
Quantum physics is essential for the stability of atoms and molecules, including the macromolecules vital
for life. But does it play a more direct role in the unique characteristics of living matter? The answer is
yes. Take human vision, for example. It relies on quantized energy to convert light into electrical signals
through a process called phototransduction. This begins when a photon interacts with a chromophore, a
light-absorbing chemical, within a photoreceptor. The chromophore absorbs the photon and rapidly changes
shape in a process called photoisomerization, which is described using quantum mechanics. This change
in shape then initiates signal transduction pathways that lead to a visual signal. The key molecule in this
process is rhodopsin, found in the retina’s rod cells. When a photon strikes rhodopsin, the absorbed energy
causes an extremely fast (femtosecond timescale) and efficient (around 70% quantum efficiency) change in the
retinal molecule’s configuration, ultimately enabling us to see [1]. The human eye offers a prime example of
how quantum mechanics underpins a characteristic biological function (vision), enabling its remarkable speed
and efficiency. While the quantum nature of vision is well-established, new questions arise when we follow the
visual signal beyond the eye, into the brain’s visual cortex: how does the brain store and retrieve information,
and could quantum mechanics be involved? Addressing these complex questions requires answering several
fundamental ones: How can we quantify the correlations between quantum features, complexity, and entropy
in living systems? How can we better define the complexity of biological systems? And what novel tools
can we develop to explore these correlations effectively? The answers to these questions will not only
illuminate the potential role of quantum mechanics in how the brain stores information but also provide
tools to investigate other potential quantum aspects of brain function. This essay aims to demonstrate a
quantum mechanism in brain information storage, show how mathematical chaos can act as a proxy for
quantum activity in complex systems, and propose that neuroscience and comparative psychology methods
can reveal potential quantifiable indicators of quantum activity within the brain. To begin answering these
questions, we must understand what is happening from the point of view of contemporary neuroscience.
As is currently understood, information within the human brain is encoded in complex neural networks,
distributed networks of neurons that strengthen connections with repeated exposure [2]. The brain stores
this information by altering the strength of these connections within a given network. This is known as the
Hebbian model of neural networks and has been the foundation for understanding synaptic plasticity, one of
the mechanisms behind learning and memory formation [2]. For example, after an image is processed in the
visual cortex, the brain sends the information to the posterior parietal cortex and the inferior temporal cortex.
The inferior temporal cortex then encodes the image with spatial information and object representations
[3]. This processed information is then sent to the prefrontal cortex, which uses a type of neural network
called a recurrent neural network to sustain the neural activity representing the image. A recurrent neural
network is different from other neural networks because it uses recurrent connections, or loops, to feed
the output of a previous moment back into the network as an input [4]. This allows the network to have
an internal state, which is necessary to store the image’s information. The prefrontal cortex stores this
information using a specific kind of recurrent neural network called a Hopfield network. A Hopfield network
is a recurrent neural network where all neurons are interconnected, excluding self-connections [5]. These
networks operate on a feedback principle: they take an input pattern and iteratively adjust neuron states
until they settle into a stable state, which corresponds to a stored pattern. This process is governed by an
energy function that the network minimizes, enabling Hopfield networks to function as content-addressable
memory [5]. This means they can retrieve a complete pattern from a partial or noisy input based on its
content rather than its location. When an image pattern in the prefrontal cortex is deemed significant (i.e.,
it sufficiently activates other neural networks), it undergoes consolidation into long-term memory. This
involves a shift in network activity: the pattern initially fades from the prefrontal cortex and reemerges
in the hippocampus for initial memory formation. Over time, as consolidation progresses, activity in the
hippocampus diminishes, and the pattern reappears in relevant parts of the neocortex, where it can later be
retrieved [5]. Given the complexity of everything we have seen happening in the brain up to this point, it is
logical to ask, “How did we ever figure this all out to begin with?” Much of our understanding comes from
observing “spike code,” the patterns of electrical impulses that neurons use to communicate and encode
information [6]. When it comes to forming memories, neurons exhibit spike-frequency adaptation. This
means a neuron’s firing rate initially peaks with a new stimulus but then gradually slows to a more stable
pace. This self-regulation at the single-neuron level is crucial for memory formation. The exact mathematics
behind the modeling of this phenomenon is beyond the scope of this essay, but those interested in the
exact mathematics should see Spike Frequency Adaptation in Neurons of the Central Nervous Systems for
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further details. While spike-frequency adaptation provides a basic understanding of short- and long-term
memory at the individual neuron level, the brain’s true computational power comes from neural networks.
