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Abstract 

Can reality emerge from abstraction, from only information ? Can this information be self emergent? Can a structure be both the 
software and the hardware? Can it be ultimately simple, just equivalent to a set? Can symmetry spontaneously appear from pure 
mathematical consideration, from the most symmetric concept, a platonic “sixth element”? Would this symmetry be just 
structuring all the particles we know? Can all this be represented? Can standard physics be computed from this model? Eight 
questions: eight times yes. So this model is definitely DIGITAL, and is postulated to be reality. 

I. INTRODUCTION 

We want to understand our physical universe, at least a space-time hosting 3 families of fermions, and a few 

bosons, interacting through strong, weak, electro-magnetic and gravitation forces, verifying general relativity at large 

scale, and all the known symmetries of quantum physics at particle scale. We do not start with an underlying 

geometrical background space. At the beginning the structure has to be just a set, the set of subsets of cardinal 3, and 

designed as a trivalent graph, a purely discrete and informational structure not needing any previous background to 

exist. We demonstrate that such a structure has to fit standard physics. The underlying geometry has to be an F4 

hyper-diamond lattice, designing a four-dimensional crystal, with super-nodes at centers of the D4 optimal sphere 

packing and densest regular lattice, linked to 24 neighbors at vertices of the sixth element, the 4D platonic 

icositetrachoron (or 24-cell), and 24 links to vertices of the dual figure, in the same lattice. From this exceptional 

self-duality emerges an 8D ultra-local structure with all 240 E8 roots characterizing particles, both fermions and 

bosons, in a non-associative manner, where triality, as a rotation, explains why there are 3 families of particles. We 

show how this 48-valent super-node is naturally built as a trivalent spin network topologically encoding 48 bits of 

information, where the maximal symmetry is the state of void, and an increasing number of defects (or bugs) 

encodes photons, bosons and fermions. General relativity emerges by using Loop Quantum Gravity on the model 

where, in Ashtekar variables, the frame-field and the connection are implicitly encoded by the local network 

topology, through an encoding we disclose here. 

 

Our model is developed to provide a framework for digital physics [1]. It is a conceptual breakthrough in the 

definition of a space based on set theory [2]. We can compute gravitational field [3] from its metrics. Here we 

specify its formalism in information theory, and build foundation for applying Loop Quantum Gravity on it. 

This model is a complex system on several levels, where the fundamental level is that of a trivalent graph. 

The second level is the encoding of information in the topological graph structure. 

The third is the encoding of local symmetries and algebraic properties. 

The fourth is the emergence of a metrics, a dimensionality and a curvature of the assembly of sub-graphs, as 

super-nodes in a network of crystalline type. 

It is possible to work at every level of this model by maintaining a good coherence. We optimize at a fundamental 

level the simplicity of the structure, while allowing the emergence of great complexity in the modeled system. 

The hyperdiamond model is postulated to be reality because one metaphysical and mathematical reason -the 
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exceptional self-duality and dimensional unicity of the sixth element makes it the ultimate symmetry-, and one 

physical and scientific reason -this symmetry gives birth to exactly the particles observed in the reality, with all their 

symmetries, and the “falsifiable” prediction of some new bosons.  

The same approach can be practiced while using other lattices (than F4), to build toy models for pedagogical 

reason. This family of models is designed to provide a framework for a new theory of everything, unifying in 

theoretical physics, the phenomena of quantum physics and our knowledge of the standard model with gravity and 

the conception of a space according to general relativity. Whether if reality is digital or analog, our model is digital. 

There is still debate, and this FQXi question may close it, whether the nature of the universe is discrete or 

continuous. Some even speculate that the reality is the alliance of two [4] ”Conjecture 1: At some energy level, 

space-time is the product of a continuous four-dimensional manifold times a discrete space F.” 

Others postulate a discrete system (and possibly finite) is sufficient for the emergence of an apparent continuity, 

which is an approximation of the discrete. 

