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Abstract

Simple mathematical structures such as numbers or elementary ge-
ometry are directly tied to physical observations. Wigner pondered
the existence of similar one-to-one correspondences between more
advanced mathematical concepts, such as algebras, and the actual
world. The compilation of such a list of “maps" is in itself a formidable
research project en route to finding limits of the interplay between math-
ematics and physics. In this essay we will study the weighing problem,
an example given in the 1930s to illustrate the idea of “complex experi-
ments", and construct step by step the underlying group Z2 ×Z2 and
its representations. The concepts involved are advanced enough to
highlight a non-trivial link between mathematics and physics without
losing the idea midway through the formalism.
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It is impossible to study this amazing theory without experiencing at some times
the strange feeling that the mathematical formulas somehow have a proper life, that
they are smarter than we, smarter than their author himself, so that we obtain from
them more than was originally put into them. — Heinrich Hertz [2]

It might be surprising to hear, but as an experimentalist I have to think
about mathematical structures when I devise an experiment. This is because
the measurement settings usually do not only form a simple set but there
is a relation between them. For instance, if we have measurement settings
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“on" and “off" and measure the light intensity for both settings, yielding
(Ion, Ioff), then these two settings form the group Z2.1 Representation theory
then tells us we can calculate Imean = 1

2 (Ion + Ioff) and Idiff =
1
2 (Ion − Ioff),

which is known as the discrete Fourier transform. How obvious is it that we
can calculate the mean and difference? Where do they come from? What if
we define other quantities like Iweird = − 1

3 (Ion + Ioff)? What would they tell
us? Is it even logical to calculate this quantity given the simple experimental
setup? Without a proper understanding of how mathematics and physics
are connected, those questions are hard to answer. The principal idea is
that one cannot set up an experiment and independently define the mathe-
matical structure describing it. These two things are inherently interwined,
which we must keep in mind if we are looking for unbiased measured and
calculated quantities.

With this in mind let us now look at the weighing problem, which was
introduced by Yates [3] and Hotelling [4] to illustrate the idea of “factor
analysis". Developed for the systematic study of the interaction of factors
such as sunlight and weed killer on crop yields, it was soon realized that ex-
periments whose outcome depends on multiple factors is a far more general
scenario. As interesting as this is, we will not go into details here, restricting
ourselves to the setup and result of the weighing problem. Assume you
have seven light objects and you have to determine their weight with a
simple single pan scale that has an intrinsic bias, which can be regarded as
an additional weight. One approach is to weigh each object individually.
A statistical uncertainty σ is associated with each of the eights weighings,
including one for the bias, which can be reduced to σ/

√
N for each mass by

N repeated measurements.

The weighing problem can now be formulated: is there a better experi-
mental design? The answer is yes. The key: simultaneous weighings done
with a scale that has two pans. It is easy to show that, in this case, eight
weighings are sufficient for a statistical error of σ/

√
4, which is substantially

less than the 32 weighings needed with the simple scale. This is only the
starting point for the exciting development of the field of optimal experi-
mental design, but we will now concentrate on the mathematical features of
this little problem.

1There are many ways of seeing this. Note that the measurement setting “off" records the
background only whereas “on" measures both signal and background, i.e. the background is
contained in both settings, hence the relation.
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Figure 1: Physical realization of the Fourier transform over G = Z2 ×Z2 by weighing
objects. The masses M form a set and the single pan experiment defines, via the bias m0, a
relation on M which renders it to the group G (see text). The minimum uncertainty weighings
require a double pan scale, which allows one to measure differences. Each weighing with
the double pan corresponds to an irreducible representation of G. The act of placing the
objects in the respective pans in each weighing constructs the character table of G.

Trick or truth?