As Charles Sherrington eloquently put it, the brain acts like an “enchanted loom” where countless neurons
interact to create dynamic, meaningful, yet constantly shifting patterns. This collective activity leads to
phenomena that are far more complex than anything seen in a single neuron. When we look at neural
networks together, we see that the brain’s capacity for processing information, learning, and adapting relies
heavily on complex nonlinear dynamics [7]. This means that things like neuron firing, the strength of their
connections (synapses), and the feedback loops within networks (especially those for memory) don’t follow
simple, predictable rules. Instead, their relationships are non-linear, allowing for incredibly rich and varied
activity. Because of these complex interactions, neurons in a network don’t just give simple responses; they
exhibit intricate patterns sensitive to even tiny changes in input [7]. This is crucial because a “memory” isn’t
stored in just one neuron. Instead, it emerges from the collective activity and dynamic states of an entire
network of neurons. This kind of emergent behavior is a fundamental characteristic of systems governed by
nonlinear dynamics [7]. Another key feature is the presence of attractors (stable states that a system tends
to settle into). From a mathematical perspective, memories can be thought of as these activity patterns
within the network that firing neurons converge toward over time. This high level of complexity in neural
networks, particularly those involved in memory, also means they can exhibit mathematical chaos [8]. Here,
chaos does not simply mean randomness or disorder but rather refers to how deterministic systems that
are extremely sensitive to their initial conditions tend to become less predictable over time, to the point
of apparent randomness [8]. This sensitivity allows the brain to distinguish between similar stimuli. For
example, the feeling of moving fast could trigger different memories (like finishing a race or running late
for an interview) based on subtle sensory differences [5]. These chaotic dynamics also help neural networks
explore many possible states, allowing them to find optimal solutions, form new memories, and avoid getting
stuck in repetitive patterns [5]. This also helps decorrelate existing memories, making it easier to encode
new information without interference, and improves the brain’s ability to detect new situations [5]. While
short-term memory involves temporary chaotic states, the process of forming long-term memories involves
adjusting these chaotic dynamics to create more stable yet still flexible memories. The brain’s ability to
shift between chaotic and ordered states is crucial, allowing it to operate at the “edge of chaos” [8]. This is
an optimal state for complex systems, balancing predictability and unpredictability. If a neural network is
too ordered, it struggles to learn and adapt. If it’s too chaotic, it loses the ability to form stable memories,
and information can be lost [8]. Now that we have seen how contemporary neuroscience describes long-term
and short-term memory, we are left with the question, “How does quantum mechanics figure into all of
this?” The short answer is we don’t know. Indeed, there is good reason to be skeptical that it plays a
role at all. Quantum states typically exist in isolated systems near absolute zero. The brain, however, is
warm (310K) and wet, filled with constant, chaotic activity [8]. This environment causes decoherence, where
quantum systems lose their quantum properties due to interactions with their surroundings. Calculations
show that a quantum state in the brain would decohere incredibly quickly (on the order of 10^-13 to 10^-20
seconds), much faster than the milliseconds that neural activity occurs in [8]. And since we already have a
well-established set of laws that govern the behavior of neural networks (nonlinear dynamics) and applying
Occam’s razor (the hypothesis that makes the fewest assumptions is usually the correct one), it is highly
doubtful that quantum mechanics plays a role in either short-term or long-term memory. So, what leads us to
believe that quantum mechanics plays a role in the brain at all? We can look at other biological systems for
clues. The extreme sensitivity of the eye was one reason researchers started wondering if quantum mechanics
influenced vision [1]. Another example is photosynthesis in plants, which is remarkably efficient. Almost
every photon hitting a leaf is used to create energy. The human brain is similarly impressive. It runs on a
mere 20 watts of power [9], while a large language model on a single high-end graphics card can consume
between 250 to 400 watts [10]. Beyond its low power consumption, the brain can process and retrieve huge
amounts of information almost instantly, seemingly faster than standard neural signals should allow [8].
