mathematics, it simultaneously makes physics more 

compatible with the perspectives of information theory. This is particularly true for 
the Kolmogorov version of information theory, which focuses specifically on the 
issue of ensuring that the compressed, program-style forms versions of messages 

reproduce the original data exactly and completely. 

The implication is that a better way to think of physics is not as some form of 

axiomatic mathematics, but as a type of information theory. The universe in this 
interpretation behaves like the message-sending equivalent of a reluctant witness: 
It has all the data needed to build valid scientific theories, but it releases that data 

only very grudgingly and only through the active efforts of those interested in 
receiving such foundation messages. The highly compressed Kolmogorov program 

encodings of foundation messages become the theories of physics, with the level of 
insight of the theory corresponding in a surprisingly direct fashion to how well it has 
converted raw data into compact, program-like code and equations. 

More subtly, data compression and theory development share more features than is 
typically realized. Both strive to create compact, singular formal representations of 

structures and behaviors that are otherwise spread across the uncompressed data. 
Both strive to find and eliminate irrelevant factors that obfuscate patterns. The 

searches in data compression for factorable identical units can also be described as 
searches for symmetries, that is, for situations in in which some mathematical 
transformation of the data results in an identical pattern. Modern particle physics 

relies intensely on the mathematics of symmetry groups,[5] but the resulting 
symmetries are also akin to data compression in the sense that they often point to 

an underlying shared pattern (or even particle) that allows the symmetry to exist. 

So, if physics really is a specialized form of information theory, and its experimental 
data sets are its uncompressed messages from the universe at large, how are these 

data sets actually transformed into meaningful theories? How can manipulating bit 
strings be reinterpreted as theory building? 

Messages as Maps 

An answer to that question requires a better understanding of what message are. 

The defining feature of a message is that it changes the state of the recipient. That 
is, a message must alter the way in which the receiver behaves or reacts in some 
current or future situation. Conversely, if such a change in the state of the recipient 

does not occur, it means that message was either never received or discarded after 
receipt. Since states are often represented as locations in some abstract, multi-

dimensional space, a simple map analogy turns out to be a good way to visualize 
and explain states, state changes, and the various properties of the messages. 



5 

B: Einsteinville

A: Newtontown

E

=

m

c

2

�  

  �   

1

1

0
1

01
0

1

1
0

1

0

1

0

10

1

0
10

1

1

Kolmogorov Reduction as Map Simplification
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Imagine your task is to create a map (message) that tells the receiver how to move 
from point A to point B. The simplest and shortest path will be a straight line from A 

to B, but you could also draw curved paths that traverse other locations on their 
way from A to B. The first box in the map figure is an example. The curves in such 
paths amount to “side trips” to locations that are irrelevant to reaching the final 

destination. Note that while there is only one straight line path, infinitely many 
curved paths are possible. These longer paths are valid in the sense that they still 

lead the receiver from A to B. However, they are also slower and require more bits 
to encode side trips. In terms of Kolmogorov messages, the straight line path is the 
Kolmogorov minimum, and the infinitely large family of curved paths represents all 

the longer and less efficient messages that convey the same semantic content. 

The second box shows a procedure for moving messages closer to the Kolmogorov 

minimum. The goal is to seek out and eliminate the curved “side trip” components 
that eventually end up cancelling themselves out. This is different from redundancy 
elimination, since the central goal in side trip elimination is to find and factor out 

the curve-inducing oppositely signed components that create the wasteful side 
trips. Uncovering and trimming away (third box) these computationally and 

conceptually wasteful side trips not only improves the clarity of theories, but can 
dramatically improve the efficiency of software that relies on such theories.[6] 

The Trampoline Effect 

Note that the closer one moves to the straight path Kolmogorov minimum in a state 
change map, the harder it becomes to find further simplifications. This can happen 

even when factors such as too many arbitrary constants, too much reliance on raw 
data, or unexplained features suggest that further simplifications are needed. The 

unsettling truth in most such cases is that theorists are making wrong assumptions 
about what is “fundamental” or “atomic” and what need to be broken down farther. 

Unfortunately, this resistance to further compression when approaching 

Kolmogorov minima can easily lead to what I call the trampoline effect: Bouncing 
off of the near-minimum region by adding new ideas that seem relevant, yet in the 

end just add more complexity and more curves. The result is to create theories that 
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in effect bounce off the taut Kolmogorov minimum path and instead send theorists 
out on far and sometimes fascinating side trips, but ones that ultimately have very 

little to do with the original simplification problem. One of the signs that this has 
happened is when the literature for a topic that once requires only few concentrated 

pages of math to describe suddenly explodes into a huge spectrum of papers and 
ideas that no longer converge to any obvious resolution of the original problem. 