We simplify the original formulation a little bit and consider the weighing
problem for three light objects m1, m2, m3 and a bias m0, forming the set
M = {m0, m1, m2, m3}, as shown in Figure 1. What we see is how the
single pan weighing defines the masses experimentally and how this is
structurally related to the more elaborate double pan weighing. Surprisingly,
the Hadamard (transform) matrix H4 shows up, which is nothing less than
the character table of — or Fourier transform over — the group Z2 ×Z2.
Let me emphasize that this is not a transform that we do on a piece of paper
or a computer, but by placing masses in pans.2 Why do we obtain the group

G = ({m̃0, m̃1, m̃2, m̃3}, ·) ∼= Z2 ×Z2 (1)

when we devise the single pan weighing? (Note that we use m̃i in G to
denote mi as defined by the experiment.) Where does this structure, which is

2This is what interferometers do: instead of measuring the spectrum directly with a
spectrometer, an interferogram is recorded and the spectrum is obtained by application
of the inverse Fourier transform. This can reduce the measurement errors, leading to the
so-called Fellgett advantage.
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imposed on the set M, come from? Why is the Fourier transform over a
group appearing in plain sight?

First observe that the single pan weighing allows us to make sense of ex-
pressions like m1 + m2 because we can put both m1 and m2 on the scale.
However, differences like m2 −m1 cannot be measured with this scale. The
natural combination of elements of M, and thus the most direct way of
weighing each mass, is determined by the unique element m0:

m0 → m0 (2)

m1 → m1 + m0

m2 → m2 + m0

m3 → m3 + m0

This gives us the group elements (see Figure 1):

m̃0 := Weigh m0. (3)

m̃1 := Weigh m0, m1 together and leave out m2, m3.

m̃2 := Weigh m0, m2 together and leave out m1, m3.

m̃3 := Weigh m0, m3 together and leave out m1, m2.

which partitions the masses into two sets: weighed or not being weighed.
The identity element is obviously m̃0.3 Also, each element is its own inverse
because m1, m2 and m3 are related to m0 individually but not jointly. This
should become clearer soon when we answer the more pressing question:
what is the group multiplication? Here things start to get less obvious. The
following excerpt of Fisher’s group theoretical account of factor analysis
shows that the physical picture is still in the mists [5]:

A group may be formed, of which the elements are all the selections that can
be made of none or more out of n letters. The order of the group is 2n. The product
of any two elements is formed by combining the letters they contain, deleting any
they may have in common. The group is, therefore, Abelian.

Let me translate this to our situation. Each group element is specified
by the masses that are not put on the pan:

m̃0 = () m̃1 = (m2, m3) m̃2 = (m1, m3) m̃3 = (m1, m2) (4)

3Again, this is the bias of the scale. In other areas such as medicine this would correspond
to the control treatment or group.
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Then one can combine two elements m̃i and m̃j as follows:

m̃i · m̃j = (masses left out by m̃i) · (masses left out by m̃j) (5)

:=
{

put mass left out by both weighings on pan if i 6= j
put nothing on pan if i = j

Thus, each element is its own inverse and the group is Abelian. But is
this description really satisfactory? This is where careful thinking starts.
To illustrate the subtleties involved, look at the group identity in Figure
1, which is depicted as the experimental situation where only the single
pan and its bias m0 is relevant. Notice that we did not place m1, m2 and m3

next to it. Why? Because that would be an inaccurate description of what
the identity is all about. The single pan with its bias exists independent of
whatever we are going to weigh with it. It would be the same if we decide to
weigh seven objects. This reflects the unique status of the identity element.
If, instead, we had defined

m̂0 := Weigh m0 and leave out m1, m2, m3, (6)

then we also need to redefine m̃0 = (m1, m2, m3) in (4), which would lead
to difficulties with (5). For instance m̃0 · m̃1 would be “put both m2 and m3

on the pan", which is an undefined experimental situation. It is of course
physically possible, but would require a different structure — another trans-
formation — to disentangle the information about m1 and m2 in this joint
weighing. But then, what is the relation between m̃i and m̃j (i, j 6= 0), given
that mi and mj are not weighed together? It seems like the only relation is
given by the simultaneous weighing of each mass mi (i = 1, 2, 3) with m0.
However, we systematically leave out two masses in each weighing, which,
for example, defines the relation between m̃1 and m̃2 as “both left out m3

in their weighing". This sounds very abstract since by reading off the scale
we only obtain information about the relation between mi (i 6= 0) and m0.
But careful here. The actual weighing adds a little bit more structure to the
existing setup by defining a function R : G → R. That is, for each weighing
the scale produces a real number. The group is only concerned with what
we have set up: there is a special mass m0, for each measurement the masses
are partitioned into being weighed and not being weighed, and one mass
is weighed at a time (together with m0). This definition is very general and
in principle there is structural information contained in both the relation of
the elements in “being weighed" and “not being weighed". It is the function
R that specifies what information we use and what we discard.4 Therefore,
Figure 1 is a bit misleading because there the “meter" is already included in

