Improving quality of care

Justifying the cost for a single-patient-use blood pressure cuff

Bruce Friedman, D.Eng.

INTRODUCTION

Hospital-acquired infections (HAIs), which have been a serious concern for healthcare professionals for decades, have become a topic of concern for healthcare consumers as well. A March 2009 study by the CDC reported that the estimated 1.7 million HAIs annually cost U.S. hospitals between \$35.7 billion to \$45 billion.² This does not include the indirect costs to patients and their families. The report also evaluates the effectiveness of measures to prevent infections and estimates that as much as 70% of HAIs could be prevented, resulting in potential cost savings of \$25.0 to \$31.5 billion. While there are many causes of HAIs, the use of single-patient-use blood pressure cuffs can eliminate one source of contamination. While the direct cost of single-patient-use cuffs may be more than reusable cuffs, it is balanced by the savings to the hospital through the reduction in potential infections, as explained later in this article.

Hospital-acquired infections, also known as healthcare—associated infections, encompass almost all clinically evident infections that do not start from a patient's original admitting diagnosis. Understanding the factors that contribute to these infections will help prevent and reduce their prevalence. Switching from reusable cuffs to single-patient-use cuffs can reduce the risks and cost related to HAIs.

A recent analysis of catheter-related blood stream infections (BSIs) in the ICU showed that while the overall incidence of BSIs decreased, the percentage caused by Methicillin-resistant Staphylococcus aureus (MRSA) increased. A 2005 study showed that MRSA is primarily related to health care, but is no longer confined to acute care facilities. MRSA infections are associated with greater lengths of stay, increased costs and higher mortality.

A survey of acute care hospitals conducted in 2011 reported that while the estimated number of HAIs in acute care hospitals had dropped to 722,000, still approximately 75,000 patients with HAIs died during their hospitalizations. The survey also indicated that over 50% of all HAIs occurred outside of the intensive care unit.³⁴

IMPACT OF BLOOD PRESSURE CUFFS ON HAI

Numerous studies have demonstrated the contamination of blood pressure cuffs with clostridium difficile,⁶ Methicillin-resistant Staphylococcus aureus,^{7,8,9,10} acinetobacter baumannii,^{9,11} e.coli and pseudomonas.⁷ Bacteria, such as MRSA and Vanocomycin-resistant Enterococci (VRE), can remain viable on cuffs and other environmental surfaces for days.^{8,12} High levels of contamination have been demonstrated in all hospital units, with the highest in ICUs.^{13,14,15}

Cuffs are reportedly one of the most frequently used medical devices, but routinely are ignored when it comes to cleaning. ^{16, 17} Contamination with pathogens have been cultured from cuffs even after cleaning. ¹⁷ A study published in 2015 found the MRSA contamination rate on blood pressure cuffs was 22.2 %. ³⁵

There is increasing recognition of the potential role of blood pressure cuffs as a vector for hospital-acquired infections. A report from a National Health Service (NHS) trust stated, "The infection prevention and control team believe that shared blood pressure cuffs are a serious potential risk for transmitting MRSA." A clinical guideline from the Massachusetts Department of Public Health recommends the use of disposable blood pressure cuffs in acute care hospitals. The Society for Healthcare Epidemiology of America (SHEA) guideline for preventing transmission of MRSA and VRE indicates that shared patient equipment, such as blood pressure cuffs, can transmit infections between patients.

ADOPTION OF SINGLE PATIENT CUFFS DECREASES THE RISK OF INFECTIONS

Infections have been clearly shown to cause significant increases in the cost of patient care, length of stay and mortality rates. Starting October 2008, the Center for Medicare and Medicaid Services no longer pays for the extra costs of treating urinary and vascular catheter-associated infections and certain surgical site infections, which will result in increased costs for the hospital. The adoption of single-patient-use blood pressure cuffs could help reduce HAIs, improve patient outcomes, decrease mortality and markedly reduce the extraordinary financial burden.

