
At What Scale Does Biology Become Quantum?
Introduction
The first thing to note is there is no physical scale at which quantum mechanics becomes applicable[1].
Because, as far as we know, quantum mechanics governs the most basic layer of the universe, it is everywhere
applicable, at all scales. But we can get a sense for the length scale at which quantum effects become
noticeable using Heisenberg’s uncertainty relation ?x?p >= ?/2. This inequality sets a lower bound on
how precisely any system’s position (x) and momentum (p) can be known at once, meaning one cannot
simultaneously know x and p with arbitrary precision[2].

Now there are at least two ways to see the HUP. The first is purely physical, as setting the length-scale
of a system, and the second emphasizes its nature as an information constraint and sees it as setting the
informational scale, or information density of the system.

This first way is expressed in quantum mechanics by saying that position x and momentum p are represented
by conjugate variables (observables). Mathematically, they are algebraically related; momentum is the
“infinitesimal generator” of position – we could keep applying very tiny velocity vectors to a point mass
and get to any position in space. To saturate the limit (ie to reach ?x m?v =?/2) is to reach a minimum-
uncertainty configuration; we can also think about it as a maximum-information configuration because in
that state, to acquire additional information about the value of x leads to increasing uncertainty about v.
At this limit, the system is in a coherent state. Such a state is called coherent (or phase-coherent) because
the “phase relationship” between x and p is fixed; this is another way of saying they are mutually dependent.
Now, from what we said above about one being the generator of the other, it is obvious that x and p were
never independent and so it is perhaps not surprising that their variances are not independent. We can say
they share a common dynamical frame, or more precisely a common relative phase. So HUP is a statement
about conjugate variables, and how knowing the value of one limits who much we can know about the other.

This fundamental dependency or “conjugacy” is at the root of quantum coherence. Because a quantum
particle can never have both position and momentum simultaneously well-defined, its x value must be
spread out, in inverse proportion to its momentum. Such coherence is what leads to phenomena without
classical analogues such as tunneling and entanglement (which is just coherence maintained across separable
parts of a system). Put another way, the minimum value imposed on ?x?p at saturation is what permits the
wave-like superposition that underlies coherence. In effect, ? sets the scale of coherence: when the relevant
physical quantity in a system - in this case position x momentum - is comparable to ?, full quantum behavior
emerges.

Thus HUP is an inequality 1) about conjugate variables 2)the product of whose variances must be less than
a certain value, and 3) this inequality is saturated at coherence. And ? sets the scale of the system. But as
we said, we can also see HUP as setting the information density of the system. We can bring these threads
together in a single geometric picture. In phase-space–the abstract plane where position x and momentum
p coexist–we can express HUP as saying that each physical state occupies a tiny area no smaller than h/2.
That is, one may imagine the plane as a screen tiled by pixels, with each tile having area at least h/2. While
some tiles may occupy additional area, no tile can be smaller than ?/2. When the HUP is saturated, ie when
?x ?p=h/2 a system occupies the smallest region of phase space permitted by quantum mechanics–an area
exactly equal to ?/2.

In this picture, trying to localize a single particle more precisely (ie to reduce ?x) only spreads its momentum
distribution wider; the total amount of information is conserved within that single tile. Viewed this way,
we can interpret HUP as a statement about the granularity of information in the universe, with saturation
meaning the system occupies exactly one “quantum pixel” in phase space. We can therefore interpret the
HUP as saying that no measurement or equation, can specify the location of a system in phase-space more
finely than by indicating which ?/2 square it is in. In this sense, the HUP means the information density of
spacetime itself is at its maximum: each pixel in phase space can be no larger than ?/2.

The point is that while HUP expresses a universal bound on how precisely certain pairs of dependent space-
time variables can be specified or transmitted, an uncertainty principle is a more general notion applicable
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at any scale, to any suitably defined system. And in this case the suitably defined system may be taken to
be one in which we can identify a pair of mutually-dependent variables that follow an algebra analogous to
x and p (ie, another “conjugate pair”).

