
1

2007-05-07-11.10.00.000000

Platform: DB2 for z/OS

A Peek into the 24x7
VLDB DBA’s Toolbox

David Simpson
Themis Inc.
dsimpson@themisinc.com

Session: B02

David Simpson is currently a Senior Technical Advisor at Themis Inc. He teaches
courses on SQL, Application Programming, DB2 Administration as well as
performance and tuning. He has supported transactional systems that use DB2 for
z/OS databases in excess of 10 terabytes. David has worked with DB2 for 14 years
as an application programmer, DBA and technical instructor. David is a certified
DB2 DBA on both z/OS and LUW. David was voted Best User Speaker and Best
Overall Speaker at IDUG North America 2006. He was also voted Best User
Speaker at IDUG Europe 2006.

2

Disclaimer

In other words….IT DEPENDS!

The content of this presentation reflects my
personal experience and is a product of the
systems and applications I have worked with.
Your results may vary. My results may or may
not be typical.

“Themis makes no representation, warranties or guarantees whatsoever in
relationship to the information contained in this presentation. This presentation
is provided solely to share information with the audience relative to the subject
matter contained in the presentation and is not intended by the presenter or
Themis to be relied upon by the audience of this presentation.”

3

Topics
• Running utilities 24x7
• Performing table maintenance 24x7
• Access Path Analysis
• Automate DBA tasks with REXX
• Real-world examples

The topics in this presentation are all born from real live DBA experience.
Running utilities and performing table maintenance are a challenge in any 24x7
environment. We have some developed some techniques that minimize the
outage for these types of activities. We will also discuss tuning large-scale SQL
and the automation of some common DBA tasks.

4

Utilities
• Reorgs

• Plan “A” – large partitioned tables with NPIs
• Plan “B” – large partitioned tables w/o NPIs
• Plan “C” – really, really large partitioned tables with NPIs

• Copy “SHRLEVEL REFERENCE”

• Rebuild LARGE indexes

Running utilities in a large 24x7 environment can be a challenge.
Accomplishing reorgs, taking a “stable” copy of data, and rebuilding indexes
will be addressed here. A small maintenance window is assumed for
accomplishing these tasks.

5

Reorg Strategies
• Classify tables into 3 types

• Plan “A” – large
partitioned tables with
NPIs

• Plan “B” – large
partitioned tables w/o
NPIs

• Plan “C” – really, really
large partitioned tables
with NPIs

It helps to divide mission critical 24x7 tables into three categories for purposes
of reorganization.

Plan “A” addresses large partitioned tables that have non-partitioning indexes
(NPIs). These tablespces cannot be easily reorganized by partition due to the
NPIs.

Plan “B” addresses large partitioned tables that do not have any NPIs. These
tablespaces may be reorganized by partition.

Plan “C” addresses tables with NPIs that are too big to be reorganized in a
single job.

6

Reorg Plan “A”
REORG TABLESPACE CPPERD01.CINDVSE0
LOG(NO) SORTDATA SORTKEYS NOSYSREC
KEEPDICTIONARY
SORTDEVT SYSDA SORTNUM 32
COPYDDN(PLOCAL30)
SHRLEVEL CHANGE DEADLINE NONE MAXRO DEFER
MAPPINGTABLE PROD.MINDVSE0
STATISTICS TABLE(ALL) INDEX(ALL)

When a “Plan A” table needs to be reorganized, a job may be run to reorg the entire
table and all indexes at once. The SHRLEVEL CHANGE option is used to allow
application access to the table during the utility. Since these jobs run for a very long
time (10-12 hours), the MAXRO DEFER option is used to control when the switch
phase is attempted.

7

Reorg Plan “A” – Phases or Reorg

Unload

Reload

Sortbuild

WaitLog

The log apply phase runs at the end of an online reorg to “catch up” the shadow
copy of the data and indexes that was created during the reorg. Any insert, update
or delete SQL activity that occurred during the reorg is applied to the shadow copy
during this phase.

When MAXRO DEFER is specified, the reorg will go into a continuous loop during
the log apply phase. The tablespace continues to be available for read/write access
and any changes are continually applied to the shadow copy. The utility will not
come out of the log phase until signaled to do so.

8

Reorg Plan “A” – Forcing a Switch

Display Utility
-ALTER UTILITY(A*) REORG MAXRO(300)

This is the DB2 command that may be issued to allow the reorg to complete. A
specific utility id may be altered, or in this case, every utility id beginning with “A”
will be altered. The value of MAXRO is changed from DEFER to a value of 300,
meaning that the next cycle of the log phase estimated to complete in under 300
seconds will be the final pass of the log. The tablespace will be placed in read only
status for this final pass to insure data integrity. Once the final pass of the log is
complete, the utility will proceed to the switch phase.

9

Reorg Plan “A” – Phases or Reorg

Unload

Reload

Sortbuild

WaitLog SwitchX

Once the log phase is allowed to complete, the switch phase will begin. The switch
phase requires that all activity be drained on the affected tablespace so that the
underlying datasets may be swapped out. Since a plan “A” reorg is reorganizing all
partitions, indexes and non-partitioning indexes (NPIs) of a tablespace, the switch
phase can take a long time (10 to 15 minutes). By using MAXRO DEFER, the
DBA can control when the switch occurs and force it into an application outage.

10

Reorg Plan “B” – Reorg Parts

•Pick a low volume time for your application.

•Reorg the next “n” partitions of these tables with
SHRLEVEL CHANGE option.

•Attached REXX can help.

