

Today's Moderator

Travis Cox

Chief Technology Evangelist Inductive Automation

Guest Presenters

Travis Broussard Lead SCADA Engineer Edge Controls Cédric Groc Director of Activities 2Gi Technologie **Dominique Wille** CEO *Plantformance AG* Kevin Komara Director, Data Acquisition Services Customized Energy Solutions

Agenda

- Edge Controls / Stonehill Environmental Partners
- 2Gi Technologie & Plantformance / Saint-Gobain Glass
- Customized Energy Solutions
- Q&A

About Inductive Automation

- We make software for problem solvers
- In business for 21 years
- 61% of the Fortune 100 and 44% of the Fortune 500 use Ignition
- Highly diversified customer base across many industries
- Ignition installations in 100+ countries
- 4,000+ integrators worldwide
- Profitable and independent with no outside investors

Guidentian By inductive automation

The Unlimited Platform for SCADA and So Much More

- Connect, Design, Deploy Without Limits:
 - One central hub for everything on the plant floor
 - Create any kind of industrial application
 - Web-deploy clients to desktops, industrial displays
 & mobile devices

- Unlimited licensing
- Industrial-strength security and stability
- Trusted by thousands of companies worldwide

What Makes A Control System "World-Class"?

- Significant positive impact
- Uniqueness
- Well-designed UI/UX
- Sophisticated architecture & features
- High level of effort

Today's webinar showcases some worldclass control systems that all leverage the power of Ignition.

- Start Date: January 2023
- **Deploy Date:** February 2024
- Overview: Standardized field equipment programming & SCADA configuration, creating a unified data model, enabling the rapid onboarding of new facilities with a fully mobile-responsive modern, cardbased UI, while lowering overall costs.

Initial Problem

- Assets were a mix of brownfield solutions:
 - Multiple hardware brands
 - Differing programming standards
- Growing Organization
 - Evolving business objectives
 - More agility in field automation and SCADA was necessary

Solution - Design

- Understanding of company vision & pain points
- New unified data model
 - Flexible Able to evolve with business needs
 - Scalable Organized and understandable at any size
- Configuration Framework
 - Standardized automation programming
 - Well-defined Ignition UDTs

Solution - Execution

- Opto 22 Hardware
 - Durable & powerful at a great price
 - Energy monitoring units for drive analytics
- Cloud-hosted VM infrastructure
- Hub & Spoke architecture
 - Cirrus Link's Chariot MQTT Broker

- Modular "equipment package" design
 - Rapid facility onboarding
- Ignition Perspective SCADA system
 - Modern, card-based UI
 - Mobile Responsive with a 1:1 feature set
 - External identity provider (Okta) with robust security
 - Adaptive Multi-Factor Authentication (MFA)

	Stonehill EP		3			
		0	Û			
民	ESD Valve		>			
Closed			false			
HOA			1			
HOA D	escription		Auto			
Opene	9		true			
Ŷ	Filter Diff Pressure		>			
Value			0.8 PSI			
8	Flow Meter		>			
Flow Ra	ste	15,64	2.5 BPD			
Vol Tod	lay	8,2	38 BBLS			
Vol Yes	terday	11,5	04 BBLS			
Ŷ	Postfilter Pressure		>			
Value			27.4 PSI			
Ŷ	Prefilter Pressure		>			
Value		2	28.1 PSI			
	Proportional Valve		>			
HOA			1			
HOA D	escription		Auto			
Positio	Position Command					
Contro	Pressure		28 PSI			
Level H	igh Close		18			
Level L	ow Open		16			
Positio	n		24.7 %			
Ŷ	Temperature		>			
A Home	Map Sites	Tabular	XX Trend			

Site Details (mobile)

Bypass Valve	>
Closed	true
HOA	1
HOA Description	Auto
Opened	false
Pump 1	>
Value	95,3 PSI
Flow Rate	0 BPD
Closed	true
HOA	1
HOA Description	Auto
Opened	false
Vol Today	0 BBLS
Vol Yesterday	0 BBLS
Pump 2	>
Value	95.3 PSI
Flow Rate	0 BPD
Closed	true
HOA	1
HOA Description	Auto
Opened	false
Vol Today	0 BBLS
Vol Yesterday	0 BBLS

Results

- Improved communication throughout the organization
- Ability to execute in a fraction of the time
- Build entire facilities by mixing and matching constituent data packages within an hour that previously took days Example: Was able to build an entirely new saltwater disposal facility in Ignition in under 15 minutes!
- Numerous different forms of cost savings
- Newfound ease in creating analytics and reports
- Easily scalable system

- Start Date: November 2023
- **Deploy Date:** March 2024
- Overview: This project consisted of Ignition applications that were deployed in several countries, with a hybrid architecture of local, real-time data and shared data in the cloud. The goal was to accelerate digitalization and consolidate data at a global level.

