
daerengD Time Paradigm

This essay is the result of six years of reflection on time. I believe the fundamental nature of time is one 
change which distinguishes a before and after. In general I believe time is fully derived from 
combinatorics. The arrow of time is the result of entropy that is derived from microstates, macrostates 
and multiplicities. For time in quantum mechanics, I believe fundamental objects with no internal 
structure must experience change through interactions. The best mathematics for this approach is the 
derangement. I have focused only on wavefunctions and the measurement problem. I show that 
derangements produce the linear time evolution of wavefunctions and provide a mechanism for 
collapse. Sections I-IV will be a review for experts but I consider the ideas essential for a complete 
understanding of time.
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Newton believed that time was continuous and absolute, later Einstein would prove that it was not 
absolute but he still assumed it was continuous. The continuous assumptions of relativity and the 
discreetness of quantum theory produce problematic paradoxes. In relativity the time dilation may take 
any value, but quantum mechanics predicts that no interval of time is shorter than the Planck time. As 
stars collapse into black holes, relativity predicts infinitely small singularities, but quantum mechanics 
predicts the Planck length as the smallest distance. I believe that time is a derangement and that real, 
conceptual, wavefunctions are consequences of deranged mathematics. 

 I – The Science of Counting 

Combinatorics, the mathematics of arrangements, forms the bedrock foundation of probability theory. 
Combinatorics is deduced with logic; it has few assumptions and many simple concepts. Despite the 
importance of the subject it is often neglected and understudied. I believe four ideas in enumerative 
combinatorics fully explain time: arrangements, derangements, and both ordered and unordered lists. 
The possible seating arrangements of three people: Larry, Jerry and Harry--sitting in a row are as 
follows: 

                LJH, LHJ, JLH, HLJ, JHL, HJL 

Each of these possibilities is an example of a permutation or arrangement. Larry, Jerry and Harry may 
be arranged in six separate ways. Initially, the men may choose one of three seats. After Larry selects 
his seat, Harry and Jerry may choose one of two seats. After Jerry has selected, Harry must sit in the 
only remaining seat. Three, two and one multiplied together equals six, and six is the total number of 
seating arrangements. n!, n factorial, is equivalent to the integers from one to n multiplied together. An 
n element set may be arranged n! ways:

 n! = n(n-1)(n-2)(–3)…(3)(2)(1)                                                   (1) 

A derangement is an arrangement with no element in its original position. For instance, LJH and JHL 
are derangements of each other. For a collection of n objects the number of derangements is n¡ and 
[n!/e] is the nearest integer function:

                n¡ = [n!/e]              (2)

                                    

Five card poker hands are unordered lists. The poker hand (Q♠,J♣,A♥,K♦,Q♥) is identical to 
(J♣,Q♠,K♦,A♥,Q♥) or any similar rearrangement. C(n,k), “pronounced n choose k”, is the binomial 
coefficient; it counts the number of possible unordered lists: 

          C(n,k) = n!/[k!(n-k)!]        (3)

The number of possible five card hands “chosen” from a fifty-two card deck is as follows: 

      C(52,5) = 52!/(5!*47!) = [(52)(51)(50)(49)(48)]/5! = 2,598,960 hands 



A poker dealer may distribute five cards to players in many different ways this exemplifies ordered 
lists. Although the hands (Q♠,J♣,A♥,K♦,Q♥) and (J♣,Q♠,K♦,A♥,Q♥) are identical, they are received 
from the dealer in a different order. A slightly modified form of (3) counts the possible number of 
ordered lists: 
     k!C(n,k) = n!/(n-k)!        (4)

Again the values of n and k are fifty-two and five: 

P(52,5) = 52!/47! = 311,875,200 ways to deal all poker hands.  

   II – Random Chance 
Physics renames permutations, unordered lists and ordered lists as microstates, macrostates and 
multiplicity. The physics nomenclature has similar sounding words, so they are easily confused. To 
avoid ambiguity, a useful analogy is to picture a macrostate as a destination, and a microstate as one 
path to a destination. The multiplicity is the number of different paths leading to the same destination. 

A microstate is specific to the outcome of each element. The total number of microstates for a set is the 
number of arrangements n!. When three coins are tossed, each coin has a one in two chance of landing 
as either heads or tails: 

   TTT, TTH, THT, HTT, HHT, HTH, THH, HHH (microstates) 

A macrostate describes the overall set. Macrostates are independent of the elements order. The above 
microstates are simplified by writing them as the macrostates: no heads, one head, two heads and three 
heads, (0H,1H,2H,3H). 

  0H, 1H, 1H, 1H, 2H, 2H, 2H, 3H (macrostates) 

The multiplicity is the number of microstates or rearrangements possible for each macrostate. The 0H 
macrostate has a multiplicity of one because it has only the TTT microstate. The 2H macrostate has a 
multiplicity of three: HHT, HTH and THH. 