For large partitioned tablespaces that have no NPIs, a partition
level reorg strategy may be used. These reorgs may generally be
run with no outage provided you pick a low volume time for your
application. The phases of the reorg are the same as those
discussed earlier, but the read only status and the drain for
switching datasets only needs to be accomplished for a single
partition. The time to accomplish a switch for a single partition
is negligible (a few seconds), so an application may not even
notice when it happens.

Plan “B” tablespaces are reorganized over time. If you want to
reorg the entire table every quarter and there are 254 partitions,
have a job that reorganizes 20 partitions each week.

11

REORGEN REXX
/* Rexx REORG LISTDEF CONTROL CARD GENERATOR */
/* Author: David Simpson */
/* Written: 2003-09-09 */
/*---*/
/* Input parms: SSID_NAME - DB2 Subsystem name */
/* DB_NAME - Database name */
/* TS_NAME - Tablespace name */
/* HOW_MANY - How many ccs to gen */
/* Input file: none */
/*---*/
/* Process description: */
/* This REXX will generate control cards to reog the next n */
/* partitions of a partitioned tablespace. */
/*---*/
Parse Upper Arg ARGS
SSID_NAME = Word(ARGS,1) /* DB2 SSID */
DB_NAME = Word(ARGS,2) /* database */
TS_NAME = Word(ARGS,3) /* tablespac*/
HOW_MANY = Word(ARGS,4) /* NUM CARDS*/
Call INITIALIZE /* Housekeeping */
Say "Starting to process REORGEN"
Call QUERY_BUILD_INFO
Say "Finished processing REXX"
/* -- */
Call TERMINATION /* Done.... Get out */
Return;

/* -- */
/* -- Determine if the build is active or not -- */
/* -- */
QUERY_BUILD_INFO:
SQLSTMT = "" /* Initialize sqlstmt text */
SQLSTMT.0 = 17 /* Set number of lines in SQL stmt */
SQLSTMT.1 = "SELECT"
SQLSTMT.2 = " CASE WHEN DSNUM IS NULL THEN 1"
SQLSTMT.3 = " WHEN DSNUM = PARTITIONS THEN 1"
SQLSTMT.4 = " ELSE DSNUM + 1 END AS PART ,PARTITIONS"
SQLSTMT.5 = "FROM"
SQLSTMT.6 = "(SELECT * FROM SYSIBM.SYSCOPY"
SQLSTMT.7 = " WHERE ICTYPE IN ('W','X')"
SQLSTMT.8 = " AND TIMESTAMP ="
SQLSTMT.9 = " (SELECT MAX(TIMESTAMP) FROM SYSIBM.SYSCOPY"
SQLSTMT.10 = " WHERE DBNAME = '"||DB_NAME||"' "
SQLSTMT.11 = " AND TSNAME = '"||TS_NAME||"' "
SQLSTMT.12 = " AND ICTYPE IN ('W','X'))) SC"
SQLSTMT.13 = "RIGHT JOIN SYSIBM.SYSTABLESPACE TS"
SQLSTMT.14 = " ON SC.DBNAME = TS.DBNAME"
SQLSTMT.15 = " AND SC.TSNAME = TS.NAME"
SQLSTMT.16 = "WHERE TS.DBNAME = '"||DB_NAME||"' "
SQLSTMT.17 = " AND TS.NAME = '"||TS_NAME||"' "
DO X = 1 TO SQLSTMT.0;SQLSTMT = SQLSTMT||SQLSTMT.X||" ";END

/* PREPARE THE STATEMENT FOR EXECUTION BY DECLARING THE CURSOR, */
/* DOING A PREPARE OF THE STATEMENT, AND OPENING THE CURSOR. */
/* */
Address DSNREXX
"EXECSQL PREPARE S1 FROM :SQLSTMT" /* PREPARE ABOVE STMT */
If SQLCODE \= "0" Then Do /* ERROR OCCURRED */

ERROR_NOTE = "PREPARE CURSOR FAILED "
ERROR_AID = " NONE "
Call SQLERR_RTN_Exit

End

Address DSNREXX
"EXECSQL DECLARE C1 CURSOR FOR S1" /* DECLARE CURSOR */
If SQLCODE \= "0" Then Do /* ERROR OCCURRED */

ERROR_NOTE = "DECLARE CURSOR FAILED "
ERROR_AID = " NONE "
Call SQLERR_RTN_Exit

End

Address DSNREXX
"EXECSQL OPEN C1" /* OPEN CURSOR */
If SQLCODE \= "0" Then Do /* ERROR OCCURRED */

ERROR_NOTE = "OPEN CURSOR FAILED "
ERROR_AID = " NONE "
Call SQLERR_RTN_Exit

End

/* Package SQLCA for DSNTIAR usage
*/
NUMERIC DIGITS 10 /* Allow
for big numbers in SQLCA */
SQL_ERRD = "";Do I = 1 To 6;SQL_ERRD =
SQL_ERRD||D2C(SQLERRD.I,4);End
SQL_WARN = "";Do I = 0 To 10;SQL_WARN =
SQL_WARN||LEFT(SQLWARN.I,1);End
SQLCA = 'SQLCA
'||D2C(136,4)||D2C(SQLCODE,4)||D2C(70,2),
||LEFT(SQLERRMC,70)||'DSN
'||SQL_ERRD||SQL_WARN||LEFT(SQLSTATE,5)
/* If the length is beyond DSNTIAR
possible values (72-240), reset */
If MSG_LEN < 72 | MSG_LEN > 240 Then MSG_LEN
= 120 /* Outside scope */
If MSG_LEN = "MSG_LEN" Then MSG_LEN = 120
/* Default msg length 120 */
DB2_ERR_MSG = D2C(MSG_LEN * 12,2) ||
COPIES(' ',MSG_LEN * 12)
DB2_ERR_LEN = D2C(MSG_LEN,4)
Address /* Execute DSNTIAR
program with SQLCA/Parm data */
Address LINKPGM "DSNTIAR SQLCA DB2_ERR_MSG
DB2_ERR_LEN"
If RC < 5 Then,
Do