The main result of the present work is the demonstration that a phenomenon hitherto treated as continuous course, 

emerges naturally in our discrete model: gravity. As it emerges from a simple graph, we call it "graphitation". A 

similar word game has already been used for an approach to quantum physics in a graph, called "Quantum Graphity" 

[5] [6]. But the approaches are different; physicists have built several discrete models, graphs or networks, to 

implement continuous physical equations, by keeping the current models in discrete format. These approaches are 

top-down, as they depart from known results, to find a consistent underlying structure. 

Our approach is bottom up, starting with a simple model ultimately (in fact the level of set theory, the foundation 

of mathematics), and constructing according to a principle of economy, said "Okham’s razor principle" [7] (Rursus 

absque necessitate et utilitate est pluralitas fugienda) [8] a layered model to the more complex reality.. 

 

II. GRAPHITATION, BOTTOM-UP APPROACH 

 

In our bottom-up approach, we start with a trivalent undirected graph. 

1.1. Construction 

A graphiton model is a trivalent graph checking at least two properties: a quasi-invariance on a large scale (a 

large number of nodes in the graph, evenly spaced, are topologically equivalent if one neglects a small number of 

disturbances), a characterization of local geometry at small-scale by the presence of triangular loops encoding bit 1. 

Graphiton, a basic element of our model, is simply a node with three ends, each connected to another graphiton. 

So, while any totally trivalent graph is a blend of graphitons, for it to be a model, it must satisfy the properties of 

global quasi-invariance and local geometric encoding. 

A graphiton model can be interpreted in different scales. We will distinguish four scales (see Figure 1). 

Level 0 is the fundamental level, in which the model is a simple undirected trivalent graph, where any node or 

connection doesn‟t carry additional information. 

 

 

Fig. 1. Four-level view of a) a simple node, b) a sub-graph. At level 3 (supernode) the graph is not trivalent. At level 2 (differential bits) 

tetravalent bits appears. At level 1 (topological bits), nodes are added so the graph becomes trivalent, and nodes hold a bit. At level 0 (trivalent 

graph), 1-valued nodes are replaced by triangles. The structure exists only at level 0, but can be decoded at levels 1, 2 and 3. 
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Level 1 is obtained from level 0 by adding a binary property in each node; each node carries a bit, taking the value 

0 or value 1. 

The equivalence between Level 1, informed graph, and level 0, is ensured by the transformation T2 (see Figure 3) 

by Alexander [9], which replaces each node with a value of 1 at level 1 as a triangle consisting of three nodes at 0, 

and does not change the nodes on the value 0 to level 1. 

If the graph is information homogeneous, id-est. contains as much bit 0 as bit 1 at level 1, while its equivalent in 

level 0 will double its number of nodes (and therefore connections). 

Unless explicitly stated otherwise, we always work on information homogeneous graphs. 

Our models have a natural encoding and regular, homogeneous information, which can be seen as physically 

optimum polarization for a certain Hamiltonian, defining a ground state of the system. 

This system may be disrupted and contain additional information, at level 2, by inverting two narrow bits 0 and 1. 

We show (see Figure 4) that this inversion is made only by means of Alexander‟s T1 transformations (see Figure 

2), which provides a number of dynamic invariant systems, and indirectly, ownership of causal invariance discussed 

by Wolfram [10]. This T1 transformation is also refereed in literature as 2-2 Pachner move, or bistellar flip. 

The concept of dynamic trivalent network (trinet) evolving by these moves (named “diags”) was explored in [11].  

The T1 transformation is intuitively the simplest, most realistic, most economic possible evolution of a trivalent 

graph. It applies to a connection between two nodes, and involves two other neighbors of each of these nodes. Of 

these 6 nodes forming the face of an H if the connection is in horizontal view, the T1 transformation rotates H 90 

degrees. This can be done on a continuous basis through a transient state in which a tetravalent nodes 5 is at the 

center of an X shaped figure (Figure 2 When nodes 5 and 6 are merged). 