4For sake of clarity, I did not define “information" and use it only to convey the idea.
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the scales, hinting that we measure only relations that “are on the pan" and
thereby already including the function R. This only exemplifies the struggle
for a consistent and yet accessible physical description.

We have established that it is the experimental idea and measurement
settings that define the group. It might therefore be surprising that the
corresponding irreducible representations and Fourier transform are “so
real". Irreducible representations of a group are special types of group
homomorphisms, i.e. maps that preserve the group structure. Here, we
physically construct the four of them (ρ1, ρ2, ρ3, ρ4) by replacing the single
pan with a double pan scale. This basically maps “leave out mi and mj" to
“put mi and mj in the second (reference) pan", which can be seen in Figure 1.
This allows us now to measure “real differences", unlike the inverses of G.
Moreover, each of the four weighings i = 1, 2, 3, 4 is the Fourier transform
of m̃0, m̃1, m̃2, m̃3 at irreducible representation ρi because, as Figure 1 shows,
by placing the masses in their respective pan, we form the transformation
matrix “with our hands".

What have we learned? Given that the Fourier transform is clearly visi-
ble and knowing that it works to describe this experiment, it seemed like
a trivial task to physically construct the mathematical structure around it.
Though we ended up with a “faithful map" between the axioms of a group
and elements of the experimental setup, its construction proved to be hard,
which is not what I expected at the outset. A clear understanding of the
physical-mathematical relationship, then, enabled us to associate the double
pan weighing with irreducible representations by simply seeing that the
only change, compared to the single pan weighing, is that everything that
is not being weighed is now put in the second pan. Given that structurally
nothing else changes we immediately know that they are irreducible rep-
resentations. If we were just given the double pan weighing and we were
asked to identify the mathematical structure describing the experiment, we
would have had an equally hard job (if not harder).

What conclusions can be drawn with respect to the reality of mathematics?
Certainly, there are “real" elements because the relationship between physi-
cal objects embody the mathematical structure, most prominently with the
identity element.5 Other parts, like inverses, seem more fuzzy but eventu-
ally every element of the mathematical structure has meaning. Let me point

5For example, Tegmark [6] points out that vector spaces have too much structure to
support the idea of a homogeneous space. For all practical purposes, however, we have a
reference point, e.g. center of gravity, which is why we need an identity element~0.
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out that the transformation describing the experiment must be the character
table of G. For instance, one cannot simply replace “-1" by “0" and say this
is an equally valid transformation. It is certainly a possible transformation,
but not for our experiment: the double pan scale really shows the difference
between what is put in the right pan (+1) and what is put in the left pan
(-1). Replacing -1 by 0 would mean to not use the left pan at all, effectively
reproducing the situation with a single pan. In applications, for example
the theory of optimal experimental design and Hadamard transform optics,
the Hadamard transform can be used as a tool without ever mentioning
representation theory, in which we would call it a character table. It just
works, and in practical use the full representation-theoretical description
must feel like a mathematical sledgehammer — which, not surprisingly,
blures the relationship between mathematics and physics at times.

So what have we achieved? We constructed a proper map between elements
of physics and mathematics. We did not just loosely connectoi elements (the
obvious part), but have preserved their relations as well (which was tedious).
But what have groups and representations to do with weighing objects in
the first place? This is a question we can only answer after analyzing a
large number of similar problems. Our job is to prove that a certain physical
situation is a mathematical structure is disguise. We need to understand
how nature chooses its mathematical dresses, and only then are we able to
connect the dots and tackle the bigger questions.
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