If RC = 4 Then Say "DSNTIAR RC=4 Message
Area Truncated"

S_POS = 3 /* Bypass the
length bytes in Message Area */

Do I = 1 to 12 /* Loop
through all lines of message */

MSG_TEXT =
Substr(DB2_ERR_MSG,S_POS,MSG_LEN) /* Pick
out text */

MSG_TEXT = Strip(MSG_TEXT,"T"," ")
/* Remove trailing blanks */

If MSG_TEXT > " " Then Say MSG_TEXT
/* Echo msg to terminal */

Else Iterate /* Some
msg lines are blank, skip */

S_POS = S_POS + MSG_LEN /* Skip to
next "line" of MSG data */

End I
End
Else,
Do /* If DSNTIAR fails for any reason,
print SQLCA info anyway */

Say "Call to DSNTIAR - Failed. RC=" RC
Say 'SQLCODE ='SQLCODE; Say 'SQLERRM

='SQLERRMC
Say 'SQLERRP ='SQLERRP; Say

'SQLSTATE='SQLSTATE
XX = "SQLERRD =";Do I = 1 to 6 ; XX =

XX||SQLERRD.I||',';End;Say XX
XX = "SQLWARN =";Do I = 0 to 10; XX =

XX||SQLWARN.I||',';End;Say XX
End
Address
Return;

/*--
-----------------------*/
/* The first row is the Build to unload
from... */
/*--
-----------------------*/
Address DSNREXX
"EXECSQL FETCH C1 INTO :START_PART,:NUM_PARTS
"
If SQLCODE = 0 Then Do

Say "START_PART IS "||START_PART
End
Else Do

ERROR_NOTE = "FETCH FROM CURSOR FAILED "
/* ERROR */

ERROR_AID = " NONE "
Call SQLERR_RTN_Exit

End
IF NUM_PARTS > PARTITIONS THEN DO

Say "Number of Parts to reorg is greater
than partitions"

exit(8)
END
IF START_PART = 1 THEN DO

Say "Start at the very beginning... a very
good place to start"

START_PART = 1
End
Queue " LISTDEF RERGLIST "
DO HOW_MANY;

Queue " INCLUDE TABLESPACE
"||STRIP(DB_NAME,B," ")||"."|| TS_NAME ,

||" PARTLEVEL("||START_PART||")"
IF START_PART = NUM_PARTS THEN START_PART =

0;
START_PART = START_PART + 1

END;
Address MVS "EXECIO * DISKW CCOUT (FINIS)" /*
Write Rerg cntl */

Address DSNREXX
"EXECSQL CLOSE C1"
/* CLOSE CURSOR */
If SQLCODE /= 0 Then,
Do

ERROR_NOTE = "Close Cursor failed "
/* ERROR */

ERROR_AID = " NONE "
Call SQLERR_RTN_Exit

End
Return;

/*---
--------------------*/
/* Start of task processing
*/
/*---
--------------------*/
INITIALIZE:
Address MVS "DELSTACK"
Address MVS "NEWSTACK"

Address MVS /* Establish REXX/DB2
interface to REXX */
"SUBCOM DSNREXX"
IF RC THEN

S_RC = RXSUBCOM('ADD','DSNREXX','DSNREXX')
Address DSNREXX "CONNECT" ""||SSID_NAME||""
/* Connect to DB2 */
IF RC /= 0 THEN DO
/* ERROR? */

Say "FAILURE TO CONNECT TO DATABASE"
EXIT 8
END

Return;

/*---
--------------------*/
/* End of task processing
*/
/*---
--------------------*/
TERMINATION:
Address DSNREXX "DISCONNECT" /*
Cut DB2 Thread */
S_RC = RXSUBCOM('DELETE','DSNREXX','DSNREXX')
/* Disable DSNREXX */
Return;

/*---
--------------------*/
/* HARD ERROR- DISPLAY DOC; TERMINATE PROCESSING
W /RC=8 */
/*---
--------------------*/
SQLERR_RTN_EXIT:
Call SQLERR_RTN_DISPLAY
Exit(8)
Return;
/*---
--------------------*/
/* SOFT ERROR- DISPLAY DoC; KEEP PROCESSING
*/
/*---
--------------------*/
SQLERR_RTN_DISPLAY:
Say "SQL STATEMENT RECEIVEING ERROR FOLLOWS"
Say "--
------"
Do X = 1 TO SQLSTMT.0;Say SQLSTMT.X;End
Say "--
------"
Say "APPLICATION DIAGNOSTICS"
Say ERROR_NOTE
Say ERROR_AID
Say "DB2 DIAGNOSTICS FOLLOW:"
Say "--
------"

I have written a REXX exec that generates a listdef for the next
few partitions of a partitioned tablespace. The REXX looks in
SYSIBM.SYSCOPY for the last partitioned reorganized and starts with
the next one. By using this step the same reorg job may be run
each week to reorg different partitions of a plan “B” tablespace.

12

Reorg Plan “C” - Improvisation
• Implementing an “unavailable” solution
• Rotate between multiple copies of the table
• Could require use of log tools

Plan “C” tablespaces are extra-large partitioned tablespaces that have NPIs. These
tablespaces are too big to reorganize in a single step, so improvisation is needed to
deal with them.

13

Reorg Plan “C” - Unavailable

Application

IX1 IX2

UNAVAIL_TBL

One strategy is to create a table that may be used to check for the availability of a
particular index. The application may be coded to periodically check to see if its
primary access path is available. In this example, it is most efficient for the
application to access the data via index IX2. As long as the unavailable table does
not have a row indicating that IX2 is unavailable the application continues to use
that access path.