While some of this speed comes from the brain’s parallel processing, its overall processing speed still seems
to defy explanation. This is where quantum computing offers a compelling model. Quantum computers use
principles like superposition and entanglement to perform calculations in parallel, potentially explaining the
brain’s extraordinary computational power. Although the brain’s remarkable efficiency and speed hint at
quantum phenomena, nonlinear dynamics can also explain these capabilities; it is also better established.
The observant reader will be quick to point out that we still have not resolved the problem of decoherence;
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however, neurotubules, tiny hollow structures within brain cells, could offer a solution. Neurotubules might
form a lattice structure that allows for vibrational modes (phonons) to create a protective shield, thereby
preserving quantum information [11] and allowing protons to synchronize with these vibrational modes for
greater stability [8,11]. However, it’s important to note that this is only a theoretical possibility, and there
is currently no definitive proof that neurotubules function in this manner[11]. However, say we can suspend
our skepticism for a bit and assume this quantum shield exists, one way the brain might utilize quantum
mechanics is through the Grotthuss mechanism, which describes how protons can “jump” from one water
molecule to another, forming a “proton wire” via quantum tunneling [8]. Quantum tunneling allows protons
to instantaneously appear on the other side of an energy barrier, even without sufficient classical energy to
overcome it. Because a proton’s position is described as a superposition of its position and momentum, its
location can act as a qubit, such that a proton’s position on molecule A could represent a 0 state, and a 1 state
when on molecule B. Enzymes like triosephosphate isomerase, which facilitate proton movement between
specific molecules, could theoretically control these quantum operations, performing functions similar to
classical logic gates [8,11]. Thus far, we have examined known quantum subsystems in biology and the
current neuroscientific understanding of the brain; we’ve also examined some possible indicators of quantum
activity within the brain and proposed a hypothetical quantum mechanism. However, it’s crucial to remember
that our hypothetical idea is just that, hypothetical. Our next step is to figure out how to experimentally
investigate quantum phenomena in the brain, especially since their presence isn’t yet confirmed. The answer
to this question comes in the form of artificial neural networks. Neuroscientists use these networks to model
brain function, training them on tasks and then comparing the model’s activity to real brain data [12]. We
can adapt this method by creating “quantum-enhanced” neural network models that incorporate simple
quantum circuits (by using the Qiskit api). By training these models on tasks the brain performs, such as
pattern recognition, and observing their behavior [13], we can identify what markers of quantum activity
to look for in the human brain. This approach lets us test hypothetical quantum mechanisms. However,
a significant challenge remains: How can we directly measure the brain’s quantum features, and more
broadly, quantify the correlations between quantum characteristics? To resolve these challenges, we must
first understand what we’re measuring: quantum coherence. We can do this by using a quantity called the
relative entropy of coherence, how different a quantum state is from one with no coherence [14]. Simply put,
this measurement is the difference between the quantum information (von Neumann entropy) in a system’s
incoherent parts and its coherent parts [14]. Applying this to our earlier example of proton transport through
water channels, we can begin to define our specific quantum system. To model proton transport through a
water channel, we first define the system, including the water molecules and any proteins involved. We then
define discrete “incoherent basis” states representing the proton’s possible location (e.g., on molecule A or
B). Next, we construct the Hamiltonian, a mathematical description of the system’s total energy, including
its kinetic and potential energy, interactions, and tunneling between sites. Once the Hamiltonian is defined,
we determine the proton’s quantum state by solving the time-dependent Schrodinger equation. We use
an incoherent basis where diagonal elements represent the probabilities of finding the proton in specific
localized states. From these probabilities, we then calculate the Relative Entropy of Coherence to quantify
the system’s quantum coherence. Scaling this model to the vast number of water channels in the brain is
computationally prohibitive using traditional perturbative theories. Therefore, an alternative approach is
needed, such as analyzing the spread of chaos within the network to understand the system’s behavior on a
larger scale [15]. While classical chaos describes deterministic systems highly sensitive to initial conditions,
its direct application to the probabilistic and linear nature of quantum mechanics isn’t straightforward.