One method of calculating the financial benefit of a device intended to prevent or reduce adverse events (such as HAIs) is a formula used in risk assessment cases. ²⁴ The formula demonstrates that the cost of precautions taken to reduce an adverse event (B) can be economically justified if it is less than the product of the probability of occurrence (P) and the magnitude (L) of the resulting harm (the cost to treat the infection), This can be expressed by the formula:

$$B < P \times L$$

The cost of increased patient care due to HAIs varies significantly depending on the site of the infection, the location within the hospital and the patient's condition. Reports in the literature show that median cost ranges from \$25k to \$40k. 14,21,25 This cost will be used for the term L in the equation above.

Reported rates of HAIs range from 9.8 to 23.7 per 1,000 patient days. 26,27 These rates are based on the occurrence of HAIs across a population. Since we are interested in determining the costs associated with single-patient-use blood pressure cuffs, the HAI rates need to be adjusted for the length of stay (LOS). 27 Data from the Agency for Healthcare Research and Quality indicates the average LOS for acute care hospitals is 4.6 days. 28

Rate of HAIs = 0.0098/dayALOS = 4.6 days

Probability of an HAI occurring in an individual patient during their stay $= HAI \times ALOS = 0.0098/day \times 4.6 days = 0.0451$

Placing this data into the risk formula yields the following result.

B < P x L 0.0451 x \$25,000 \$1,127

The cost computed above does not take into account the likelihood that the use of non-disposable cuff would cause an HAI.

While the use of single patient use blood pressure cuffs has been recommended as a way of reducing HAIs,²⁹ the impact of this practice has not been assessed by scientific studies. However, a number of studies have looked at the transmission of infections by healthcare workers (HCW). McBryde found that 17% (CI 9% to 25%) of contacts between a HCW and a patient colonized with MRSA result in transmission of MRSA to the healthcare worker's gloves.³⁰ A study of the transmission dynamics of VRE in the ICU estimated that the likelihood of contamination of HCW was 40% and the likelihood of colonization was 6%.³¹

While HCW change gloves and/or wash their hands between patients, cuffs are not always cleaned if it is believed that the patients are not colonized¹⁷. Beggs' study on the effect of hand washing used a 10% probability of patient to HCW transmission and the same probability that a HCW would transmit the infection to another patient,¹² resulting in a transmission rate of 1% with the HCW as a vector between patients. If we assume that rate of transmission for contaminated blood pressure cuffs, then the acceptable cost per patient would be:

$$(\$1,127 \times 1\%) = \$11.27.$$

Since single-patient-use cuffs cost well less than the estimated \$11.27 cost based on the above risk assessment, the use of single-patient-use cuffs in reducing the risk of infection can be clearly justified³⁶. This analysis does not include the initial purchase cost of reusable cuffs, or the cost of cleaning and disinfection, which would provide further justification for the use of single-patient-use cuffs.

NURSING CONSIDERATIONS

The number of higher acuity patients admitted to hospitals and the incidence of patients with hypertension is increasing.³² Blood pressure management is one of the fundamental tasks for the nurse. Vigilant blood pressure management combined with higher acuity patients and HAIs make special challenges for the nursing staff. The nursing staff needs better ways to prevent infections using evidence-based research.³³ Single-patient-use blood pressure cuffs can provide confidence one source of contamination is eliminated.

CONCLUSION

Numerous studies have demonstrated that reusable blood pressure cuffs are contaminated with pathogens and could be vectors for infection. The perceived increase in cost of the adoption of single-patient-use cuffs does not take into account the costs associated with any infections caused by contaminated reusable cuffs.

Single-patient-use cuffs reduce the overall risk of HAIs, improve patient safety, and could actually reduce overall hospital costs.