14

Reorg Plan “C” - Unavailable

Application

IX1 IX2

UNAVAIL_TBL

IX2

In this scenario, the application will shift to a less efficient access path by calling a
different routine with a different set of packages based on the presence of a row in
the unavailable table. IX2 may now be dropped for partition level reorgs on the
base table. IX2 would be recreated at the end of the cycle and the row removed
from the unavailable table. This scenario can only work if the application can also
be put in a read only mode.

15

Reorg Plan “C” - Rotation
• Create a shadow table.
• Unload from primary, load to shadow
• Use a log tool to catch up
• Rename the tables
• Rebind all necessary packages
• DB2 9 has some built in functionality that will

help this

Another way to deal with extremely large tables is to actually create a second copy
of the table. Data is unloaded from the base table and loaded into the secondary
table. If the application has been writing data to the primary table during the
“reorg” log tools can be employed to gather the changes and apply them to the
reorganized copy. During a short application outage, the tables are renamed and all
appropriate packages must have a rebind to direct them to the newly reorganized
table.

16

Table Maintenance – 24x7
• Similar to the table rotation for reorg plan “C”.
• Unload from primary, load to shadow
• Use a log tool to catch up
• Rename the tables
• Rebind all necessary packages
• The DB2 9 functions do not address this if DDL

changes are being implemented.

Similar issues can result when table maintenance is needed in a 24x7 environment
and tables must be dropped and recreated. An often used techniques involves the
use of a second table and renames (like my reorg plan “C”). Applying log updates
may be more difficult if the tables are not identical, so a plan must be implemented
to deal with this type of change.

17

Obtaining Stable Image Copies

• Problems with SHRLEVEL CHANGE copies.
• Incremental / MERGECOPY Approach

In a 24x7 environment, image copies must be taken SHRLEVEL CHANGE. It
is often desirable, however, to have a SHRLEVEL REFERENCE copy
available.

18

SHRLEVEL CHANGE Copy

Row Relocates

Application

SHRLEVEL CHANGE copies do not represent a picture of the data at a stable point
in time. When used in a recovery situation, the DB2 log must also be available to
bring the recovered data to a consistent point. In addition to having rows from
different points in time, it is also possible for duplicate rows to be present in the
image copy due to row relocation.

19

Incremental Copy

XX

XX

XX

XX

If a stable copy is needed, incremental copies may be helpful. Be sure the
tablespace has the TRACKMOD YES property set and run an incremental copy.
This copies only pages that have changed since the last copy. If few enough pages
have changed, then this copy may be run as SHRLEVEL REFERENCE, thus
representing a stable copy and minimizing the application outage.

20

MergeCopy

Full Copy
SHRLEVEL CHANGE

Incremental Copy
SHRLEVEL REFERENCE

Full Copy
SHRLEVEL

REFERENCE

When the full SHRLEVEL CHANGE copy is merged with the incremental
SHRLEVEL REFERENCE copy via the MERGECOPY utility, the result is a full
image copy that is SHRLEVEL REFERENCE.

21

Rebuild LARGE Index

This step builds
a 4B row index in

about 4 hours!

//RECOVIX EXEC PGM=DSNUTILB,REGION=800M,
// PARM=(DBA1,CDREJAA2),TIME=2500
//STEPLIB DD DISP=SHR,DSN=DBA1.DB2.SDSNEXIT
// DD DISP=SHR,DSN=DBA1.DB2.SDSNLOAD
//SYSPRINT DD SYSOUT=*
//UTPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *

REBUILD INDEX (PROD.CACCTX31) STATISTICS
SORTDEVT SYSDA SORTNUM 12

//DFSPARM DD *
FILSZ=E600000000,HIPRMAX=0

This step is used to build a 4 billion row index using DB2 Version 8 utilities with
DFSORT. The SORTNUM parm indicates that DB2 will allocate 12 sort work
datasets per parallel task. The DFSPARM override specifies that each subtask will
sort approximately 600 million records and use of hiperspaces is disabled for this
sort. Sort work files are dynamically allocated for this job.

When sorting in parallel, always request lots of memory!

Note: If you are on DB2 Version 8, you are using DFSORT as the external sort
tool. If you are not yet on Version 8, you are using your shop’s sort tool of choice
which may or may not be DFSORT. The above example assumes DFSORT as the
tool. If you are using a different one some of the parms will differ.

22

Access Path Analysis
• Join type
• Join order
• Frequency Statistics

Tuning large OLTP queries presents unique challenges in a very large database.
Basic access paths will be discussed as well as desirable access paths for an OLTP
environment. The impact of frequency statistics and the increasing importance of
gathering them is also discussed.

23

Nested Loop Join

Outer table Inner table

Nested loop joins are usually the optimal access path for fast running queries in an
OLTP environment. An outer table is chosen and local predicates are applied. For
each row selected in the outer table, the inner table is accessed (hopefully via an
index) and rows are matched up. Access continues to bounce between the two
tables until no more qualifying rows are found on the outer table.

24

Merge Scan Join

1. Access first
table data
applying local
predicates.

3. Sort one or
both results to
gain sequential
matching.

Result

2. Access second
table data applying
local predicates.

4. Merge

Merge scan joins access each table independently while applying local predicates.
One or both of the results may be sorted to obtain sequential matching. The two
results are then merged into a result set.

Merge scan joins work well with large results, particularly when the data is not
clustered or accessed in the same sequence. Indexes may be used on either table to
more efficiently apply the local predicates.

For OLTP systems, this is usually not a desirable access path.