To summarize briefly, then, we can say that the HUP at saturation is an operational criterion for coherence,
where to be “coherent” means that a system is operating at the highest possible resolution, i.e. its intrinsic
informational capacity. A large molecule or even a metabolic network can, in principle, maintain coherence
across its parts (i.e., its degrees of freedom) if the relevant degrees of freedom (electronic states, spin states,
etc.) obey quantum laws and remain phase-coherent over functionally significant times. But the underlying
idea–the phase-correlation between coupled (even if not canonically conjugate) observables–can be applied
more generally. We thus envisage system-specific uncertainty relations that constrain biology. That is to say,
we propose that there are biological systems have emergent values of ?_sys, determined by each system’s
physical and informational architecture. From this idea we will be able to develop a framework for saying
to what extent any system, quantum or classical, is coherent.

System-Specific Uncertainty Relations and Functional Coherence
As we have said, the essence of the Heisenberg pair is that the two observables are conjugate: one defines
resolution in the other. In many coupled biological process, two observables can often be identified whose
fluctuations are not independent but conjugate in the information-theoretic or dynamical sense –each impos-
ing a constraint on the precision with which the other can be known or controlled. This conjugacy is the
biological analogue of position and momentum in quantum mechanics: one variable specifies the system’s
instantaneous configuration, the other its rate of change or energetic responsiveness. Many physical systems
have complementary quantities whose joint fluctuations are fundamentally limited.

In enzyme catalysis[3], slow protein motions–like subtle shifts in the active site–can momentarily squeeze
or stretch the distances and/or potentials between atoms, modulating the barrier that a proton or electron
must tunnel through.[15] This means the slow, classical motion of the enzyme continually reshapes the
fast, quantum motion of the reacting particle. The protein motions must change the barrier wide/potential
fast enough for tunneling to respond to the motion, but not so fast that the tunneling particle effectively
experiences an averaged potential (which would eliminate the precise timing correlations that make tunneling
efficient). When these two timescales line up just right, the tunneling rate can reach an optimal uncertainty-
relation-saturated regime. This system does not sustain long-lived quantum coherence, but it benefits from
a delicate, time-matched interplay between quantum tunneling and protein dynamics.

In light-harvesting complexes, the direction of influence between fast and slow variances is reversed. Here,
rapid nuclear vibrations of pigment molecules continually shake the slower electronic energy levels that guide
excitation energy transfer. These vibrations transiently bring electronic states into and out of resonance[9],
making energy flow more efficient even without long-lived quantum coherence. In both cases–enzymes and
light-harvesting systems–biology takes advantage of the same principle: dynamic coupling between fast and
slow motions tuned near the limit set by quantum uncertainty, allowing energy and charge to move with
remarkable efficiency.

We propose to generalize this insight: every biological system has its own uncertainty bound, akin to Planck’s
constant, that reflects its functional constraints. That is, since any coupled dynamical system has conju-
gate variables whose fluctuations are statistically constrained, one can define an effective action scale–a
system-specific analogue of Planck’s constant–that sets the minimum jointly measurable product of their
uncertainties. Instead of calling it ?, we denote the system’s “informational Planck constant” by ?_sys.

Formally, one identifies two functionally conjugate observables A and B in the system (for example, the
net transport through a pump and the time or energy cost). By analyzing the underlying stochastic or
dynamical equations, one can derive an inequality of the form ?A ? B ? ?_sys, where ?_sys emerges[4]
from the microscopic physics (energies, timescales, noise levels). Just as ? sets a maximum resolution, each
system’s ?_sys sets its quantum-like limit.[5] If the system operates such that ?A?B comes close to ?_sys,
it is maximizing its coherence; if it far exceeds ?_sys, it behaves classically in that aspect.[6]

For instance, in a light harvesting complex, A could be the speed of changing the nuclear vibrational modes
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and B is the speed of changing the electronic modes. Importantly, ?_sys is not a new universal constant but
depends on the system’s details (size, temperature, interaction strengths). In a very noisy, slowly driven sys-
tem, ?_sys may be large, meaning the bound is weak (easy to satisfy classically). In a finely tuned molecular
machine, ?_sys could be small, allowing close approach to the bound. When this bound is approached, the
conjugate variables cease to fluctuate independently: they become phase-correlated, exhibiting coherence or
within their shared informational frame.