The number of microstates for n coins is 2^n not n!; because the coins are identical elements and may 
be in two separate states. n+1 is the number of macrostates and the multiplicity of a macrostate is 
C(n+1, m) (m=0H, 1H,…). Summing the multiplicities of every macrostate equals the total number of 
microstates: 
        ∑C(n+1,m) = n!        (5)

The total number of microstates for three coins is 2^3=8, and three coins have 3+1=4 macrostates. 
Ω(m), the multiplicity of the mth macrostate, for each coin: Ω(0H)=1, Ω(1H)=3, Ω(2H)=3, Ω(3H)=1. 
The sum of the multiplicities is 1+3+3+1=2^3=8, the total number of microstates. 

The probability of obtaining a macrostate is the multiplicity of the macrostate divided by the total 
number of microstates. The larger the multiplicity of a macrostate, the more likely random chance 
favors its outcome. The probability of obtaining the 0H macrostate is 1/8 and the probability of the 2H 
macrostate is 3/8. 



The multiplicity of macrostates varies significantly with a small change in the number of elements. The 
change in multiplicity is important because not all the macrostates receive an equal number of 
microstates. For a large number of elements, the likely outcome becomes certain due to changes in the 
relative probabilities of the macrostates. For coins, the number of microstates doubles for each coin 
added, but the number of macrostates increases only by one. For three coins or three-thousand coins, 
the number of microstates for the 0H and all heads macrostate remains one. However, the difference 
between the number of microstates for three-thousand coins and three coins is enormous. A few 
macrostates have a large multiplicity increase, and others do not change as dramatically. This is the 
reason a large number of coins has an overwhelming probability for the half heads macrostate, nH/2. 

Both time and an increase in entropy are irreversible. Entropy provides a much deeper understanding of 
time and the measurement problem. The entropy equation is: 

S = kln(Ω)        (6)

Ω is the multiplicity of a system. The energy distribution of all physical systems is related to the 
macrostate with the greatest multiplicity. The multiplicity of a cup of coffee is a very large number 
written with multiple exponents, such as 10^20^15. The natural logarithm in the entropy equation (6) 
converts large numbers to manageable sizes by the property, ln(a^b) = bln(a). k, is Boltzmann’s 
constant and it changes multiplicity into units of energy and temperature. 

Everything in the universe is in constant interaction with everything else, and these interactions 
increase the overall multiplicity of the universe. If a hot cup of coffee and a cold one are put into 
contact, given enough time, both cups will reach the same temperature. Each cup has an amount of 
energy spread randomly among the coffee’s atoms. When two cups are placed together, the total energy 
is the energy of the first cup added with the energy of the second cup. It is unlikely every coin will land 
tails if a million coins are tossed. It is even more unlikely to find all the energy in the cups of coffee in 
only a handful of atoms. As the entropy of the universe increases, some macrostates that were possible 
become impossible. The second law of thermodynamics says entropy must always increase and never 
decrease. A decrease in entropy would result in a possible past arrangement of the universe. 

    III - The Wavefunction 

Wavefunctions in quantum physics provide chance predictions for what classical physics predicted with 
certainty. The Copenhagen interpretation postulates the unsquared wavefunction as a mathematical 
object with no physical significance. The wavefunction is a superposition of imaginary bases states. 

Ψ(x,t) = C[a1ψ(1)+ a2ψ(2) +…+ anψ(n)]        (7)

 All physical predictions in quantum mechanics must be real probabilities. Imaginary numbers become 
real numbers by squaring them. Squaring is often referred to as the inner product of the wavefunction; 
inner products are always real numbers. If the basis states are orthonormal, then the squared 
wavefunction will not contain cross terms. For example, if ψi and ψj are orthonormal, squaring (ψi+ψj) 
removes the ψiψj cross term requiring it to equal zero. Squaring a wavefunction with these properties 
may only be a math-e-magical way to eliminate imaginary numbers. 

ψi+ψj)^2 = ψi^2 + ψiψj + ψj^2 = ψi^2 + ψj^2   (<ψi|ψj> =δij)        (8)



The wavefunction must also be normalized to provide probabilistic predictions. Normalizing a 
wavefunction allows the physicist to solve for the C coefficient in (7). C is independent of time. 
Knowing C turns the squared bases coefficients into the probabilities of obtaining that basis state in a 
measurement. The bases states’ coefficients are meaningless unless the wavefunction is squared and 
normalized. Obtaining real probabilistic wavefunctions in quantum physics requires a tremendous 
amount of theoretical work. Much of the mathematics provides little in conceptual understanding. A 
physical explanation of the wavefunction may answer many of the important foundational questions 
and greatly simplify the theory. 