The trampoline effect helps explains the baffling sequence of events that ensued 

after completion in the 1970s Standard Model of particle physics. Judging by its 
remarkable predictive success and relatively small size, the 1970s model likely was 

already relatively close to its Kolmogorov minimum.[7] Attempts to shrink the 
Standard Model further instead resulted in a spectacular explosion of almost 
entirely untestable and heavily mathematical papers, with string theory [8][9] in 

particular dominating theoretical physics research for decades. One indicator that 
this was a trampoline bounce is that the Standard Model was left largely unaffected. 

The Spekkens Principle 

Robert Spekkens contemplated something very close to the trampoline effect in his 

2012 FQXi essay [10] when he addressed the curiously complementary relationship 
between using bits to describe where a particle “is” at a given moment — its 
“kinematic state” —  and how that particle and its state changes as it moves into 

the future — its “dynamics.” The principle that Spekkens recognized was that the 
kinematic and dynamic descriptions in quantum theories can take on dramatically 

different forms as long as the two sides remain complementary in some deeper 
fashion. From this Spekkens speculated that there must exist a more fundamental 
fulcrum point from which these many various pairings of kinematics and dynamics 

emerge, much as in the mutually cancelling side paths I describe for the trampoline 
effect. He even proposed a specific approach, causal structure, as a starting point 

for uncovering this theoretical fulcrum. In Kolmogorov terminology, the fulcrum 
that Spekkens postulated would be the Kolmogorov minimum for quantum theories, 
and the various interpretation pairs would be examples of “side trips” into areas 

that theorists such as John Bell [11] (a pilot wave advocate) and David Deutsch 
[12] (a many-worlds advocate) felt needed to be addressed. 

Three Challenges 

I would like to end this essay with three challenges, two of which originated with 

Nobel Laureate Richard Feynman, and one of which originates broadly with the 
particle physics community. 

Challenge #1: What is the full physics meaning of Euler’s identity, 𝑒𝑖𝜋  1 = 0 ? 

One of Richard Feynman’s distinguishing traits was his exceptionally good nose for 
the profound, and he found Euler’s identity enthralling.[13] Why? Because it 
compactly connects four (or five) of the most fundamental and profound constants 

in all of mathematics: 𝑒, 𝑖, 𝜋, 1, and implicitly  1 by subtracting 1 from both sides. 
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Euler’s identity is already arguably the basis for much of the mathematics used in 
quantum mechanics, since it is the starting point for expressing wave mechanics in 

an exceptionally elegant and compact form. However, my challenge (not Feynman’s 
per se) is a bit different: I am asserting that due to its extreme brevity, Euler’s 

identity is most likely an overlooked example of a Kolmogorov minimum relevant to 
the physics of our universe. My postulate is that we don’t think of Euler’s identity as 
physics only because we do not yet understand how it maps into experimental 

reality. Identifying such connections might lead to some new factoring of physics in 
general and of quantum mechanics in particular, one in which Euler’s identity pops 

out and brings together concepts that previously were thought to be unrelated. 

Challenge #2: What is the simple explanation for fermion-boson spin statistics? 

For over 20 years, Richard Feynman thought about what seems at face value to be 

an amazing coincidence.[14] All known fundamental particles in physics fall into 
one of two categories: fermions that refuse to share the same state, and bosons 
that love to share the same state. Fundamental fermions include electrons, quarks, 

and neutrinos, and also composite protons such as neutrons. These fermions form 
what we call matter. Fundamental bosons include photons and gluons, and are the 

basis both for energy (e.g. a beam of light) and, in virtual form, fields (e.g. 
electromagnetic fields). 

Every fundamental particle also has a quantized form of angular momentum called 

spin, and its spin has a fascinating relationship to these two families. Particles that 
include a very strange and originally unexpected form of angular momentum called 

½ spin are always fermions, while particles that use only the much more 
understandable whole integer spins (eg. 0, 1, or 2) are always bosons. 

The question that troubled Feynman for decades, and which he never was able to 

answer to his own full satisfaction, was this: What is the simple explanation for this 
connection between spin and the two families of particles? 

I should hasten to note that the necessity of this correlation was proven decades 
ago, so in that sense it is not a mystery! The problem that troubled Feynman was 
that for so simple a rule, there should also be a similarly simple explanation. The 

current proofs of the connection are anything but that, requiring pages of 
complicated arguments that leave the reader thinking no better off in terms of 

understanding why such a thing should be so. 

Given that the very concept of spin ½ is nonsensical when applied to ordinary 
three-dimensional space, the lack of simplicity in this case likely stems from our 

inability understand what spin ½ really means at a deeper level. The great early 
quantum physicist Wolfgang Pauli unfortunately became so frustrated with his own 

inability to resolve the spin ½ issue that he finally (and angrily, as was his tendency 
when frustrated) declared it a “property” of quantum systems that had no need for 
further analysis by him or anyone else. Pauli thus set up a pattern that persists 

strongly to this day of simply ignoring one of the most fascinating clues in all of 
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physics, which is the existence in all fermions of a type of angular momentum that 
makes no sense from any classical perspective. 

