

BoTM: Base-Station-on-the-Move

Aashish Gottipati and Jacobus Van der Merwe

Setting

- "Softwarization wave" has altered network realization
- Network functions are no longer tied to hardware
- Malleable and programmable RAN
- Enables new opportunities for network operations

BoTM

"move" a base station to a new location and/or piece of spectrum

BoTM at a High Level

MANO Controller

- Responsible for overseeing RAN life cycle
 - RAN topology
 - Non real-time control functions
- Policy and life cycle updates delivered to BoTM agents
- Promotes orchestration across virtual infrastructure layer
- Used to Signal the RAN to initiate BoTM's migration process

RAN Controller

- Responsible for managing RAN in real-time
 - Aggregating statistical data
 - Integrating network applications
 - Real-time control functions
- Enforce RAN policy updates
- Promotes orchestration across network functional layer
- Used to dynamically trigger X2 handover

BoTM Agent

- Facilitate communication between BoTM —
 MANO/RAN controller and base stations
- Enforce RAN orchestration updates

Virtualized Infrastructure

- Light-weight, tailored infrastructure
- Promotes dynamic instantiation and removal of base station instances
- Rapid deployment due to low overhead

Migration Protocol

Implementation

- FlexRAN RAN Controller
- Deployed MANO Controller "above" FlexRAN controller
 - Leverage global view of RAN
 - Triggered migration based on drop in channel quality indicator
- BoTM agents ran over OAI eNodeBs
- X2 Handover managed through OAI's X2AP implementation

Use Case: Interference Management in HetNets

- Heterogeneous Networks
 (HetNet) utilized to increase
 cell coverage and meet
 increased data rate demands
- Interference management is a critical challenge in HetNets
- Lack of programmability leads to less reactive management

Evaluation Setup

- Powder Controlled RF Environment
- FlexRAN and BoTM Controllers
- EPC based on NextEPC
- Latest OAI release

Evaluation Procedure

- Generated uplink and downlink traffic with iperf2
- Introduce interference with attenuator
- MANO detected drop in CQI and triggered migration procedure
- Monitored CQI, bitrates, and packet loss

Channel Quality Indicator vs. Time

Uplink and Downlink Bitrates vs. Time

Packet Loss Comparison Against Standalone X2 Handover

	Average Bitrate	Average Packet Loss	Total Dropped Packets	Total Packets Sent
BoTM Downlink	1.03 Mbps	1.9%	206	10701
Standalone Downlink	1.03 Mbps	2.1%	223	10701
BoTM Uplink	1.03 Mbps	0.19%	20	10564
Standalone Uplink	1.03 Mbps	0.16%	17	10565

5.Concluding Remarks

Future Work

Spectrum Migration

Dynamically move base stations between frequencies with little to no added impact on end points

Dynamic Carrier Aggregation

Utilize adjacent resources by instantiate target base station on optimal band

Load Balancing

"Split" a base station instance by instantiating multiple target base station instances and distributing endpoints among targets

Intelligence

Integrate statistical model into decision process to react in real-time based on current network state

Summary

- Presented a novel RAN management primitive
- Enables orchestration across infrastructure layer and mobile network function layer
- Provided and validated proof of concept prototype
- Improve RAN resource management in the context of future generation networks

References

- [1] A. Ghosh, "SPECTRUM USAGE ANALYSIS AND PREDICTION USING LSTM NETWORKS," thesis, 2020.
- [2] A. Krotov and B. Bojovic, "Enabling LTE CA handover to secondary cell," NS3, 21-Aug-2017. [Online]. Available: https://www.nsnam.org/wiki/GSOC2017Lte. [Accessed: 20-Oct-2020].
- [3] Foukas, X., Nikaein, N., Kassem, M. M., Marina, M. K., and Kontovasilis, K. Flexran: A flexible and programmable platform for software-defined radio access networks. CoNEXT '16, Association for Computing Machinery, p. 427-441.
- [4] J. G. Andrews, "Seven ways that HetNets are a cellular paradigm shift," in IEEE Communications Magazine, vol. 51, no. 3, pp. 136-144, March 2013, doi: 10.1109/MCOM.2013.6476878.
- [5] Navid Nikaein, Mahesh K. Marina, Saravana Manickam, Alex Dawson, Raymond Knopp, and Christian Bonnet. 2014. OpenAirInterface: A Flexible Platform for 5G Research. SIGCOMM Comput. Commun. Rev. 44, 5 (October 2014), 33–38. DOI:https://doi.org/10.1145/2677046.2677053
- © [6] O-RAN: Towards an Open and Smart RAN. https://www.o-ran.org/resources, 2018.
- [7] Yi Wang, Eric Keller, Brian Biskeborn, Jacobus van der Merwe, and Jennifer Rexford. 2008. Virtual routers on the move: live router migration as a network-management primitive. SIGCOMM Comput. Commun. Rev. 38, 4 (October 2008), 231–242. DOI:https://doi.org/10.1145/1402946.1402985