REFERENCES

- 1. Consumer Reports article (3), (2010).
- 2. Centers for Disease Control and Prevention Report, (March 2009).
- Burton D.C., et al. Methicillin-Resistant Staphylococcus aureus Central Line-Associated Bloodstream Infections in US Intensive Care Units, 1997-2007 JAMA 301 (7), 727-736 (2009).
- 4. Klevens R.M., *et al*, Invasive Methicillin-Resistant Staphylococcus aureus Infections in the United States; *JAMA* **298 (15)**, 1763–1771 (2007).
- 5. Digiovine B., et al. The attributable mortality and costs of nosocomial bloodstream infections in the intensive care unit. Am J Respir Crit Care Med. 160, 976–981 (1999).
- Manian F.A., et al. Clostridium difficile contamination of blood pressure cuffs: a call for a closer look at gloving practices in the era of universal precautions. Infect Control Hosp Epidemiol 17, 180–182 (1996).
- Walker, N., et al. Blood pressure cuffs: friend or foe? J Hosp Infect 63 (2), 167–9 (2006).
- 8. Cormican M.G., *et al.* The microbial flora of in-use blood pressure cuffs. *Irish Journal of Medical Science* 1991 **160 (4)**, 112–13 (1991).
- 9. de Gialluly, C., et al. Blood pressure cuff as a potential vector of pathogenic microorganisms: a prospective study in a teaching hospital. *Infection Control and Hospital Epidemiology* **27** (9), 940–3 (2006).
- 10. Boyce JM. Environmental contamination makes an important contribution to hospital infection. *Journal of Hospital Infection* **65 (S2)**, 50–54 (2007).
- Bureau-Chalot F., et al. Blood pressure cuffs as potential reservoirs of extended-spectrum beta-lactamase VEB-1-producing isolates of Acinetobacter baumannii. J Hosp Infect 58 (1), 91–2 (2004).
- 12. Kleinpell R.M., et al. Targeting Health Care-Associated Infections: Evidence-Based Strategies, In: Patient Safety and Quality An Evidence-Based Handbook for Nurses, [Online] http://www.ahrq.gov/qual/nurseshdbk/docs/KleinpellR_THCAI.pdf. Accessed 24 March 2009.
- 13. Baruah J., et al. Blood pressure cuffs as a potential fomite for transmission of pathogenic microorganisms: A prospective study in a university teaching hospital. British Journal of Infection Control, 9; 1, 19-21 (2008).
- 14. Stone P.W. Systematic review of economic analyses of health care-associated infections. *American Journal of Infection Control* **33 (9)**, 504 (2005).
- Beggs C.B., et al. Increasing the frequency of hand washing by healthcare workers does not lead to commensurate reductions in staphylococcal infection in a hospital ward BMC Infectious Diseases, 8:114 (2008). [Online] http://www.biomedcentral.com/1471-2334/8/114. Accessed 24 March 2009.