         IV - The Measurement Problem 

Time is in trouble. An ontological enigma, the measurement problem, exists at the foundation of 
quantum theory. The problem is the two separate time-dependencies of the wavefunction. One is from 
the irreversible collapse of the wavefunction, and the other from the reversible time evolution of the 
wavefunction: 

Ψ(t) = exp(-iαt)        (9) 

Measurement forces a wavefunction to collapse or reduce into one of the possible outcomes called 
eigenvalues. The eigenvalue a wavefunction collapses to can not be predicted with certainty but can 
only be assigned a probability. Once the wavefunction has collapsed, any additional measurements will 
find the same eigenvalue with certainty. The wavefunction collapse increases the entropy of the 
universe and time moves forward. 

Some believe a measurement and the wavefunction collapse are from human or metaphysical 
consciousness. The many worlds interpretation hypothesizes that multiple universes exist. The many 
worlds interpretation believes that a wavefunction collapses into every eigenvalue, a universe for each 
eigenvalue. These imaginative ideas lack empirical evidence yet dominate the headlines and 
colloquiums. I believe that the collapse of the wavefunction and the coin-tossing example are similar 
probabilistic phenomena. In the coin-tossing example if two different sets of coins are brought together, 
then some macrostate is found with certainty. This is similar to the description of a measurement as the 
measured wavefunction interfering with the wavefunction of the measuring device. 

        V - Deranged Time

A change distinguishing before and after is the simplest definition of time. A discrete fundamental 
object cannot be subdivided. Therefore, such an object is not capable of internal change. To experience 
change it would need to interact with other objects in the surrounding environment. Assume W, X, Y 
and Z are discrete fundamental objects capable of interacting with each other. X and Y will experience 
a change if X and Y interact. Similarly, W and Z will experience a change through interaction. To 
experience another change, every object must interact with something new and different: W with X and 
Y with Z. This is a derangement. From the object’s perspective the change was instantaneous, moment-
to-moment.

The probability any new permutation of objects is a derangement is exp(-1). Derangements are 
mutually exclusive outcomes. If there are two permutations, the probability both are derangements is 
exp(-2). For n derangements the probability is exp(-n) (n = 0,1,2…). This is identical to the time-
dependence of a real wavefunction. 



If the properties of multiplicity and derangements solve the measurement problem, then a small number 
of elements must have an exp(-n) time-dependence. The derangement converges to exp(-1) as the limit 
of n, the number of elements, approaches infinity. If derangements do not converge rapidly to exp(-1), 
then derangements are incompatible with multiplicity. The n=4 set [1,2,3,4] has nine derangements, 
4¡=9: 

   [4321], [4132], [4312], [3421], [3412], [3142], [2413], [2341], [2143] 

The total number of arrangements is 4!=4*3*2*1=24, and 4¡/4! = 9/24 = 0.375. The probability that a 
permutation is a derangement in a four element set is within two percent of exp(-1):                     

[0.375 - exp(-1)]/exp(-1) = 2%.

Any new arrangement is either a complete derangement or partial derangement. Either every element is 
in a new position, or some elements are and some are not in their original positions. If an instant is a 
complete derangement, then every element in the set would experience the same instant. Time would 
be absolute, but this assumption is removed with partial derangements. Deducing the partial 
derangement equation is straightforward. In a set of n elements choose k of them to remain in their 
original position and derange the remaining n-k elements. 

     P(n,k) = C(n,k)((n–k)¡)      (10) 

 P(n,k) = C(n,k)[((n–k)!)exp(-1)]  for  (n-k ≥ 4)      (11)

Every arrangement is a complete or partial derangement. Therefore the sum of all partial derangements 
and the complete derangement is n!, the number of possible arrangements.

   n! = ∑[P(n,k)] = ∑C(n,k)[(n-k)!exp(-1)]      (12)

 

           1 = (1/n!)∑C(n,k)[(n-k)!exp(-1)]      (13)

Recall, the number of microstates, macrostates and multiplicities are n!, n+1 and C(n+1,m) 
respectively. Summing all the multiplicities is equivalent to the total number of microstates (5). The 
probability of obtaining a macrostate is the macrostate’s multiplicity divided by the total number of 
microstates. A small change in the number n increases entropy and creates overwhelmingly likely 
macrostates. 

For derangements, n! is also the total number of microstates. A macrostate is the number of elements 
remaining in their original position. A set has n+1 partial and complete derangements. The multiplicity 
with a exp(-1) dependency of derangements and wavefunctions becomes (11) making (5) and (12) 
identical. 

If (12) is divided by n!, then the coefficients for each partial derangement term become probabilities, 
(13). This will also simultaneously satisfy the completeness relation. Mathematically 1/n! is a constant; 
and physically 1/n! is not a derangement and therefore independent of time. 

A deranged wavefunction is identical to the wavefunctions used in quantum physics today. However, 
the deranged wavefunction is independent of imaginary numbers, inner products, orthonormal bases, 
normalization and the measurement problem. Derangements provide a derivation for the time evolution 
of the wavefunction and the mechanism of collapse. Fundamentally, time is a derangement, and the 
temporal arrow is a phenomenon of derangements and entropy.
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