In this framework, coherence is tied to the saturation of uncertainty bounds. Here we extend ‘coherence’
beyond its quantum-mechanical sense of wavefunction phase alignment to mean informational coherence:
the mutual correlation of conjugate observables within a system’s operational bandwidth. A system is
maximally coherent (in the functional sense) when it hits the uncertainty limit ?F?G = ?_sys. In that case,
measurements of conjugate observable are phase-correlated. Thus the picture emerges: every conjugate-
pair process has an inherent informational action scale ?_sys. We define its functional coherence by how
tightly it operates against this scale. If ?F?G is orders of magnitude above ?_sys, the system behaves
classically (its different parts act nearly independently). If ?F?G approaches ?_sys, the system is exploiting
full coherence: its parts are functionally entangled and its noise-floor is quantum-limited. In this way we
obtain a continuous measure of coherence rather than a binary label. To be clear, we can identify the Classical
regime, ?A?B » ?_sys where measurement outcomes are statistically separable: the slow observable samples
ensemble properties of the fast dynamics. Beyond then as ?A?B -> ?_sys phase correlations, making the
variables inseparable within the system’s measurement framework. That is, the observables lose operational
independence due to the saturated uncertainty relation. Measurements become jointly determined: outcomes
of the fast process cannot be described independently of the slow detector’s resolution window.

So in this setup quantum-like behavior emerges as a “phase-transition” from a regime of unsaturated in-
formation capacity to a maximum information density one. This conjugate relation makes coherence a
measurable continuum rather than a categorical label. The system’s proximity to its uncertainty bound
defines a coherence index, Q = ?_sys/(?A?B), 0 < Q <= 1. When Q « 1, the conjugate observables fluc-
tuate independently, and the system behaves classically: nuclear motion, conformational shifts, or energy
transfer events are statistically separable [10,11]. As Q -> 1, the uncertainty product saturates its lower
limit, and the observables become informationally inseparable–phase-correlated within a shared dynamical
constraint. In the light-harvesting complex, this occurs when vibrational modulation and resonance energy
transfer operate within a matched temporal-energetic bandwidth, producing measurable coherence without
requiring long-lived superpositions.

Example: the ABC Transporter
Let us illustrate these ideas with a concrete example: the ATP-binding cassette (ABC) transporter. ABC
transporters are proteins found embedded in cell membranes, in all kingdoms of life. They responsible for
importing nutrients or exporting toxins. Structurally, each ABC transporter consists of two ATP-binding
domains that power conformational changes and two transmembrane domains that form the channel through
which the substrate moves.[7] In this case, the relatively fast ATP binding and hydrolysis drive the slow
transition between inward- and outward-facing states, coupling ATP hydrolysis to mechanical motion across
the membrane. The ABC transporter exemplifies how a system-specific uncertainty relation generates a
quantifiable continuum of “coherence.”

Let ?E_conf be the energy-level difference between conformations and ?t_conf the “timing jitter” of the
conformational transition. The transporter’s intrinsic uncertainty relation is ?E_conf ?t_conf >= ?_ABC
where ?_ABC is the system-specific action scale, a biological parameter determined by the system’s con-
formational energy landscape and kinetic rates. When ?E_conf.?t_conf »?_ABC, conformations remain
energetically and temporally distinct and the dynamics are well described by separable stochastic steps.
As the product approaches the bound, ?E_conf.?t_conf ->?_ABC, the system reaches its informational
resolution limit: “state” labels lose operational meaning, ATP hydrolysis and conformational motion be-
come phase-correlated, and we enter the coherent regime.[8] We quantify proximity to this regime by Q =
?_ABC/(?E_conf.?t_conf), with 0<Q<=1. with Q « 1 indicating classical separability and Q-> 1 indicat-
ing saturation and functional coherence. Thus, Q defines an empirical continuum of coherence derived from
the system’s intrinsic uncertainty structure.
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By way of illustration, we note that ?_ABC is fixed by the transporter’s architecture while the product
?E_conf ?t_conf is experimentally tunable. For example, we could change the concentration of ATP avail-
able for hydrolysis (reducing ? t_conf by reducing “timing jitter” associated with hydrolysis) or use mu-
tated/chemically modified transmembrane domains to reshape energy barriers in order to affect ?E_conf.
Thus an example like the ABC transporter is an example of natural selection exploiting the course-grained
dynamical coupling to enact to approach a functionally coherent regime.

Coherence is Informational, Not Physical
To speak of biological coherence, then, is to ask: How closely do a system’s fast and slow variables approach
joint saturation?[12] And: How tightly do energy input and function output co-vary? In this framing,
coherence is a measure of how much of the system is using its internal bandwidth, and how much is lost
to noise. A system is “more coherent” to the extent that its relevant variables are co-defined–that their
variances are shared rather than independent–so that the product ?A?B approaches the system’s own ?_sys.

