How quantum is life? About as quantum as a bird using entanglement to migrate, a leaf using superposition to harvest sunlight, or your nose tunneling electrons just to smell coffee. In other words, life is not just quantum in theory, it is quantum in practice. The real surprise is not that biology sometimes borrows tricks from physics, but that evolution has made quantum strangeness routine. Life, it turns out, is the universe's way of running a quantum experiment at room temperature and getting away with it. Evolution, in this sense, is the world's greatest quantum engineer, and biology is applied quantum mechanics disguised as everyday existence.

Take photosynthesis. A leaf looks simple enough, yet it hides a choreography of photons and electrons. Classical physics would expect messy inefficiency, with energy scattered like water leaking from a sieve. But in 2007, Gregory Engel and colleagues showed that light-harvesting complexes in plants and algae exploit quantum coherence, allowing excitons to explore many paths at once and select the most efficient route. This is nature's quantum computer, and it has been running silently for billions of years.

If plants have learned to borrow from quantum physics, animals are no different. In 2000, Thorsten Ritz proposed that robins navigate using entangled electron pairs in their eyes' cryptochrome proteins. Imagine migration as a quantum compass experiment, with information about Earth's magnetic field stitched into feathers. What seems like instinct is, at root, quantum mechanics guiding a flight path across continents.

Even our own senses may carry quantum fingerprints. Traditional biology says smell works like a lock-and-key cabinet, molecules fitting into receptors by shape. But Luca Turin suggested something more radical: that smell depends on electrons tunneling through odorant molecules, sensitive to their vibrations. If true, then every inhale is a quantum performance. Your morning coffee is not just a drink, it is a quantum concert your nose conducts without effort.

Placed together, these examples suggest something profound. Quantum biology does not just challenge physics, it challenges philosophy. It undermines the centuries-old split between subject and object, between observer and observed. If coherence runs through photosynthesis, navigation, and even smell, then the neat boundary between quantum and classical was never really there. The real divide is in our metaphors, not in nature.

Skeptics might argue these effects are rare flourishes at the margins of biology. But evolution is no stranger to opportunism. If quantum tricks enhance survival, natural selection will adopt them, refine them, and weave them into the machinery of life. In this sense, life is quantum not by accident but by design. Evolution itself is a quantum opportunist, hacking uncertainty into advantage.

So, how quantum is life? Enough to grow forests from sunlight, send birds across continents, and deliver the scent of coffee to your nose. But also enough to reshape how we think about reality. Life is quantum enough to remind us that physics does not just describe the universe, it lives inside us. To be alive is to participate in quantum reality, not merely to observe it.