25

Hybrid Join

1. Access outer
table data applying
local predicates 2. Access inner table

index & append RIDs
in workfile

3. Sort by RID

4. Access inner table
using list prefetch

Result

The hybrid join was developed to take advantage of list prefetch when joining via a
non-clustered index. In theory, it has always been a good thing when used
appropriately. In practice it has always generated a knee-jerk reaction to eliminate
it from an access path.

For OLTP systems, this is usually not a desirable access path.

In version 8, we started seeing many more hybrid joins in access paths for larger
batch queries. We started testing alternatives that forced DB2 to use either a nested
loop join or a merge scan join. We found that in most cases the hybrid join was the
optimal access path.

So… it still depends!

26

Join Order
• In general, the table with the local

predicates that identifies the fewest
number of rows is desirable as the outer
table

• Critical for Nested Loop join
• Important for Hybrid join
• Not as important for Merge Scan Join
• Runstats guide the optimizer in making

these determinations (more on that
later).

Join order is one of the most critical factors in the performance of multi-table joins.
This is particularly true if the join itself is providing lots of filtering. Queries that
eliminate rows from consideration early in the join will perform better than those
where rows are thrown away late in the join. As always, statistics provide the
optimizer with the information necessary to determine these costs. Giving the
optimizer good information is critical for insuring good decisions.

27

Join Order

T1 T3T2

temp

Result

Tables are joined 2 at a time. In a three or more table join, intermediate results are
formed at each step and then joined to the next table. Join order can be critical to
query performance. Better performance results when the fewest number of records
is passed to the next level. It is desirable to have the best filters on the first tables
joined.

Of course DB2 determines the actual order of tables joined (based on available
statistics), not the author of the SQL.

28

Frequency Statistics – V8

Works in V8
Compatibility

Mode!

RUNSTATS TABLESPACE CQCNSD01.CINDVS10
SORTDEVT SYSDA SORTNUM 16
TABLE(QUAL01.PERSON_MRKT) COLUMN(ALL)
COLGROUP(FRST_NME) FREQVAL COUNT 10 BOTH
COLGROUP(LAST_NME) FREQVAL COUNT 10 BOTH
COLGROUP(NAME_SFX) FREQVAL COUNT 10 BOTH

INDEX(ALL)

Version 8 provides the ability to gather distribution statistics for non-indexed
columns. Distribution statistics have existed in prior releases of DB2, but the
RUNSTATS utility was not able to collect them for non-indexed columns. The
DBA could always provide them via inserts to SYSCOLDIST. DSTATS is a
popular sample program used to gather and insert these statistics for desired
columns prior to version 8.

By default, RUNSTATS will continue to gather distribution statistics on indexed
columns only. The DBA must request the collection of these statistics on other
columns, as shown above.

The syntax above is requesting distribution statistics on 3 non-indexed columns for
the 10 most frequent and 10 least frequent values for the column.

29

Frequency Statistics – Finding Them
SELECT TBOWNER,

TBNAME,
NAME,
DECIMAL(FREQUENCYF*100,5,2) FREQ,
COLVALUE

FROM SYSIBM.SYSCOLDIST
WHERE TBOWNER = 'QUAL01'

AND TBNAME = 'PERSON_MRKT'
ORDER BY NAME, FREQ DESC
WITH UR;

Here is a query to display the distribution statistics for a table.

30

Frequency Statistics
PERSON_MRKT NAME_SFX 95.49
PERSON_MRKT NAME_SFX 2.62 JR
PERSON_MRKT NAME_SFX 1.09 SR
PERSON_MRKT NAME_SFX 1.09 SR
PERSON_MRKT NAME_SFX .39 III
PERSON_MRKT NAME_SFX .39 III
PERSON_MRKT NAME_SFX .26 II
PERSON_MRKT NAME_SFX .26 II
PERSON_MRKT NAME_SFX .06 IV
PERSON_MRKT NAME_SFX .06 IV

The results of the query show the values as percentages of the total number of rows
on the table. Some values occur twice in this example because there were fewer
than 20 possible values. This means that some values were both in the top 10 most
frequent and infrequent values on the table.

This data indicates that 95% of the time, the value for NAME_SFX is blank.

31

Frequency Stats – Join Order
SELECT …
FROM PERSON_MRKT PM
JOIN T2 ON PM.PARTY_ID = T2.PARTY_ID
JOIN T3 ON PM.PARTY_ID = T3.PARTY_ID
WHERE PM.NAME_SFX = ''

AND T2.COL1 BETWEEN 10 AND 20;

Assumptions: Each table has 1M rows.
PARTY_ID is indexed on all 3 tables
No other indexes exist
The T2 predicate identifies 100,000 rows

Consider the impact of distribution statistics on the above query. Since there are no
indexes on columns other than the key, the optimizer will be forced to scan one of
the tables and then join based on the key to the other two. It will be important for
performance to identify the right table to scan first. If distribution statistics are
provided on NAME_SFX, the optimizer will know that this predicate qualifies 95%
of the rows on that table. It will then likely choose T2 as the outer table, since only
100,000 rows would need to be joined to the other two.

32

Frequency Stats – Join Order
SELECT …
FROM PERSON_MRKT PM
JOIN T2 ON PM.PARTY_ID = T2.PARTY_ID
JOIN T3 ON PM.PARTY_ID = T3.PARTY_ID
WHERE PM.NAME_SFX = 'IV'

AND T2.COL1 BETWEEN 10 AND 20;

In this example, less than 1% of the data on PERSON_MRKT will qualify, so the
optimizer would be more likely to scan this table first.