- 16. Beard M.A., et al. Sphygmomanometers as a reservoir of pathogenic bacteria. Med J Aust 2 (15), 758–60 (1960).
- 17. Base-Smith V. Nondisposable sphygmomanometer cuffs harbour frequent bacterial colonization and significant contamination by organic and inorganic matter. *AANA Journal* **64 (2)**, 141–5 (1996).
- 18. South Tees Hospitals NHS Trust: Infection Control Report for July to September 2005. [Online] http://www.southtees.nhs.uk/UserFiles/File/ChiefExecutive'sOffice/TrustBoardPapers/2005-06/December%202005/12.19.01%20-%20Infection%20prevention%20control%20report%20(Sept).doc. Accessed 24 March 2009.
- 19. Contact precautions in hospitals. In: Prevention and control of healthcare-associated infections in Massachusetts. Part 1: final recommendations of the Expert Panel. Boston (MA): Massachusetts Department of Public Health; (2008 Jan 31.) 50-3. [Online] http://www.guideline.gov/summary/summaryaspx?ss=15&doc_id=12918&nbr=6632. Accessed 24 March 2009.
- 20. Muto, C.A., et al. SHEA Guideline for Preventing Nosocomial Transmission of Multidrug-Resistant Strains of Staphylococcus aureus and Enterococcus. *Infect Control Hosp Epidemiol* **24**, 362–386 (2003).
- 21. Zhan, C. and Miller, M. Excess length of stay, charges, and mortality attributable to medical injuries during hospitalization. *JAMA* **290**, **14**, 1868–1874 (2006).
- 22. Laupland K.B., *et al.* Cost of intensive care unit-acquired bloodstream infections. Journal of Hospital Infection **63**, 124–132 (2006).
- 23. Department of Health and Human Services SMDL #08-004. [Online] http://www.cms.hhs.gov/SMDL/downloads/SMD073108.pdf. Accessed 24 March 2009.
- 24. Hur, D. and Gravestein J.S. Is ECG Monitoring in the OR Cost Effective? Biotelemetry, Patient Monitoring, **6**, 20020–6 (1979).
- 25. Elward A.M., *et al.* Attributable Cost of Nosocomial Primary Bloodstream Infection in Pediatric Intensive Care Unit Patients. *Pediatrics, Apr,* **115**, 868–872 (2005).
- 26. Jarvis W.R. Nosocomial infection rates in adult and pediatric intensive care units in the United States. National Nosocomial Infections Surveillance System. *Am J Med*, **91** (3B), 185S–191S (1991).
- 27. Weinstein R.A., Nosocomial Infection Update (1998). [Online] http://www.cdc.gov/ncidod/eid/vol4no3/ weinstein.htm#table1 (2007). Accessed 24 March 2009.
- 28. AHRQ, Center for Delivery, Organization and Markets, Healthcare Cost and Utilization Project, Nationwide Inpatient Sample (1993–2005). [Online] http://www.hcup-us.ahrq.gov/reports/factsandfigures/figures/2005/2005_1_2.jsp. Accessed 24 March 2009.

- 29. Layton M.C., et al. An outbreak of mupirocin-resistant Staphylococcus aureus on a dermatology ward associated with an environmental reservoir. *Infect Control Hosp Epidemiol* **14 (7)**, 9–75 (1993).
- 30. McBryde E.S., et al. An investigation of contact transmission of methicillin-resistant Staphylococcus aureus. *Journal of Hospital Infection* **58**, 104–108 (2004).
- 31. Austin D.J., et al. Vancomycin-resistant enterococci in intensive-care hospital settings: Transmission dynamics, persistence, and the impact of infection control programs. *Proc. Natl. Acad. Sci Vol.* **96**, 6908–691 (1999).
- 32. Hajjar, I., et al, HYPERTENSION: Trends in Prevalence, Incidence, and Control. Annual Review of Public Health Vol. 27, 465–490 (doi:10.1146/ annurev. publhealth.27.021405.102132) (2006).
- 33. Burke J.P. Infection control: a problem for patient safety. *NEJM* **348**, 651–6 (2003).

- 34. Magill, Shelley S., *et al.* Multistate point-prevalence survey of health care–associated infections. *New England Journal of Medicine* **370.13**, 1198-1208 (2014).
- 35. Matsuo, M., S. Oie, and H. Furukawa. Contamination of blood pressure cuffs by methicillin-resistant Staphylococcus aureus and preventive measures. *Irish Journal of Medical Science* **182.4**, 707-709 (2013).
- 36. Alexander, E.S., et al. Implementation of disposable blood pressure cuffs as a novel approach to reduce fomite transmission of healthcare-associated (HCA) Clostridium difficile infection (CDI) in a community hospital or twice implemented is once credible. American Journal of Infection Control, E61-62, June 2009.

Imagination at work

Product may not be available in all countries and regions. Full product technical specification is available upon request. Contact a GE Healthcare Representative for more information. Please visit www.gehealthcare.com/promotional-locations.

Data subject to change.

© 2018 General Electric Company.

GE, the GE Monogram and Imagination at work are trademarks of General Electric Company.

All third-party trademarks are the property of their respective owners.

Reproduction in any form is forbidden without prior written permission from GE. Nothing in this material should be used to diagnose or treat any disease or condition. Readers must consult a healthcare professional.

JB25641XX(1) 8/18