 Fig. 2. Elementary move: T1 inversion 

 

 Fig. 3. Elementary move: T2 insertion 

At each connection, we can apply two different transformations T1, according to one of the first neighboring node 

is found connected to a second neighbor node, or the other. 

If the graph is locally planar, one T1 transformation retains planarity, and the other does not keep, thereby 

determining an implicit one that will be applied. 

1.2. Disrupting 

At level 1 (see Figure 1), a disturbance is the inversion of values 0 and 1 of two bits carried by two nodes, either 

neighbor (at distance 0), or narrow (at distance 1, separated by a node); thus giving a 1 value to the corresponding 

„differential bit‟ at level 2. Differential here means inverted versus a polarized information background. 

1─0 ↔0─1 

1─1─0 ↔ 0─1─1, 1─0─0 ↔ 0─0─1 (figure 4) 
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Fig. 4. Bit inversion 1─0─0 ↔ 0─0─1 as a sequence of four Alexander T1 moves (The transient four-valent X-state is enhanced by a bigger dot). 

1.3. Dimension of the system as a space 

The dimension of the graph depends on the chosen scale. We distinguish three levels: 

Ultra-local dimension: around a node, a trivalent graph is of dimension 2 [12] considered the local restriction of a 

hexagonal lattice. 

Local scale: within a super node, the structure is that of a binary tree whose dimension is infinite, because the 

number of neighbors at a distance r increases as 2
r
, and therefore more quickly than r

d
 for any finite dimension d. 

 Global dimension: imposed by the regular system chosen (2 with a grid, 4 with hyperdiamond [13], n-1 with a 

simplex ...) 

1.4. Global topology of space 

Closure can imply a shift if a line does not meet itself after a tour, but a neighbor, like the non-commutative torus. 

Closure may reverse the orientation, forming a Moebius strip, a Klein bottle, or other not oriented spaces [14]. 

1.5. Lattice regularity 

 Regular lattice 

We can apply our model to any regular lattice, like the square lattice, the checkerboard lattice, or even lattices in 

the A, D, E, F families. 

We can further investigate applying it to quasi-regular lattices: Quasi-crystal or Penrose tiling (cf. [15]). 

 Almost –regularity 

We can expand the set of acceptable models to almost-regular lattice, defined as regular lattices admitting a 

number of irregularities < n
(d-1)

 for a graph of n
d
 nodes and global dimension d. 

 Local regularity 

As a special case of almost-regularity, we can build models which physically correspond to the structure of 

natural crystals. They are admitting irregularities on the surfaces of dimension d-1; locally regular but globally 

isotropic. The space is broken into pieces of irregular crystals which themselves are regular but not parallel to each 

other. 

It will then be useful to study the dynamic behavior to inter-crystalline walls. 

From a mathematical point of view, the almost-regularity and local regularity are similar because they induce the 

same small number of irregularities with respect to the global regularity necessary. 

1.6. Intrinsic space 

The fundamental advantage of the graphiton model is its creation of intrinsic space. The system from the outside 

is a graph whose nodes do not coordinate in any space (unlike all previous approaches to discretization of physics). 

But thanks to the encoding of information in the topology of this graph, the model finds the characteristics necessary 

for a metric space, beyond the mere internal metrics of the graph, which alone would be insufficient. The graphiton 

model is an information system capable of emulating a space. And a rather rich area because it is Riemannian [16] 

and admits a local curvature, it can be Ricci-flat, where, in the absence of disturbance, any node at level 3 is 

topologically equivalent [3]. And most importantly, local disturbances linearly induce a curvature, then a tilt of 

geodesics at any point in space, forming a gravitational field. This field is attracted towards disturbances that are at 

its origin, and is additive; these are necessary conditions for a gravitational field reflecting the effect of mass 

disruption. So this space is quite a natural framework for a theory of general relativity. But if space is locally 

anisotropic as directions are marked by the regular network, the gravitational induced field remains isotropic and not 
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focused only along the directions of the network. Thus a movement in the network in response to the gravitational 

field can follow any direction not subject to the directions of the network. 