33

Automate DBA Tasks
• Display Utility (DISPU)
• Display Database (DISPDB)
• Mass Update (SQLGEN)
• Thread Killer (THRDKILL)

All DBAs have re-occurring tasks that can be time consuming. Third party products
help fill some gaps, but there is often the need to perform a task that the products do
not address (or we don’t want to pay for). Here are three such tasks where we have
written our own custom solution. REXX execs are used that are relatively easy to
write.

34

Display Utility
Challenge: Interpret output from IBM’s –DISPLAY UTILITY

• Critical and non-critical information mixed in same display.
• No commas in large numeric strings
• Data not aligned for easy viewing
• No commas in large numeric strings
• Data is spread over many pages
• No commas in large numeric strings
• No summary display
• No commas in large numeric strings!!

Interpreting output from the standard –DISPLAY UTILITY command can be a
challenge. The data that comes out of this display is comprehensive, but there is not
a summary screen. A major complaint among DBAs is the lack of commas in the
output counts. Also, critical and non-critical information are mixed in same display.

35

Display Utility
DSNU100I -DB2A DSNUGDIS - USERID = ROGUE

MEMBER =
UTILID = ROGUE.ROUGE1
PROCESSING UTILITY STATEMENT 1
UTILITY = LOAD
PHASE = RELOAD COUNT = 61197984
NUMBER OF OBJECTS IN LIST = 1
LAST OBJECT STARTED = 1
STATUS = STOPPED

DSNU100I -DB2A DSNUGDIS - USERID = JOEPGMR
MEMBER =
UTILID = JOEPGMR.JOEPGMR2
PROCESSING UTILITY STATEMENT 1
UTILITY = LOAD
PHASE = RELOAD COUNT = 0
NUMBER OF OBJECTS IN LIST = 1
LAST OBJECT STARTED = 1
STATUS = STOPPED

DSNU105I -DB2A DSNUGDIS - USERID = COOLDBA
MEMBER =
UTILID = COOLDBA.REORG1
PROCESSING UTILITY STATEMENT 1
UTILITY = REORG

Here is the output from the standard –DISPLAY UTILITY(*) command in an
environment with 4 utilities running. 2 are active and 2 are stopped. Note that the
output takes three screens to cover. Also note the lack of commas.

36

Display Utility
PHASE = BUILD COUNT = 3260046018

NUMBER OF OBJECTS IN LIST = 1
LAST OBJECT STARTED = 1

DSNU111I -DB2A DSNUGDIS - SUBPHASE = COPY COUNT = 9044775
DSNU111I -DB2A DSNUGDIS - SUBPHASE = SORTOUT COUNT = 2056453640
DSNU111I -DB2A DSNUGDIS - SUBPHASE = RUNSTATS COUNT = 1720416
DSNU105I -DB2A DSNUGDIS - USERID = RFAZIO

MEMBER =
UTILID = REORG001
PROCESSING UTILITY STATEMENT 1
UTILITY = REORG
PHASE = LOG COUNT = 0
NUMBER OF OBJECTS IN LIST = 1
LAST OBJECT STARTED = 1
STATUS = ACTIVE

DSNU347I -DB2A DSNUGDIS -
DEADLINE = NONE

DSNU384I -DB2A DSNUGDIS -
MAXRO = DEFER
LONGLOG = CONTINUE
DELAY = 1200 SECONDS

DSNU383I -DB2A DSNUGDIS - CURRENT ITERATION NUMBER = 207
WRITE ACCESS ALLOWED IN THIS ITERATION = YES

37

Display Utility
ITERATION BEFORE PREVIOUS ITERATION:

ELAPSED TIME = 01:41:12
NUMBER OF LOG RECORDS PROCESSED = 3746459374

PREVIOUS ITERATION:
ELAPSED TIME = 00:23:10
NUMBER OF LOG RECORDS PROCESSED = 84763764
CURRENT ITERATION:

ESTIMATED ELAPSED TIME = 04:10:11
ACTUAL ELAPSED TIME SO FAR = 03:01:03
ACTUAL NUMBER OF LOG RECORDS BEING PROCESSED = 5857634451

CURRENT ESTIMATE FOR NEXT ITERATION:
ELAPSED TIME = 01:34:11
NUMBER OF LOG RECORDS TO BE PROCESSED = 36465284634

DSNU111I -DB2A DSNUGDIS - SUBPHASE = COPY COUNT = 5613883
DSN9022I -DB2A DSNUGCCC '-DISPLAY UTILITY' NORMAL COMPLETION

38

Display Utility
DB2 Utility Report for DB2 Subsystem ID DBT4 Display Mode: TERSE MOD5

UTILID Mask(*)
REF STM--LIST
NBR USERID -----UTILID------ ----TYPE ---PHASE -----COUNT----- NBR CUR TOT STATUS MEMBER
--
1 ROGUE ROGUE.ROUGE1 LOAD RELOAD 61,197,984 1 1 1 STOPPED

--
2 JOEPGMR JOEPGMR.JOEPGMR2 LOAD RELOAD 0 1 1 1 STOPPED
--
3* COOLDBA COOLDBA.REORG1 REORG BUILD 3,260,046,018 1 1 1 ACTIVE
--
4* RFAZIO REORG001 REORG LOG 0 1 1 1 ACTIVE
--
* - Additional utility info available for display

<Enter> to loop, <Quit> to exit, <Help> for more options

REXX DISPU Summary Screen

Here is the summary screen for our REXX called DISPU. On a single screen you
can view all 4 utilities and their status. Check out those commas!

Rich Fazio is the author of this REXX. It is part of a bundle of scripts that he will
provide when you email him at rfazio@transunion.com.