Problem

- Inconsistent digitalization across plants
- Fragmented data/siloed data storage
- Slow decision-making processes
- Lack of comprehensive visibility into global operations

Solution / Overview of the layers

- Data Sources: cloud + local
- Global Data Referential (GlassRef)
- Middleware layer by Plantformance
- Scalable Software Architecture
 - Project inheritance
 - Versioning strategy for all components
 - Common practices for all projects
- Enterprise Administration Module

Solution / Features

- Customizable dashboards for visual management practices
 - Improve visibility of processes and key performance indicators (KPIs)
 - Encourage team collaboration and empowerment
 - Foster a culture of continuous improvement
- Microsoft Planner connectivity to manage the tasks decided by the team
- 2nd application: Energy Management System streams data to a central data lake

Results

- Rapid deployment capability (one-hour deployment)
- Globally managed cybersecurity (by Plantformance)
- Local and global data analysis
- Faster decision-making
- Consolidated HMI
- Project was completed in record time!
 - 5 months development & first factory
 - Then deployed to over 10 plants in less than a year

What is a SCADA System and why do we have one at CES?

SCADA

(Supervisory Control and Data Acquisition)

Kevin J. Komara P.E.

Director - Data Acquisition Services 10/29/2024

Asset Data Through CES SCADA System

Shrink-Wrapped Solutions

• Expensive

- Large annual maintenance fees
- Rigid
 - Hard to add to seamlessly
- Constraining
 - \circ Lots of rules
- Complicated, Complicated, Complicated
 - All our EGGS in one BIG basket

Shrink-Wrapped Solutions

Siemens

OSI

Jack of all Trades – Master of NONE! (Did I mention – COMPLICATED ?)

TIE Fighter™ Attack 75237 | Star Wars ...

Aveva/GE/Etc

What do we need at CES?

- Reliability
- Flexibility
- Expandability
- Costability (?)

Master of ALL TRADES! (How do we do that, you ask?)

Modular Solutions

Interoperability!

Modular Solutions

Able to Choose Best of Breed!

Unlimited Combinations

Unlimited Growth Potential!

Where do we START? At the FOUNDATION!

Strength in Standards!

Foundation

Standards and Interoperability!

Inductive Automation Ignition

Future Proof – add new functionality!

We can **BUILD** ANYTHING!

Customized Energy Solutions

Asset Information Management System Using Ignition

Kevin J. Komara P.E.

Director - Data Acquisition Services 10/29/2024

Overview

- Asset Information Management System (AIMS)
- New industry segment for Ignition: Grid Scale Energy Management
- Fully distributed service platform that integrates best-of-breed components from multiple vendors
- Unique UDTs, MQTT brokering, multi-locational control centers, publish/subscribe to data from virtually unlimited sources
- Can infinitely upgrade and expand, never need to replace

Problem

- No single EMS vendor offered all the functionality, flexibility, and scalability needed.
- Around 2019, CES embarked on a "proof of concept" system implementation based on Ignition.
- The Goal: Integrate the various vendor components so seamlessly with Ignition that the end users wouldn't be able to tell that the system was actually many systems performing as one.

Requirements

This system had to perform 3 basic functions:

- 1. Scan data from various manufacturers' RTUs in US, Canada, India, Japan, etc., in a very robust and reliable way.
- Present the data as scaled information in various formats and allow CES control room operators to perform date intervention as needed.
- 3. Disseminate information to independent system operators, utilities, energy off-takers, etc., using utility-grade high-speed data links *and* be less expensive and easier to use than traditional EMS systems.

Challenges

- Set up 6 servers (3 pairs) of highly available Ignition servers:
 - A pair of FEPs (Front End Processors)
 - A pair of CSPs (Core System Processors)
 - Challenge: No methods available for "data intervention." This led CES to create our own UDTs.
 - A pair of DDPs (Data Distribution Processors)
 - Challenge: After a major power interruption and fire, CES developed a scalable Backup Control Center capability for our system that we call "Multi-Sync."

- After the successful POC system/MQTT integration, the project team used the basic building blocks to lay out the entire CES System.
 Name changed to AIMS.
- System includes heavy usage of the Ignition Enterprise Administration Module (EAM)
- The DEV EAM Controller has 3 separate tag databases that use EAM to "push" all tag changes to all the other servers and tag databases in the system

- The first Tag Database is for the provider/RTU modeling. This is now called our "Source Data Process" or SDP.
- The second Tag Database is for the actual asset modeling. This is now called our "Core Data Process" or CDP.
- The third Tag Database is for the Datalink consumer/link modeling. This is now called our "Distribution Data Process."

