1. Hecht, S., Shlaer, S., & Pirenne, M. H. (1942). ENERGY, QUANTA, AND VISION. The Journal of General Physiology, 25(6), 819–840. https://doi.org/10.1085/jgp.25.6.819 2. Morris R. G. (1999). D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949. Brain research bulletin, 50(5-6), 437. https://doi.org/10.1016/s0361-9230(99)00182-3 3. Zhaoping, L. (2014). Understanding vision: Theory, models, and data. Oxford University Press. 4. Bitzer, S., Kiebel, S.J. Recognizing recurrent neural networks (RNN): Bayesian inference for recurrent neural networks. Biol Cybern 106, 201–217 (2012). https://doi.org/10.1007/s00422-012-0490-x 5. Amit, D. J., Amit, D. J. (1992). Modeling Brain Function. United Kingdom: Cambridge University Press. 6. Ha, G. E., & Cheong, E. (2017). Spike Frequency Adaptation in Neurons of the Central Nervous System. Experimental neurobiology, 26(4), 179–185. https://doi.org/10.5607/en.2017.26.4.179 7. Taylor J. G. (1994). Non-linear dynamics in neural networks. Progress in brain research, 102, 371–382. https://doi.org/10.1016/S0079-6123(08)60553-1 8. Sbitnev, V. (2024). The edge of chaos is where consciousness manifests itself through intermittent dynamics. Academia Biology, 2(1). 9. Raichle, M. E., & Gusnard, D. A. (2002). Appraising the brain's energy budget. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10237–10239. https://doi.org/10.1073/pnas.172399499 10. Shekhar, S., Dubey, T., Mukherjee, K., Saxena, A., Tyagi, A., & Kotla, N. (2024). Towards optimizing the costs of LLM usage. arXiv preprint arXiv:2402.01742. 11. The Emerging Physics of Consciousness. (2006). Germany: Springer Berlin Heidelberg. 12. Yang, G. R., & Wang, X. J. (2020). Artificial Neural Networks for Neuroscientists: A Primer. Neuron, 107(6), 1048–1070. https://doi.org/10.1016/j.neuron.2020.09.005 13. Voudouris, K., Cheke, L. & Schulz, E. Bringing comparative cognition approaches to AI systems. Nat Rev Psychol 4, 363–364 (2025). https://doi.org/10.1038/s44159-025-00456-8 14. Bengtsson, I., Życzkowski, K. (2017). Geometry of Quantum States: An Introduction to Quantum Entanglement. Singapore: Cambridge University Press. 15. Grabarits, A., Swain, K. R., Heydari, M. S., Chandarana, P., Gómez-Ruiz, F. J., & del Campo, A. (2025). Quantum chaos in random Ising networks. Physical Review Research, 7(1), 013146. 16. Anand, N., Styliaris, G., Kumari, M., & Zanardi, P. (2021). Quantum coherence as a signature of chaos. Physical Review Research, 3(2), 023214. 17. Tudor Patrascu, A. (2025). Quantum Coherence and Chaotic Dynamics: Guiding Molecular Machines Toward Low-Entropy States. arXiv e-prints, arXiv-2505. 18. Andrés, E., Cuéllar, M. P., & Navarro, G. (2025). Brain-Inspired Quantum Neural Architectures for Pattern Recognition: Integrating QSNN and QLSTM. arXiv preprint arXiv:2505.01735. 19. Andrés, E., Cuéllar, M. P., & Navarro, G. (2024). Brain-Inspired Agents for Quantum Reinforcement Learning. Mathematics, 12(8), 1230.