
Abstract 

How is it possible for a physical system to have goals? In the 
way we commonly use the notion, goals have qualities that 
are different from attractor states that characterize the dynam-
ics of a system’s progression. Goals are part of the characteri-
zation of at least minimally intentional systems. Thus, our 
question cannot be extricated from: What is the minimal de-
scriptive frame that allows us to describe a system as repre-
senting, choosing, committing to and pursuing goals? And 
when we can answer that: what processes and dynamics are 
necessary and sufficient for the genesis of such a system? 
 

 

Introduction 
If you are reading this, you are clearly a system that should 
fulfill our requirements for having goals. Before identifying 
properties of minimal goal directed systems, let us briefly 
build an intuition of what having a goal entails for a human 
being, such as you. Humans are social primates living in a 
complex dynamic environment, and their survival in this 
environment necessitates complex regulation. Changes in 
the environment may disturb the parameters within which 
the human organism can function: for instance, heat and 
cold may push the body temperature outside of the range of 
metabolic homeostasis, falls from great height might 
decelerate it too rapidly to let it maintain cohesion in its 
cellular organization, and so on. To build and maintain its 
structure, the human organism needs to consume negentropy 
in many forms from its environment. Informally, to create 
and maintain order against a continuos onslaught of 
disturbances, an organism must consume order in its 
environment, and in that, it competes with many other 
organisms. You are quite literally the set of structural 
principles that has outcompeted all other structural 
principles in consuming the negentropy in your volume of 
spacetime. 

Regulation starts with feedback systems, such as the ones 
in our brainstem, regulating heart rate, body temperature 
and breathing patterns. The controlled consumption of 
negentropy and avoidance of disturbances requires second 

order regulation, i.e. regulation that affects lower level 
feedback loops, for instance to switch behaviors on and off. 
Pleasure is a signal that tells the human nervous system to 
continue a behavior that is currently fulfilling one of its 
needs, while displeasure asks it to stop the current 
frustration of a need. To generate these signals, an organism 
must measure the need itself, and the changes in it, so it can 
correlate them to its behavior. Pleasure and displeasure are 
measures of preference between states. 

The regulation of future behavior is the domain of 
impulses. Impulses are the result of the association of need 
changes with observable patterns in the environment that 
increase the likelihood to afford the satisfaction or 
frustration of the needs, and actions that change the 
probability of the occurrence of these patterns. The human 
neocortex is tasked (among other things) with abstracting 
these patterns into situations—encodings over observable 
patterns that allow to classify different patterns into sets, 
according to the need they can satisfy. As a result, we can 
form situation representations as abstract and complex as 
“restaurant”, “fight”, or “graduation”. These situations can 
be arranged into sequences of events. If the probability of 
actualizing events can be influenced by actions, the events 
and transitions between them form causal models. Much of 
what we commonly call intelligence can be characterized as 
the detection of causal structure in a domain. 

If a situation is part of a causal model in such a way that 
the individual believes that it can increase the probability of 
its occurrence by effecting suitable changes in the 
environment, and the individual is able to assign a 
preference to that situation, because it affords a 
consumption that directly or indirectly affects a need, then 
this situation is called a motive. A motive becomes a goal by 
an act of commitment: by changing the internal regulation 
of the human so that the motive is actively pursued via 
enacting changes of the environment that are believed to 
increase the probability of the manifestation of that 
situation. This act of commitment is what we call a decision. 
What are the minimal requirements to construct a system 
that is capable of causal modeling, assigning preferences, 
and making decisions? It turns out that we can capture the 
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relevant elements of the description above in terms of 
information processing. Both the goal-directed system and 
its environment can be described as computational 
machines, and goals are a class of representational states 
within causal models created by certain computational 
observers. 

The computationalist perspective 
The computational perspective is perhaps the most 
significant contribution that the 20th century made to 
philosophy. It begins with the insight that the atoms of our 
epistemology should not be something as unfathomable as 
“phenomena”, but discernible differences, i.e. information, 
which can be expressed as states, which are vectors of bits. 
As Claude Shannon discovered, systems can be 
characterized by their information entropy [1948], the 
number of states a system may be in, based on what we 
know about the system.  

When systems change, we can describe that as changes in 
their state vector. Let us call the function that orders the 
states (i.e. derives one state from its predecessor) the 
transition function. This function may be deterministic or 
probabilistic, discrete or continuous. A computational 
system is one that can be described as a non-random 
succession of states, based on a single transition function 
that captures the regularities in all state transitions. Alonzo 
Church and Alan Turing famously discovered a class of 
systems that can all compute the same, infinitely large set of 
(Turing) computable functions [Church 1936]. Every 
computer that allows us to implement a Turing Machine 
[Turing 1936], and that can itself be implemented on a 
Turing Machine, can effectively compute all the same 
functions. (However, not all functions can be equally 
efficiently computed on all these systems.)  