1.7. Space as a network 

The general idea that the ultimate nature of space is a trivalent graph and some topological characteristics of this 

graph encode a mass effect, with a result on the curvature and the possibility of calculating a Ricci curvature and the 

Einstein field equation [16] was developed by Wolfram in [10]. 

The fundamental contribution we make to this concept and which allows an effective implementation is to 

effectively place a layer of information in the graph at level 1, associated with the regular structure at level 2. This 

layer allows information to move intrinsically within the graph at a selected distance in both directions (2 directions 

for each dimension), and calculate the gravitational field and the Ricci tensor [16]. 

In the most random graph models proposed by Wolfram, these calculations were impossible and the notions of 

Ricci tensor couldn‟t be defined clearly. In other discrete models based on regular arrays, the authors postulated the 

existence of all space, locally Euclidean and continuous extrinsic to their model, in which they plunged their model 

to a metric and coordinates. What is less well founded and elegant than the concept of Wolfram! 

We have therefore in the extreme elegance of the model suggested by Wolfram, the only model of intrinsic 

system which does not need to be plunged into another space to be calculated. But we overcome its lack of metrics 

by imposing constraints of regularity and topological encoding of the local orientation. 

 

III. MATHEMATICAL FORMALISM 

 

We give a formal description of our graphiton model. 

 

Definition 1: rank r binary tree  

          
   

    

                            
   

      

            
   

      

   (1) 

 

Fig. 5. Examples: a    graph (left), its subtree from   (right) 

Definition 2: descendants is a set of nodes descendants from one node 

                      
                                                       

       
 (2) 

Definition 3: subtree is the part of the tree emerging from a node (see Figure 5) 

                                        (3) 

Definition 4: an operator   glues three binary trees (of the 4 subtrees) to build a triple-binary trivalent graph (see 

Figure 6) 

           
                                              
                                               

 (4) 
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Fig. 6. 24-nodes module         , rank 5, with 12 leaves 

Definition 5: we define the binary decomposition of an integer 

                  
   

    

    
 
          

 
    

    
 

   
 (5) 

Definition 6: we define the frequency of a quaternion 

      
 

 
              (6) 

Definition 7: we define the logarithm of a quaternion from its frequency 

                     
     

       
 (7) 

Definition 8: we define a family of r couples of a frequency and an imaginary direction 

                                                  (8) 

Definition 9: we define a series of increasing products 

                                                    
   

   
 (9) 

Definition 10: we define a sample family, for r=6 

  
     

 

 
  

     

  
    

 

 
  

     

  
    

 

 
  

     

  
    

 

 
  

 

  
    

 

 
  

 

  
    

 

 
  

 

  
    (10) 

 

 

Fig. 7. Level 1 view of simplest closed lattice of triple binary trees with   
  is made of 2 modules [6] and has 144 connections and 96 nodes. 

Definition 11: we define a unitary diagonal quaternion 
 

    
     

  
  (11) 

Definition 12: we define a suite of quaternions 

      
               

  

 
          

  

 
           

  

 
    

        
  

 
           

  

 
           

  

 
   (12) 

 

Definition 13: a field   is defined at each node, having a quaternionic value computed using two functions   and 

 and one set of constants    

                               

        
             

                  
              

                

  (13) 

Definition 14: we define a reordering function (see Figure 8) 
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 (14) 

Fig. 8. Plot of the   (n) function (the values of   versus n). 

Table 1.  Field values for the 48 leaves of the triple binary tree           based on   
 
, pointing toward linked supernode, such that opposite 

leaves have opposite field.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 15: we define the lattice of connected triple-binary graphs, modulo    (see Figure 7 for                ) 

TABLE I 

VALUES OF       FIELD 
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 (15) 

 

Definition 16: we define a lattice condition 

                                                                           
      

                         (16) 

Theorem 1: Lattice condition (16) holds for   
   

Demonstration: The values taken by   on the 48 leaves are the 24 units of the Hurwitz integer, forming the binary 

tetrahedral group, and their products by (1+i). They are also coordinates of the 24-cell [17] and its dual scaled by 

square root of two (see Table 1). They form the integer lattice F4, of the roots of Lie Algebra 4. 