This perspective has several implications. Biologists and biophysicists can now ask: What are the relevant
conjugate pairs (A, B) for a given system?, *What is its effective action scale ?_sys?* and How closely do
experimentally observed variances get to that limit?

This reframing also offers a perspective into why many claims of long-lived coherence collapse while transient
near-bound corridors keep appearing: coherence is a scarce, managed resource, generated locally, spent
quickly, and renewed by actively driven cycles.

As far as quantum goes, size hardly matters. What matters clearly not the physical dimension but the ratio
of fluctuations to the system’s h_eff. Practically, this means that the same system can present different
“quantum faces” at different levels of description, that is, the same Q-value for coupled processes. Large
complexes can host local pockets of high-Q dynamics–subcircuits whose coupling and shielding enable near-
saturation–nested inside a low-Q background that remains effectively classical. To return to the evergreen
light-harvesting complexes, one might imagine that at the molecular level, coherence arises from the uncer-
tainty relations between electronic energy and vibrational phase; but at the functional level, it might arise
from tuning relations between vibrational energy modulation and resonance energy transfer timing.

Finally, the informational view clarifies what it would mean to engineer coherence in living or synthetic
systems. It does does not chase fragile superpositions in a warm bath; it means to engineer constraints and
coupling so that the relevant observables approach joint saturation during the time window that matters
for function. The target is not indefinite coherence but enough coherence–high Q over the operational
bandwidth–so that energy, structure, and time act as a single, tightly correlated unit of work.

Conclusion
So by now the answer to our question is clear. We started by observing that there was no physical scale
at which the universe “becomes” quantum - it is quantum at every scale, though perhaps not noticeably
so. So too there is no physical scale at which a biological system can be said be quantum - but viewing
“quantum” through an information-first lens, which is to say coherence-first lens, biology can be quantum
at any scale. That is to say, every biological system has a built-in scale - a firm Planck-like constant ?_sys
- that depends on its (physical and informational) architecture and governs its coherence. By examining
uncertainty relations for that system, we define coherence as a continuous property: how tightly a biological
machine approaches its intrinsic uncertainty saturation bound.

We saw that any two complementary (conjugate) aspects of function in a complex system will obey an uncer-
tainty relation type trade-off as emphasized in recent reviews of quantum biology [13], with a characteristic
constant governing their minimum resolvability in phase-space. In practice, thermodynamic and kinetic
constraints already impose such bounds on biochemical processes. Functional coherence then arises when
parts of the system interlock to saturate that limit.

We saw that the degree of coherence can be measured by the proximity of a system’s fluctuations to its
intrinsic bound, as quantified by the dimensionless index Q = ?_sys/(?A?B). Most real biological machines

4



likely lie somewhere in between. Similarly, the ABC transporter system could be described as “partially
quantum”. At room temperature it likely has Q<1, meaning some decoherence and noise. But by changing
conditions (lower temperature, stronger coupling, engineering the landscape), one could raise Q toward 1.
We also emphasize that Q=?_sys/?F?G a quantifiable ratio, measurable in principle by tracking variances
and covariances of the chosen observables.

Looking forward, this approach offers practical payoffs. The framework offers insights into a question that
has haunted biophysics since its earliest days: Do living machines exploit truly quantum coherence or en-
tanglement, or are they reducible to statistics of classical states? It suggests experiments in which we use
existing tools to infer Q for different biological processes. A Q near 1 would indicate a strongly coherent
regime, warranting a full quantum description (Hilbert spaces and entangled states). A low Q means a
classical rate equation suffices.

This of course also opens the door for us to talk about resilience and other characteristics that covary with
coherence. In larger terms, many biological “small” systems (enzyme complexes, protein assemblies, cellular
circuits) can be analyzed similarly. They may fall anywhere on the spectrum from fully classical to highly
quantum. On the engineering side, in bioengineering and quantum technology, the continuum view opens
new strategies.

On the engineering side, we can think about adjusting kinetic parameters or structure to raise Q in the
design of synthetic biomolecules or nanomachines. Engineers need not aim for unreachable Q=1 in large
systems; even modest Q can significantly boost function. Beyond this, one can imagine artificial transporters
or metabolic pathways that are optimized to approach their uncertainty bound, achieving very high efficiency
or sensitivity.[14]
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