But of course, there are computational systems that have 
lesser or greater power than Turing Machines. For instance, 
if we limit the state vector and the state space to finite 
numbers, we obtain a finite state machine, which can only 
compute a finite set of functions. Using continuous 
transition functions, we can define a class of 
hypercomputers that can solve certain geometric problems 
with infinite precision. We can even define a-causal 
hypercomputers that use a transition function that derives 
part or all of the current state from one of its successor 
states: a kind of “time machine” that can tell us next week’s 
lottery numbers today. 

The characterization of systems as computational 
machines makes the perspective of mechanistic philosophy 
much more precise and useful, by replacing the intuition of 
a universe built from moving parts that are interacting in 
regular ways with a universe that changes its state by 
regular transitions. Julien Offray de LaMettrie anticipated 
that change in his famous pamphlet “L’homme machine” as 
early as [1748], when he argued that humans are best 

understood as machines, and that these machines should be 
seen as mathematical and transcendental. 

When be begin to see the physical universe as 
computational, rather than mathematical, we realize that 
mathematics is the domain of all formal languages, most of 
which is uncomputable, whereas computation is the domain 
of systems that can be implemented, and thus may exist. 
Mathematics is the realm of all possible specifications, 
computation is the realm of implementations. 

Causal systems 
We usually define the universe using its causal envelope, 
i.e. everything that contributes in some way to the evolution 
of the universe’s state vector is part of it. However, an 
observer that is situated in a universe does not have access 
to its whole state vector, and thus it will have to limit its 
observations to a small subset of the bits of the universe 
state, from which it may make predictions concerning the 
future state of another small subset of bits. As a result, 
observers are usually concerned with open systems, i.e. sub-
systems that must be described conditionally, depending on 
the influence or non-interference of unknown or 
independently modeled parts of the environment. A system 
in which the distribution of expected states changes 
(deterministically or probabilistically) as a result of such 
variables inflicted by other systems outside the current one 
is what we may call a causal system [cf. Pearl 2000]. The 
variable that yields the conditional difference in the state 
transitions is called the cause. In the extreme case, when we 
have a causal system that captures the entire state space and 
all possible transitions and conditions, we have an 
algorithm. 

Causal systems are usually implemented by a substrate, 
that is, by the dynamics of other, underlying causal systems, 
which provide the means to store the information 
determining the state, and the process to execute the 
transition function. The relationship between a systemic 
description of the substrate dynamics and the causal 
structure its implements is called supervenience, or 
supervenient emergence The causal system is stable as long 
as the underlying dynamics do not compromise its transition 
function (otherwise, it will turn into something different). 
Because causal systems are rarely completely closed off 
from all possible influences of their substrate, they are 
usually incomplete characterizations of physical systems. 
However, if an observer finds itself in an entirely stable 
causal system, that observer will be causally insulated from 
all underlying dynamics, and cannot learn anything about 
the properties of the substrate beyond the fact that it 
provides the necessary and sufficient conditions for 
computing the observable state changes.  
Causal systems, while being computational, do not 
necessarily have to be computable. They can often be 
characterized by emergent noncomputable mathematical 
dynamics that are nevertheless (approximately) 



computationally implemented by the substrate layer. For 
instance, the causal evolution of waves on the surface of a 
body of water can be described by partial differential 
equations, which are hypercomputational, but it does not 
follow that our universe can actually compute them with 
arbitrary precision. Instead, the waves are emergent 
statistical properties of the aggregate local interactions of 
very large numbers of water molecules, which in turn are 
emergent properties of the aggregate interactions of 
elementary particles, and so on. The properties and 
computational dynamics of water waves do not capture the 
implementation of the physical universe, but the best 
specification of a causal system found by an observer that is 
not coupled to particles, but to their aggregate properties, 
such as local changes in the height of the water surface.  

Observers 
Let us define a minimal general observer as a causal system 
(not necessarily one that is computable by a finite state 
machine) that has access to an environment, which is itself a 
bit vector with a regular transition function of some kind. 
The access is given by a subset of the environment bit 
vector (the interface) that is at the same time a subset of the 
observer bit vector, in such a way that changes in the shared 
bits do not immediately lead to a change in its transition 
function, i.e. destabilize the observer.  

The observer must implement a function that leads to 
change in its internal state beyond the interface. The portion 
of the information in the interface that contributes to a 
change in the observer beyond the interface is the 
observation. The interface are only those shared bits for 
which a function is implemented in the observer that 
satisfies observer stability and causal influence on its 
internal state. 

Using our definition, observers do not have to be humans. 
A camera will qualify as an observer, too. So will an ant, or 
a falling leaf that bends as a result of a gust of wind, or rock 
that increases its temperature while the sun shines on its 
surface.  