39

Display Utility
DB2 Utility Report for DB2 Subsystem ID DBT4 Display Mode: TERSE MOD5

UTILID Mask(*)
REF STM--LIST
NBR USERID -----UTILID------ ----TYPE ---PHASE -----COUNT----- NBR CUR TOT STATUS MEMBER
--
3 COOLDBA COOLDBA.REORG1 REORG BUILD 3,260,046,018 1 1 1 ACTIVE
3 COOLDBA COOLDBA.REORG1 SUBPHASE COPY 9,044,775
3 COOLDBA COOLDBA.REORG1 SUBPHASE SORTOUT 2,056,453,640
3 COOLDBA COOLDBA.REORG1 SUBPHASE RUNSTATS 1,720,416

REXX DISPU Detail Screen

A utility may be selected for greater detail. On the detail screen a line for each
subtask is displayed with its counts. From either screen utilities may be terminated.
A mask may be supplied on either screen to determine which utilities are shown.

40

Display Database
Challenge: Interpret output from IBM’s

–DISPLAY DATABASE
• Lengthy multi-page display of information
• Truncation of messages beyond 65k
• No “summary” display
• Miss entries in massive lists
• Hit <Enter> one time too many times
• Does not show corresponding table/ index information

-DISPLAY DATABASE has similar issues to –DISPLAY UTILITY….however,
it’s almost worse.

Messages span many pages, also, it is easy for a restricted state to sneak by.

Lastly, the display buffer is only so big (64k)…once it’s full, the display ends
(whether you have a LIMIT(*) or not).

In V8, this gets better and worse… worse because there can be up to 4000
partitions, but there have been some display efficiencies built into the IBM display
that cut down on the amount of screen space used.

41

DISPDB
TSO DISPDB DBP5 CPCNSD%

DB Name Pageset RW UT RO STOP UTRO OTHER
CPCNSD01 CCPS5SK0 - - - - - RW,UTRW...254
CPCNSD03 CACCTS20 212 30 - - - STOP,RECP....12
CPCNSD03 CCPS5SC0 184 70 - - -
CPCNSD03 CCPS5SH0 - 50 - - - RO,COPY...204
CPCNSD03 CCPS5SK0 184 70 - - -
CPCNSD03 CCPS6SB0 181 73 - - -
CPCNSD03 CCPS6SC0 204 50 - - -
CPCNSD03 CINDVSA0 196 58 - - -
CPCNSD03 CINDVS50 196 58 - - -
CPCNSD03 CINQYS10 204 50 - - -
CPCNSD03 CINQYS20 204 50 - - -
CPCNSD03 CPUBRS10 235 19 - - -
--
Total 3048 | 2000 578 - - - 470
Percent 100 | 66 19 - - - 15
--
Exclusion list provided: UTRW
Tablespaces Selected: 78 Reported: 12

DISPDB Rexx focuses upon consolidating the status messages into a single line.
Additional information is also gathered and displayed on a second line.

This REXX is also part of Rich Fazio’s suite.

42

Doing SQL by partition
Example: Need to update lots of rows on a very

large table

LOCK TABLE primary.table IN EXCLUSIVE MODE;

UPDATE primary.table PT
SET whatever_flg = 'Y'

WHERE whatever_flg = 'N'
AND NOT EXISTS

(SELECT 1
FROM dependant.table DT

WHERE PT.PRIM_KEY = DT.PRIM_KEY)

Sometimes new columns get added to the database. I’ll default the column to “N”
and set all the “Y” values based upon the application criteria after the fact…this can
take hours…but usually, it’s ok.

Sometimes, the need to get these flags populated can be critical to the business.
Speed is everything. A normal update (above) takes 2-3 hours. The only way to get
this done quickly is with parallelism. Too bad DB2 does not have “UPDATE”
parallelism…..well… not built in anyway.

43

SQLGEN

SQLGENSQLGEN

JCL/SQLJCL/SQL
DB2 CatalogDB2 Catalog

PartitionPartition
Limit keysLimit keys

One set of JCL/SQL PER PartitionOne set of JCL/SQL PER Partition

SQLGEN reads in an SQL Stmt (or JCL w/SQL Stmt) and modifies a query to allow
embedding of partition limit ranges.

The partition ranges for the system are retrieved from the DB2 catalog and applied
to the SQL.

Multiple queries (jobs) are created for parallel execution.

44

SQLGEN

SQLGENSQLGENInIn

Single Execution

One file in….One file out

Input JCL/SQL

//U0664###JOBCARD....
//*
//DSNTEP2 EXEC DSNTEP2,DB2ID='ssid'
//SYSIN DD *
LOCK TABLE primary.table PART @@@

IN EXCLUSIVE MODE;
UPDATE primary.table PT

SET whatever_flg = 'N'
WHERE whatever_flg = 'Y'

AND NOT EXISTS
(SELECT 1

FROM dependant.table DT
WHERE PT.PRIM_KEY = DT.PRIM_KEY

:PRIM_KEY_PHRASE DT
)
:PRIM_KEY_PHRASE PT
;
COMMIT;

//U0664###JOBCARD....
//*
//DSNTEP2 EXEC DSNTEP2,DB2ID='ssid'
//SYSIN DD *
LOCK TABLE primary.table PART @@@

IN EXCLUSIVE MODE;
UPDATE primary.table PT

SET whatever_flg = 'N'
WHERE whatever_flg = 'Y'
AND NOT EXISTS

(SELECT 1
FROM dependant.table DT

WHERE PT.PRIM_KEY = DT.PRIM_KEY
AND DT.PRIM_EY BETWEEN 1 AND 50

)
AND PT.PRIM_KEY BETWEEN 1 AND 50

;
COMMIT;

//U0664###JOBCARD....
//*
//DSNTEP2 EXEC DSNTEP2,DB2ID='ssid'
//SYSIN DD *
LOCK TABLE primary.table PART @@@