The second challenge thus is to stop treating this astonishing half-spin mystery as 
“irrelevant” and instead seek out a deeper, more fundamental understanding of 

how half spin can even exist in our universe. After all, if you have a mysterious 
behavior (in this case “why do fermions refuse to share the same state?”) that is 
firmly and profoundly attached to an even more mysterious and opaque box (“what 

exactly is half spin?”), the odds are quite good that figuring the mystery of the box 
works will also provide insights into the unique behavior associated with that box. 

Challenge #3: Refactor the Standard Model without adding gravity or complexity. 

While often lauded as the most successful predictive model in all of physics, the 
Standard Model of particle physics is also frustratingly incomplete. The evidence for 

its incompleteness shows up vividly in its large number of arbitrary constants and 
baffling “givens,” such as why there are three generations of fermions.[7] 

The three generations of fermions are a particularly pointed example of our lack of 

a deeper understanding of fermions. The first generation of fermions contains the 
stable particles such as electrons and proton-forming quarks that constitute nearly 

all of the visible matter in the universe. But for some reason, the universe also 
allows two sets of nearly identical fermions that differ from the first set only in 
mass. As with spin ½, this experimental finding was so totally unexpected that 

when theorist Isidor I. Rabi first heard about out about the muon, the second 
generation heavy version of the electron, he exclaimed “Who ordered that?” [15] 

Despite its reliance on several key points on unfactored experimental data, the 
Standard Model qualifies overall as a remarkably compact and thus fundamental 
framework for describing most of the universe. It was the desire to factor it further 

that lead to work in areas such a string theory, in which the mind-bogglingly large 
vibration modes of tiny strings and loops in higher dimensional spaces are assumed 

to explain not just the particles and fields of the Standard Model, but also gravity. 
Curiously, although decades of effort in string theory have produced an enormous 
number of often very arcane, hard-to-understand papers, what it has not produced 

are any simple or convincing insights into the most blatant unexplained features of 
the Standard Model, such as why the three generations of fermions even exist. 

One factor in why string theory and related efforts to explain the Standard Model 
became so complex is their insistence on including gravity. Because gravity is so 
weak, principles of quantum mechanics drove the scale of such models into both 

extremely small length scales and extraordinarily high energies. This in turn helped 
unleash so many new options for “exploration” that the original Standard Model 

simply got lost in an almost unimaginably large sea of possibilities.[9] 

Thus my suggestion for anyone interested in bit-reduction refactoring the Standard 
Model is simple: Stop trying to include gravity in the refactoring. Instead, take what 

was already in the 1970s original version and look for novel ways to factor it that 
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reduce its size instead of expanding it. Furthermore, take issues such as the half-
spin conundrum and the existence of three fermion generations as first-order clues 

that need to be integral parts of the final explanation. 

Another strategy is to look for unexpected symmetries, but this time without 

insisting on using group theory first. While powerful, group theory is like software: 
It only takes what you put into it. If what you feed into the powerful machinery of 
group theory ignores or skims over issues such as why ½ spin exists, or why there 

are three fermion generations, it guaranteed that whatever sausage comes out the 
other end of your symmetry grinder will be just as oblivious to these issues. 

Regarding gravity, here’s a thought: If someone can succeed in uncovering a 
smaller, simpler, more factored version of the Standard Model, who is to say that 
the resulting model might not enable new insights into the nature of gravity? A 

more fundamental quantum model of the fermion and bosons could for example 
point to emergent effects relevant to gravity. There are after powerful theoretical 

reasons for arguing that gravity is not identical in nature to the other forces of the 
Standard Model. That reason is the very existence of Einstein’s General Theory of 
relativity, which explains gravity using geometric concepts that bear no significant 

resemblance to the quantum field models used for other forces. Focusing on 
clarifying the relationships of the clearly quantum forces thus might open up 

opportunities to clarify why gravity looks so different, in ways that embrace and 
complement the geometric power of General Relativity instead of ignoring it. 

Final Thoughts 

If you have gained anything by reading this essay, my hope is that it is the belief 
that simplicity is just as important now as it was in the early 1900s heydays of 

relativity and quantum theory. Simplicity is more akin to a rare gemstone than it is 
to a massive building, and it is more likely to be found by someone who likes to pull 

on unexplained dangling threads. This includes in particular threads that have been 
dangling for so long that no one bothers to look at them closely anymore. 

If you see such a thread and find it intriguing, your first step should be to find and 

immerse yourself in the details of any high-quality experimental data relevant to 
that thread. Some obscure detail from that data could become the unexpected clue 

that helps you break a major conceptual barrier. With hard work and insight, you 
might just become the person who finds a hidden gemstone of simplicity by 

unravelling the threads of misunderstanding that for decades have kept it hidden. 
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