Observers are characterized by the causal structure that 
we impose in our description of their coupling, their state 
space and their transition function.  

Observers can be be described algorithmically, for 
instance using the idea of Solomonoff induction [1960]: 
Given a computational observer that is coupled to its 
environment with a vector of bits, the best model that the 
observer can possibly find about this environment is the 
shortest program among all the programs that best predict 
the current observation from all past observations, for all 
observations. We may use also non-algorithmic 
characterizations of our mental processes, for instance 
dynamical systems [cf. van Gelder 1998], which do not even 
have to be computable. The implementation of our 
memories and perceptions, and the causal structure of the 
transition function that lets us access and compare them, is 

only implemented as an approximation. The degree to which 
we can make observations of our environment is limited by 
the accuracy of our own implementation. 

In a similar, but more fundamental way, any physical 
system that is coupled with another system it observes 
might itself only be realized in approximation. The degree 
to which a system can determine the state of its environment 
is not only given by the information that is available to the 
observer, but by stability and degree of realization of the 
state and the transition function of the observer itself. 

Reversible computational substrates 
I think that foundational physics ultimately explores the idea 
that there is a fundamental, causally closed layer to the 
universe. However, if we discovered such a layer, we may 
not say anything about its substrate beyond the fact that it 
can produce the basic dynamics that give rise to the 
observable universe, because a causally closed layer will 
insulate observers from everything below it. The machine 
that implements the universe: Aristotle’s Prime Mover— the 
inevitable principle that moves the universe along without 
moving itself—is forever out our reach. 

However, the laws of conservation that we empirically 
observe in our universe might indicate a fundamental 
property of its computations: the transition function that 
operates on its states could be reversible.  

A reversible computer cannot destroy information, which 
means that none if its operations can delete bits. Conversely, 
our digital personal computers can delete bits: the result of 
an AND or an OR operator will not allow us to deduce the 
bits that went into the operation. 
A reversible process is not necessarily a symmetric process. 
For instance, imagine a set of idealized, frictionless billiard 
balls, lined up in their well-ordered initial position on an 
infinite playing field. After we confer a strong initial 
impulse to them, they will enter a short phase of occasional 
collisions, which will end after they have spread out so far 
that no further collisions are possible. During their 
collisions, the balls confer information (momentum) to each 
other, which influences their trajectories, so that collided 
balls may take different courses at different speeds than the 
others. The asymmetry between the interactive phase and 
the solitary phase, and between “virgin” balls and collided 
balls is not in conflict with the reversibility of the process, 
but a function of the starting state and the openness of the 
playing field. The former may be reversed by deflecting all 
balls back into the field at the same time, and the latter by 
restoring the original distribution of momentums by 
inverting the collisions. 

If we limit the playing field with a boundary, the balls 
will be deflected, and they will eventually reach an 
equilibrium dynamic. (If the field is discretized, i.e. the balls 
can only occupy a finite number of positions, the 
equilibrium dynamic will eventually enter an infinite loop.) 



A reversible universe is deterministic: if the collisions and 
momentum exchanges of the balls are probabilistic, it will 
be impossible to perfectly restore the starting state by 
inverting all collisions. 

It is trivially easy to implement a reversible computer on 
top of an irreversible one, simply by outlawing all 
operations that might delete a bit, or by keeping an “undo” 
history of those that do. It is also possible to build an 
irreversible computer on top of a reversible substrate, but 
each time a bit is deleted, it will have to be stashed away 
somewhere. Thus, the longer an irreversible system runs, the 
more indelible “garbage bits” it will accumulate. 

Observers and other emergent causal systems have an 
interesting property: they are necessarily irreversible 
computers. To be stable, their implementation must involve 
mechanisms that keep their transition function (i.e. the 
characteristic dynamics of the system) unchanged in the 
face of small disturbances by the substrate. Observers are 
ergodic systems, their underlying regulation will keep the 
implementing causal structure in a limited parameter range 
that is independent of the system’s history. For example, our 
body temperature should be largely independent from 
yesterday’s room temperature. Any regulation that lets the 
system forget past disturbances must effectively delete bits, 
i.e. reduce its entropy and because these garbage bits cannot 
infinitely accumulate in the system itself without 
destabilizing it, they will have to be ejected from it, and thus 
require an environment that exhibits at least temporary 
openness. 

This does not only apply to organisms, but to digital 
personal computers as well, which are built to exhibit the 
same functionality at different battery levels, different 
environmental temperatures and so on. It even applies to 
planetary orbits, or the formation of celestial bodies from 
interstellar gas. All these systems exhibit stability against 
disturbances, and consequently they depend on a 
disequilibrium, in which their environment can absorb the 
bits they need to delete.  