IN EXCLUSIVE MODE;
UPDATE primary.table PT

SET whatever_flg = 'N'
WHERE whatever_flg = 'Y'
AND NOT EXISTS

(SELECT 1
FROM dependant.table DT

WHERE PT.PRIM_KEY = DT.PRIM_KEY
AND DT.PRIM_EY BETWEEN 51 AND 100

)
AND PT.PRIM_KEY BETWEEN 51 AND 100

;
COMMIT;

//U0664###JOBCARD....
//*
//DSNTEP2 EXEC DSNTEP2,DB2ID='ssid'
//SYSIN DD *
LOCK TABLE primary.table PART @@@

IN EXCLUSIVE MODE;
UPDATE primary.table PT

SET whatever_flg = 'N'
WHERE whatever_flg = 'Y'
AND NOT EXISTS

(SELECT 1
FROM dependant.table DT

WHERE PT.PRIM_KEY = DT.PRIM_KEY
AND DT.PRIM_EY BETWEEN 101 AND 150

)
AND PT.PRIM_KEY BETWEEN 101 AND 150

;
COMMIT;

…(251 more)

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part nPart n

Input JCL/SQL

//U0664###JOBCARD....
//*
//DSNTEP2 EXEC DSNTEP2,DB2ID='ssid'
//SYSIN DD *
LOCK TABLE primary.table PART @@@

IN EXCLUSIVE MODE;
UPDATE primary.table PT

SET whatever_flg = 'N'
WHERE whatever_flg = 'Y'

AND NOT EXISTS
(SELECT 1

FROM dependant.table DT
WHERE PT.PRIM_KEY = DT.PRIM_KEY

:PRIM_KEY_PHRASE DT
)
:PRIM_KEY_PHRASE PT
;
COMMIT;

Output JCL/SQL

//U0664###JOBCARD....
//*
//DSNTEP2 EXEC DSNTEP2,DB2ID='ssid'
//SYSIN DD *
LOCK TABLE primary.table PART @@@

IN EXCLUSIVE MODE;
UPDATE primary.table PT

SET whatever_flg = 'N'
WHERE whatever_flg = 'Y'

AND NOT EXISTS
(SELECT 1

FROM dependant.table DT
WHERE PT.PRIM_KEY = DT.PRIM_KEY

AND DT.PRIM_KEY BETWEEN 1 AND 50
)

AND PT.PRIM_KEY BETWEEN 1 AND 50
;
COMMIT;

//U0664###JOBCARD....
//*
//DSNTEP2 EXEC DSNTEP2,DB2ID='ssid'
//SYSIN DD *
LOCK TABLE primary.table PART @@@

IN EXCLUSIVE MODE;
UPDATE primary.table PT

SET whatever_flg = 'N'
WHERE whatever_flg = 'Y'
AND NOT EXISTS

(SELECT 1
FROM dependant.table DT

WHERE PT.PRIM_KEY = DT.PRIM_KEY
AND DT.PRIM_EY BETWEEN 1 AND 50

)
AND PT.PRIM_KEY BETWEEN 1 AND 50

;
COMMIT;

Input Output

SQLGEN generates one job per partition with the appropriate limitkeys included in
the SQL. The LOCK TABLE statement at the top of each job is desirable to avoid
row or page locks from being acquired. In V8, this will automatically lock at the
partition level. Prior to V8, this statement will lock the entire table by default. You
may need to alter the tablespace to LOCKPART YES to avoid the jobs from
colliding with each other.

Here’s the inputs and outputs.

The LEFT JCL was read into the REXX. Note the “:PRIM_KEY_PHRASE”.
This tells the processor where to insert the partition range and how. The processor
defaults to generating an “AND” statement before the limit key range added.

The RIGHT JCL was generated by the REXX. Note: this is just one of 254 jobs
created by this one execution. Each JOB has the partition range for a single DB2
Part.

45

THRDKILL – The Thread Killer
//STEP1 EXEC PGM=IKJEFT1B,
// PARM='THRDKILL DBA1 SERVER DISTSERV G2S9APPL'
//STEPLIB DD DISP=SHR,DSN=DBA1.DB2.SDSNEXIT
// DD DISP=SHR,DSN=DBA1.DB2.SDSNLOAD
//SYSEXEC DD DISP=SHR,DSN=CDB.BATCH.REXX
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD DUMMY

THRDKILL looks for DB2 threads that are connected with a given plan and authid.
The REXX issues –CANCEL THREAD commands for each thread located. It may
optionally display the commands without actually executing them. This script
comes in handy when an application that has hundreds of active threads needs to be
canceled en masse.

This one is mine… email me for the source.

46

Summary
• Use your tools… existing tools can be

put to creative use.
• Build more tools.
• Understand your tables and queries.
• Explain, explain, explain!

47

Credits
• Rich Fazio, TransUnion
• Dan Luksetich, YL&A
• Bob Little, Acxiom Corp.

48

Questions?

49

Reference
IBM Books

SC18-7426 DB2 UDB for OS/390 and z/OS SQL Reference V8

SC18-7413 DB2 UDB for OS/390 and z/OS Administration Guide V8

SC18-7427 DB2 UDB for OS/390 and z/OS Utility Guide and
Reference V8

SG24-6079 DB2 UDB for z/OS Version 8: Everything You Ever
Wanted to Know, ... and More

Previous IDUG Presentations

IDUG North America 2004 – VLDB High Performance
Techniques/ Experiences by Rich Fazio

50

David Simpson
Themis Inc.

dsimpson@themisinc.com

Session: B02
A Peek into the 24x7 VLDB DBA’s Toolbox