A large family of graphiton models can be built by varying r,    and    , while (16) holds. 

 

Fig. 9. (a) (left): Level 1 view of second simplest closed lattice of triple binary trees with   
  is made of 32 modules [6] and has 2304 

connections (b) (right) An artistic view of the same topology. 

 

III. ENCODING STANDARD MODEL 

 
The idea of encoding particles as topological features in a trivalent network appears in [18], where figure 5 shows 

a tetrahedron made of 6 connected strings as a model of localized particle. 

We define as “Hyperdiamond model” the graphiton model with   =  
  (see Figure 9). Its intrinsic space is four 

dimensional, and the 48 valent supernode is perfectly and naturally suited to encode E8 roots according to Lisi‟s [19] 

model. 

Topological bits in a triple binary tree according to our method preserves the intrinsic geometry. The center of the 

super node is determined as the single loop of size 4. Associated with the adjacent single triangle they form the 

central triangle of three nodes respectively informed of bits 0, 0 and 1, and each connected to a first node of binary 

tree associated respectively with 0, 1 and 1. Thus, each tree root is characterized by a binary code on two different 

bits, and then the subsequent nodes of the branches at each level are identified by 0 and 1. And the 24 leaves of three 

binary trees of rank 6 are characterized by a 5-bit identifier (see Figure 10a) 

The Lattice condition Equation (16) expresses that the identifiers of two connected leaves issued from two 

connected triple trees have binary identifiers correlated by the function α which introduces redundant information 

and thus tolerance to disturbance. 

At level 2 the supernode include 21 bits, 3 at the center which are used to characterizes one of the 3 families, and a 

fermion, boson or photon state, and for the selected family, one pair of triplets of bits encoding a “higgsonic” index 

and a “gluonic” index. 

In this fermion encoding algorithm (see Figure 10b), families are linked by triality and a third of circle rotation, 
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and matter is related to anti-matter by a space inversion, as in Atiyah‟s conformal self-dual spaces.[20]. 

  

Fig. 10. . (a) (left): Level 0 structure of a void supernode. (b) (right): Level 2 view of Fermion encoding (for family 1: electron, neutrino, up, 

down). Other families deduces by rotation of 1/3 or 2/3. Three bits (r,v,b) for gluonic part and three bits (c,m,y) for higgsonic part. Each part has 

the quaternionic value of attributed direction. Together they form the corresponding E8 root, compatible with Lisi‟s encoding table.  

 

IV. CONCLUSION 

 
Our hyperdiamond model is the result of hacking reality. A reality emergent from set theory is inherently discrete 

at ultimate level. Digital is even more pertinent because of the binary encoded content of this proto-space structure. 

Bit engraving in a topological trivalent network uses the simplest topological feature: a loop. Geometrical level 

appears by crystallization upon ultimately symmetrical shape of any dimensions: exceptional self-dual regular 24-

cell polytope. Quaternion algebra arises naturally. Self-duality gives a non associative double-covering of the F4 

lattice where emerges 240 E8 roots. Hacking shows how, from nothing, emerges a really rich notion of void, as a 

perfect crystal, which defines every known particle, using E8 model [19], in the supernodes, just by internal bit 

inversion, realized by the most conservative network evolution. Loop quantum gravity formalism [21] can apply to 

the underlying spin network equipped with implicit frame field. General relativity is achieved through Ashtekar 

variables [22] and some explicit algorithms like [23] can solve simulations. So the analog world observed at our 

scale is just a smoothing of a digital nature of the universe at ultimate scale: a beautiful crystal based on the number 

24 [24]. 
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