The ability of a system to absorb entropy is called 
negentropy, and the existence of any stable causal system 
depends on the availability of a suitable negentropy gradient 
in its environment, and because the available negentropy is 
a function of a starting state of the evolution of a reversible 
system, causal systems implemented in a reversible 
substrate will have only a temporary existence. 

Life  
Different causal systems may compete for the same sources 
of negentropy. If negentropy gradients cannot be collapsed 
by simple systems, they open an opportunity for complex 
systems that may apply higher degrees of control through a 
more complex transition function. Using these opportunities 
may require systems to actively explore the space of 
transition functions, i.e. to turn into new systems with 
behaviors that are better adapted to their environment. The 

smallest universal machine we know to be capable of 
extracting negentropy over a wide range of environments is 
the cell. The cell is in fact very large, a structure that 
typically extends over 24 magnitudes above the Planck 
scale, and it implements all necessary functionality for 
maintaining homeostasis, replication, complex information 
processing, and executing an evolutionary search that lets its 
descendants adapt to different opportunities for the 
extraction of negentropy. 

All life is made of cells, and while cellular replication and 
evolutionary adaption make it an incredibly robust causal 
structure, the genesis of the first cell from simple organic 
chemistry seems to have been an event so unlikely (or is at 
least so poorly understood) that it may have had to be 
helped along by a generous number of cosmic dice throws. 
The last universal common ancestor of all known cells 
(LUCA) is thought to have existed 3.8 Billion years ago, and 
it already possessed a complexity similar to today’s single 
cellular organisms [Weiss et al 2016]. 

The conditional information processing and specialization 
of cells enabled the evolution of multicellular organisms: 
stable causal systems on the next level of supervenience, 
implemented by large numbers of coordinated cells, with 
more complex information processing facilitated by 
specialized cells.  

In turn, the evolutionary competition between organisms 
gives rise to coordinated groups of separate organisms, 
implementing an even higher level of supervenience.  

The nervous systems of multicellular organisms will 
regulate the disturbances imposed on the coordinated group 
of cells by their environment, and in accordance with the 
Good Regulator Theorem [Conan and Ashby 1970], the 
plasticity of large multicellular information processing 
allows for regulation that is so flexible that it will tend to 
form models of this environment. Hence, multicellular 
organisms with a sufficiently complex nervous system can 
usually be characterized as agents, a notion to describe goal-
directed computational systems, which was developed in the 
context of Artificial Intelligence in the 1980ies [cf. Bratman 
1987]. The same is often even true for coordinated groups of 
agents, i.e. organization of agents can implement 
supervenient causal structures that realize all criteria of 
agency by themselves. 

Goals 
Colloquially speaking, an agent is a causal system that is an 
observer with internal states that encode beliefs, desires and 
intentions (BDI) and that is capable of affecting its 
environment according to its intentions.  

A goal is a world state represented by an observer, in 
such a way that the observer realizes a causal mechanism 
that will regulate the environment to increase the probability 
of occurrence of that state, according to the model of the 
observer. 



Thus, a goal has complex prerequisites, it does not just 
entail the tendency of a system to increase the probability of 
an reaching a state! Rather, goals are intentional states, and 
they do not concern present conditions and actions, but 
predicted ones. A goal presupposes at least the following 
components in an observer: 
1. A mechanism that maps observations to suitably 

generalized encodings (world states), which we may 
call the encoding function. 

2. A prediction function that allows to anticipate future 
world states in a causal structure, i.e. in a model that 
extrapolates which operations on the environment will 
influence the probability of reaching a given world 
state. (The encoding function and the prediction 
function implement the generation and manipulation of 
beliefs.) 

3. A preference function that imposes an ordering on the 
anticipated possible alternative world states. (The 
preference function implements desires.) 

4. A decision function that changes the agent’s state 
(intention) so that it anticipates to perform operations 
that sufficiently increase the likelihood of the 
occurrence of a selected, preferred world state, 
according to the prediction function. 

As we see, this understanding of goals does not only capture 
our intuition of goal-directed behavior in humans. Rather, it 
does so for computational systems in general: agents are the 
minimal causal structures that are capable of holding goals 
in a a meaningful sense. While agents are characterizations 
of particular physical systems, most physical systems cannot 
meaningfully described as exhibiting goal directed behavior, 
in the absence of implementing functions for encoding, 
prediction, preferences and decision making. 

To explain how this computational notion of agency can 
arise in a physical universe, I have taken you on an brief 
excursion from information based epistemology, the 
metaphysics of computational machines, an understanding 
of causal systems and computational observers, through 
computable worlds, irreversible dynamics in reversible 
worlds and machines that evolve to defy entropy, to finally 
characterize observing agents that do not just model the 
world but are also capable of holding preferences and to 
make decisions.  
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