[1] Ball, P. (2018). Quantum weirdness is everywhere in the living world. Aeon Essays. https://aeon.co/essays/quantum-weirdness-is-everywhere-in-the-living-world [2] Howard, D., & Barrett, J. (Eds.). (2021). The Uncertainty Principle. Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/qt-uncertainty/ [3] McFadden, J., & Al-Khalili, J. (2010). Quantum physics meets biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1545), 131–146. https://pmc.ncbi.nlm.nih.gov/articles/PMC2839811/ [4] Fröml, H., Huber, J., & Brandner, K. (2023). Entanglement and thermokinetic uncertainty relations in coherent mesoscopic transport. Physical Review Research, 5(2), 023155. https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.5.023155 [5] Barato, A. C., & Seifert, U. (2015). Thermodynamic uncertainty relation for biomolecular processes. Physical Review Letters, 114(15), 158101. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.158101 [6] Dechant, A., & Sasa, S.-i. (2019). Thermodynamic uncertainty relations constrain non-equilibrium fluctuations. Nature Physics, 15(10), 912–916. https://www.nature.com/articles/s41567-019-0702-6 [7] Zhang, C., Yu, L., & Li, H. (2024). ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis. Frontiers in Microbiology. https://pmc.ncbi.nlm.nih.gov/articles/PMC11735909/ [8] Chaudhuri, S., Patel, R., & Yang, M. (2025). Quantum Coherence and Chaotic Dynamics: Guiding Molecular Machines Toward Low-Entropy States. arXiv preprint arXiv:2505.11571. https://arxiv.org/abs/2505.11571 [9] Romero, E., et al. (2021). Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states. Proceedings of the National Academy of Sciences, 118(10), e2019625118. https://pmc.ncbi.nlm.nih.gov/articles/PMC7980405/ [10] Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775. https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.75.715 [11] Schlosshauer, M. (2007). Decoherence and the Quantum-to-Classical Transition. Springer. https://link.springer.com/book/10.1007/978-3-540-35775-9 [12] Parrondo, J. M. R., Horowitz, J. M., & Sagawa, T. (2015). Thermodynamics of information. Nature Physics, 11(2), 131–139. https://www.nature.com/articles/nphys3230 [13] Lambert, N., Chen, Y.-N., Cheng, Y.-C., Li, C.-M., Chen, G.-Y., & Nori, F. (2013). Quantum biology. Nature Physics, 9(1), 10–18. https://www.nature.com/articles/nphys2474 [14] Marais, A., et al. (2018). The future of quantum biology. Journal of the Royal Society Interface, 15(148), 20180640. https://royalsocietypublishing.org/doi/10.1098/rsif.2018.0640 [15] Klinman, J. P., & Kohen, A. (2013). Hydrogen tunneling links protein dynamics to enzyme catalysis. Annual Review of Biochemistry, 82, 471–496. https://www.annualreviews.org/doi/10.1146/annurev-biochem-060611-102326