Introduction

The history of quantum mechanics is one of skepticism and reluctance. Faced with paradoxes and phenomen Today, something similar is happening at the intersection between quantum physics and biology. Quantum

Knock, Knock - Are you there?

The first part in every experiment is the hypothesis—the motivation for what may follow. In this case, Life on Earth depends on many processes, but photosynthesis stands as one of the pillars. From early ed Part of being human is making decisions, using information acquired through experience to predict futur For years, people have studied the habits of migrating birds. Beyond the complex patterns formed in the Beyond the direct employment of quantum phenomena to confer advantages, nature shows signs of mirroring Another clear example of quantum—resembling processes in nature is cellular differentiation. Stem cells Several fields have made tremendous progress by adopting ways of thinking from other disciplines—economic However, not all processes in living organisms mimic quantum dynamics—some are simply classical and standard are held together through hydrogen bonds, which consist of protons being shared between atoms.

Final Remarks

One may wonder whether quantum advantage might be limited to a few cases, arguing that quantum effects. Another fault in this skepticism is the assumption that the complexity observed in living systems and to Quantum biology has evolved as an idea and stands today to represent a promising field of both fundament The journey ahead is arduous, as investigations into the quantum world require highly controlled conditions.