Quantum chaos explores how classically chaotic characteristics manifest in quantum systems, particularly in
the semiclassical limit [16]. Unlike the unpredictable trajectories of a classical chaotic system (like a billiard
ball in a table with an irregular shape), quantum chaos manifests in the wave patterns and energy levels
of a quantum system (like water waves in a pond in the same irregular shape as our billiards table), where
statistical properties reflect the underlying classical chaos. Essentially, quantum chaos is correlated with
classical chaos, rather than being an exact parallel. In the context of the brain, the quantum aspect of a
neuron’s function is linked to the quantum coherence of a proton moving along a water channel within a
neurotubule. This coherence is measured using the relative entropy of coherence, a quantifier that indicates
how “far” a quantum state is from being classical. Notably, other research suggests that measures of quantum
chaos, such as delocalization in phase space, can be expressed as quantum coherence measures [16]. This
implies that coherence itself can be a diagnostic tool for chaotic behavior in quantum systems; chaotic
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quantum systems tend to have highly delocalized eigenstates indicating significant coherence, while non-
chaotic systems exhibit more localized eigenstates and less coherence [16]. Interestingly, while one might
expect decoherence to suppress quantum chaos, some studies suggest that in certain open quantum systems
with balanced energy exchange, quantum chaos can be enhanced alongside increased coherence [17]. This
leads to a fascinating hypothesis: the classical chaos observed in neural networks, which are crucial for long-
term and short-term memory, might be correlated with the emergence of quantum chaos in our proposed
quantum mechanisms for these memory processes. Therefore, studying the spread of chaotic behavior in
the brain over time could serve as an indirect means to investigate the behavior of any underlying quantum
mechanisms within the brain. Now we have a hypothetical structure within the neuron that we can use to
build quantum gates within the brain. To understand the potential role of quantum gates in memory, it is
necessary to first understand how information is processed within neural networks. Three internal “gates”
(the input, forget, and output gates) filter information based on the network’s current state and new input
[18,19]. These gates collectively establish memory patterns in the prefrontal cortex for eventual long-term
storage in the neocortex. Integrating quantum gates into these networks requires understanding variational
quantum circuits. These circuits encode classical data into adjustable quantum gates. The gates are then
optimized to minimize a cost function and produce the desired output. This process essentially breaks down
into five steps: 1. Classical Input: Classical data enters the system [19]. 2. Quantum Encoding: The data
is encoded into quantum states [19]. 3. Initial State Update: The initial state of the gates is updated [19].
4. Quantum Gate Operations: The gates perform operations on the data [19]. 5. Classical Decoding: The
processed quantum states are decoded back into classical data [19].

Simulations show that quantum-enhanced networks can achieve optimal performance with fewer parameters
and iterations than standard neural networks. They also exhibit greater robustness [19]. This robustness
provides a testable hypothesis for quantum activity in the brain’s memory processes. Recalling our previous
discussion, the relative entropy of coherence is a measure of quantum coherence and, if classical chaos in the
neural networks responsible for memory correlates with quantum chaos, as it does in our proposed quantum
mechanism, and the brain operates at the edge of chaos, then neural networks closer to this edge should
have higher theoretical relative entropy of coherence and thus be more resistant to disruption. Currently,
no studies have measured the relative entropy of coherence within the brain’s neural networks or correlated
network robustness with proximity to the edge of chaos. Although we haven’t definitively shown there is
a quantum mechanism at work in the brain’s long-term and short-term memory, we have found a physical
process that would indicate the presence of one. We’ve established that the relative entropy of coherence
could be used to measure quantum coherence in the brain, given that quantum coherence is an indicator of
quantum chaos and quantum chaos is correlated with classical chaos. This suggests that neural networks
approaching a chaotic limit might serve as a proxy for quantum activity within the brain. Furthermore,
combining neuroscience methods like artificial neural networks with quantum computers offers a powerful
set of tools for exploring how the brain would behave with quantum aspects. We have shown that if the
brain utilizes a quantum mechanism for long-term and short-term memory, the responsible networks should
be more resistant to noise. If chaos indicates relative entropy of coherence, and relative entropy of coherence
measures coherence, then memories formed in neural networks operating near the edge of chaos should be
more disruption-resistant than those without a quantum mechanism.
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