- Designed and deployed a 12-server test environment. 3 pairs of servers (SDP, CDP, and DDP) in a co-location in Philadelphia, PA.
 Also 3 pairs of test servers (SDP, CDP, and DDP) in a co-location in Carmel, IN.
- Designed and deployed a 12-server production environment. 3 pairs of servers (SDP, CDP, and DDP) in a co-location in Philadelphia, PA.
 Also 3 pairs of production servers (SDP, CDP, and DDP) in a colocation in Carmel, IN.
- Developed a full migration system.

Customized Energy Solutions AIMS EAM System Architecture

Phase 4,5 & 6 (Parallel Operations)

Implement Migration Pass-Through Servers - Siemens SCADA in Operational Control

Result

- Major sale of the AIMS system to one of our own customers
- None of the current components of the AIMS system require a subscription license or a single instance of Oracle.
- The initial cost of the AIMS system was 25% less than the offered Siemens system, and ¼ of the cost of OSI.
- TCO: CES will never have to replace our entire system ever again, which makes this Ignition-based system an even better value.

Ø					Q Search or jump to.			📾 ctrl+k				+ ~ (୬ 🔈 🔗
	nboards > Individual	Sites > Auburn 🏠	æ							nh+ Add 🗸 🛗 🍕	🖇 🕐 Last 6 hours 🗸	Θ ΰ	a ~ ^
GROUP 10m ~ SiteName Auburn ~													
Site Summary						Outp	out Summary						
0.00						4.0					Name	N 104/	Last *
-0.25					, M	30.00 3.0					- Coupl	ed Pad MW	0.8
-0.50				ma	h/ l.	20.00 2.0					- Solar	MW	0.5
-0.75					<u> </u>	10.00 1.0							
05-20	06:00 06:20	07:00 07:20	08.00 08.3	0 00:00 00:	20 10:00 10:20 1	1:00 0.0							
Name	00.00 00.30	07.00 07.30	08.00 08.3	0 09.00 09.	Min Max	Last *				-			
- BESS MW					-0.87 0.00	-0.78 -1.0							
- SOC (right y-axis	s)				5.55 35.77	35.77 -2.0	05:30 06:00	06:30 07:00 07:	80 08:00 08:30 0	00.00 00.30 10.00	10:30 11:00		
- Total Site MW 0.00 0.00 0.00 05:30 05:00 07:00 07:30 08:00 08:30 09:00 09:30 10:00 10:30 11:00													
System Settings				Reg	ulation Status				SOC				
Mode													
Heila SETP						Off				35	5.8%		
Avail Invertor													
Avail inverter										\			
Pad 1						Pad 2							
Batt KW				Pad Total	SoC	Batt KW		Inv 2		Pad Total	SoC		
-59.9	20.3	30.6	30.6	91.7	43%	-79.9	19.0	19.0	19.0	57.2	44.5%		
Pad 3						Pad 4							
Batt KW	Inv 1	Inv 2	Inv 3	Pad Total	SoC	Batt KW	Inv 1	Inv 2	Inv 3	Pad Total	SoC		
-8007	19.2	19.2	19.2	57.4	28.6%	-7997	12.4	12.4	12.4	35.8	39.0%		
Pad 5						Pad 6							
			Pa			Batt KW	Inv 1	Inv 2	Inv 3	Pad Total	soc		
31.4	31.3	31.3	5	94.4	43.9%	-80.0	18.8	18.8	18.8	55.9	29.3%		

Ignition

Ready to Try Ignition for Yourself?

Download the full version for free at: inductiveautomation.com **10 Million** Video Views

8 Million Challenges

30k IU Credentials **100k** Accounts **TURNS 10!**

inductiveuniversity.com

International Distributors

Brazil	FG Automação Industrial	www.fgltda.com.br		
Central America & Colombia	NV Tecnologías S.A.	www.nvtecnologias.com		
France	AXONE-iO	www.axone-io.com		
Italy	EFA Automazione S.p.A	www.efa.it		
Middle East/North Africa	Clarien Solutions	www.clarien.solutions		
Norway & Sweden	Autic System AS	www.autic.no		
Sub-Saharan Africa	Element8	https://element8.co.za		
Switzerland	MPI Technologies	https://mpi.ch		

Contact International Distribution Manager Yegor Karnaukhov at: ykarnaukhov@inductiveautomation.com

Questions & Comments

Call us at: 800-266-7798

For Inductive Automation Australia, call: 1300 10 8088

Thank You

Stay connected to us on social media

& subscribe to news feeds:

