30th Annual Meeting

ENVIRONMENTAL MUTAGEN SOCIETY

PROGRAM

MARCH 28-APRIL 1, 1999
THE CAPITAL HILTON
WASHINGTON, DC
The Environmental Mutagen Society was founded in 1969 and is incorporated under the laws of the District of Columbia. Its purpose is to encourage the study of mutagens in the human environment, particularly as they may affect public health, and to engage in and sponsor research and the dissemination of information related to mutagens. Membership is open to all interested scientists.

OFFICERS

President
Rosalie K. Elepuru, Food and Drug Administration
President Elect
James Felton, Lawrence Livermore National Laboratory
Treasurer
Miriam Bloom, SciWrite
Secretary
Vicji Dellarco, U.S. Environmental Protection Agency

EMS Business Office
Drohan Management Group
Executive Officer, Randall C. Price
Administrator, Maureen Thompson
COUNCILLORS
1999-2002

PROGRAM COMMITTEE
1999 ANNUAL MEETING

James Felton, Chair

Richard Albertini
William Albertini
William Baird
Takehio Nohmi
Thomas Cebula
Peter Stambrook
Andrew Grosofsky
Michael Shelby
Thomas Kunkle
James Tucker
Eva McGhee
Vincent Wilson
Martha Moore
Andrew Wyrobek

ON-SITE REGISTRATION FEES

Members $415
Non-Members $465
Student Member $175
Student non-Member $200
Spouse/Guest non-Member $125

FUTURE MEETINGS

April 8-13, 2000
Hyatt Regency Superdome
New Orleans, LA

March 16-21, 2001
Paradise Point Resort
San Diego, CA
All of the Plenary Lectures and Concurrent Symposia are located on the second floor of the hotel. Please see the floorplan for the exact locations. The exhibits are in the Congressional Room Sunday, March 28, 1999 - Tuesday, March 30, 1999. The posters are in the Senate and Federal A Rooms, Upper Lobby and Capital Terrace Sunday, March 28, 1999 - Thursday, April 1, 1999. Continental Breakfasts and Coffee Breaks will be in the Upper Lobby or in the exhibits area.

The registration desk will be located in the Foyer on the second floor of the hotel. The hours of operation are as follows: Sat, March 27, 3:30pm-8:00pm; Sun, March 28, 7:30am-5:00pm; Tues, March 30, 7:30am-noon; Wed, March 31, 7:30am-5:00pm; Thurs, April 1, 7:30am-noon.

Council meetings are scheduled for:
Saturday, March 27, 1999, 1:00pm-5:00pm, South American B
Thursday, April 1, 1999, 1:00pm-5:00pm, South American B

The Speaker Prep room is the Ohio Room. It will be open each day for your convenience, for previewing slides.

A hospitality room for spouses and guests will be set up on Monday, March 29, 1999 from 8:30am-9:30am in the Michigan Room. A representative from the DC Convention and Visitors Bureau will be available to offer information on the sites, in and around Washington DC, that may be of interest.

The Capital Hilton Phone: 202-393-1000 Fax: 800-869-4436

<table>
<thead>
<tr>
<th>Poster Set-up and Take-down Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assigned poster number to match numbers on poster boards</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Set-up</th>
<th>Authors Present</th>
<th>Take-down</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poster Session I</td>
<td>by 7:30 am</td>
<td>4:30pm-6:30 pm</td>
<td>6:30pm-8:00pm</td>
</tr>
<tr>
<td>Poster Session II</td>
<td>by 7:30 am</td>
<td>4:30pm-6:30 pm</td>
<td>6:30pm-8:00pm</td>
</tr>
<tr>
<td>Poster Session III</td>
<td>by 7:30 am</td>
<td>4:30pm-6:30 pm</td>
<td>6:30pm-8:00pm</td>
</tr>
</tbody>
</table>
SUSTAINING MEMBERS AND INSTITUTIONAL REPRESENTATIVES 1999 - 2000

Abbott Laboratories: Ronald D. Snyder
American Petroleum Institute: Carol Henry
Baxter Healthcare Corporation: Randy White
BioReliance Corporation: David Jacobson-Kram
Boehringer Ingelheim Pharmaceuticals Inc.: Henry E. Holden
Bristol Myers Squibb Company: William E. Dressler
CanTox Inc: Earle R. Nestmann
Chevron Corporation: Marcia L. Machado
Chrysalis International: Leon F. Stankowski Jr.
Covance Laboratories Inc.: Brian C. Myhr
Eli Lilly & Company: Gregory S. Probst
Hoechst-Celanese Corporation: Tito Cascieri, Jr.
Loats Associated Inc: Harry L. Loats
Merck Research Laboratories: Sheila Galloway
Novartis Incorporated: Dan Lapadula
Pharmacia & Upjohn Inc.: C. S. Aaron
Rohm & Haas Company: Harvey E. Scribner
Schering-Plough Research Laboratories: James S. Mac Donald
The Dow Chemical Company: B. Baskar Gollapudi
The Procter & Gamble Company: Marilyn Aardema
Washington Information Resources: Myron Weinberg
SPONSORS OF THE 30TH ANNUAL MEETING

Astra Pharmaceuticals, LP
Poster Session III

Baxter Healthcare Corporation
Workshop 1

BioReliance Corporation
EMS Reception

Bristol Myers Squibb
Symposium 4

Chrysalis International Preclinical Services
Coffee Break- Wednesday
Symposium 3

Covance Laboratories
EMS Reception
Continental Breakfast Tuesday

Eli Lilly & Co.
Symposium 8

Elsevier Sciences BV
Symposium 10

GD Searle
Hollaender Lecture

Genetic Toxicology Association
Student Reception

Merck & Company
Baird Symposium 11

Olympus Optical Co., LTD
Symposium 6

Procter & Gamble Company
Symposium 5

Taconic Transgenic Division, Taconic Farms, Inc.
Poster Session I

The R.W. Johnson Pharmaceutical Research Institute
Poster Session II
SATURDAY, MARCH 27

3:30 pm - 8:00 pm
REGISTRATION
Foyer 1

1:00 pm - 5:00 pm
COUNCIL MEETING
South American B Room

7:00 pm - 10:00 pm
STUDENT RECEPTION
AND POSTER SESSION
Congressional and Senate Rooms

Sponsor: Genetic Toxicology Association

7:00pm Student Poster Session

STUDENT WORKSHOP
Federal A Room

8:00pm Welcome and Introduction
Alison Director-Myska

8:05pm Presentation
Judith Nyquist, National Research Council

8:30pm Presentation
Kathleen Hill, EMS New Investigator

8:45pm Presentation
Lidia Cosentino, EMS Student Member

9:00pm EMS Education Committee Award Presentation
NATIONAL RESEARCH COUNCIL
Postdoctoral and Senior Research Associateship Awards

Opportunities for research in:
- Cancer
- Genetic Toxicology
- Environmental Toxicology
- Human Genome Study
- Mutation and DNA Repair
 and related areas

Participating Laboratories include:
Armed Forces Radiobiology Research Institute
Army Medical Research & Material Command
Environmental Protection Agency
National Institute for Occupational Safety & Health
National Institutes of Health
National Institute of Standards & Technology
Naval Medical Research & Development Command

12-month awards renewable for up to 3 years maximum
Annual stipend $30,000 to $50,000
Relocation, Professional Travel, Health Insurance
Applications accepted continuously throughout the year
for review in late February, June or October.

For further information and application materials contact:
Associateship Programs (TJ2114/EMS)
NATIONAL RESEARCH COUNCIL
2101 Constitution Avenue NW, Washington, DC 20418
Fax: 202-334-2759 Email: rap@nas.edu
Internet: http://rap.nas.edu/
or

Visit the NRC booth in the exhibit hall

Qualified applicants will be reviewed without regard to race, creed, color, age, sex or national origin.
SUNDAY, MARCH 28

7:30 am - 5:00 pm
REGISTRATION
Foyer 1

7:00 am - 8:00 am
STUDENT/NEW INVESTIGATOR
BREAKFAST ROUND TABLE
Federal B

7:30 am
CONTINENTAL BREAKFAST
Upper Lobby

8:30 am - 11:30 am

SYMPOSIUM 1
Presidential Ballroom

Somatic Mutations in vivo

Presiding:
John Heddle, York University, Toronto, Canada

Although the involvement of somatic mutation in cancer is certain, the origin of these mutations is not. The development of transgenic mice containing shuttle vectors has made the experimental investigation of this problem possible in a way that we could only dream about before. Many of the results obtained are surprising: spontaneous somatic mutations are very common; many arise very early in life rather than late in life, as had often been supposed; there is often a long lag time before the mutant frequencies are maximal after treatment; many carcinogens induce only a small increase in the mutant frequency in the target tissue; and so on. Our understanding of how to use these tools, the use of the tools, and the creation of new tools are all advancing at the same time. So much is happening that no one symposium can include it all.
8:30am
gpt-delta Mouse as a New Research Tool for in vivo Mutagenesis
T. Nohmi, Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tokyo, Japan

9:00am
Gene Mutation in lacI Transgenic Rats: Comparison of lacI in Splenocytes and Target Organs and Hprt in Splenocytes
D. Casciano, National Center for Toxicology Research, Jefferson, AR

9:30am
* Preferential Repair of Endogenous Loci during Low Chronic Treatment*
L. Cosentino, York University, Toronto, Canada

10:00am
Organ-specific Mutation Frequencies and Spectra in Aging Mice with Defects in Genome Stability Systems
J. Vijg, Beth Israel Hospital, Boston, MA

10:30am
Loss of Functional Heterozygosity in a Mouse Model: Implications for Human Disease
J. Tischfield, Indiana Univ. School of Medicine, Indianapolis, IN
SUNDAY, MARCH 28

9:00 am - 11:30 am

SYMPOSIUM 2
Part 1
South American AB

Watershed and Drinking Water Toxicology: Studies at the EPA

Organized by:
Thomas Hughes and Larry Claxton
Environmental Carcinogenesis Division (ECD), EPA
Research Triangle Park, NC

Chair: Thomas Hughes

9:00am INTRODUCTION: Short Term Tests That Can Detect Genotoxicants in Watersheds and Drinking Water
Thomas Hughes, ECD, RTP

9:30am Sediments in our Rivers and Estuaries – Are They Toxic?
Michael Lewis, Gulf Ecology Division, Gulf Breeze, FL

10:00am Coffee Break

10:30am Tumors in Fish as Indicators of Carcinogens in our Watersheds
George Gardner, Atlantic Ecology Division, Narragansett, RI

11:00am Laboratory Studies with Fish as Indicators of Toxicity
Rodney Johnson, Mid-Continent Ecology Division, Duluth, MN

11:30am Lunch
SUNDAY, MARCH 28

1:00 pm - 5:00 pm

SYMPOSIUM 2
Part 2
South American AB

Watershed and Drinking Water Toxicology:
Studies at the EPA

Organized by:
Thomas Hughes and Larry Claxton
Environmental Carcinogenesis Division (ECD), EPA
Research Triangle Park, NC

Chair: Larry Claxton

1:00pm INTRODUCTION: Drinking Water Research at the NHEERL, EPA, RTP
Larry Reiter, National Health and Environmental Effects Research Lab (NHEERL), RTP, NC

1:30pm Searching for Water-Borne Carcinogens and Their Sources
Larry Claxton, Director of ECD, RTP

2:00pm The Carcinogenicity of Dichloroacetic Acid in Drinking Water
Tony DeAngelo, ECD, RTP

2:30pm Construction of a BBDR Cancer Model for the Water Disinfectant
Dichloroacetic Acid
Jim Rabinowitz, ECD, RTP

3:00pm Break

3:30pm Arsenic in Drinking Water: More Than One Proposed Mechanism for Cancer
Marc Mass, ECD, RTP

4:00pm The Micronucleus Bioassay as a Potential Biomarker for Toxicity of Drinking Water
Andy Kligerman, ECD, RTP

4:30pm 2001 – Research Data Needed for the New Drinking Water Regulations
Rita Schoeny, EPA HQ, Washington, DC
SUNDAY, MARCH 28

1:00pm - 4:00pm

WORKSHOP 1
Federal B Room

Interpretation of Mutation Data for Cancer Risk Assessment

Sponsor: Baxter Healthcare Corporation

Discussion Leaders:
Martha Moore, US-EPA, Research Triangle Park, NC
Dan Casciano, National Center for Toxicology Research, Jefferson, AR
SUNDAY, MARCH 28

1:00pm - 4:00pm

SYMPOSIUM 3
Presidential Ballroom

New Technologies in Cytogenetics and Gene Expression

Sponsor: Chrysalis International Preclinical Services

Chair: Joe Gray, U. C. San Francisco

1:00pm INTRODUCTION: Joe Gray

1:15pm Prospects for Mutation Detection Using FISH
 David Ward, Yale University

1:55pm Microarray Analysis of Genomic Aberrations in Cancer
 Donna Albertson, U. C. San Francisco

2:35pm Coffee Break

2:55pm Expression array analysis of DNA repair genes
 Andy Wyrobek, Lawrence Livermore National Laboratory

3:35pm FISH For Interphase Translocation Detection
 Speaker to be Announced
SUNDAY, MARCH 28

4:30pm - 6:30pm

POSTER SESSION I
Senate Room/Federal Room A/Upper Lobby/Capital Terrace
Sponsor: Taconic Transgenic Division, Taconic Farms, Inc.

TRANSGENICS

<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>48</td>
</tr>
<tr>
<td>Poster</td>
<td>Abstract</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>8</td>
<td>Tandem-Base Substitutions Induced by Air Pollutant Peroxyacetyl Nitrate: Predicted Formation of Intrastand Crosslinks in Salmonella but Lack of Induction of DNA Strand Breaks, DNA Adducts or lacI Mutations in Lungs of Nose-Only Exposed Big Blue® Mice DeMarini DM, Shelton ML, Kohan MJ, Lewis-Bevan L, Rabinowitz JR, de Boer JG, Lewtas J</td>
</tr>
<tr>
<td>9</td>
<td>The phenotype of transgenic mice deficient for the endogenous thymidine kinase gene Dobrovolsky VN, Bucci TJ, Mushkelishvili L, Heflich RH</td>
</tr>
<tr>
<td>10</td>
<td>Sequence analysis of Tk mutations induced in ENU-treated tk+/- mice Dobrovolsky VN, Chen T, Heflich RH</td>
</tr>
<tr>
<td>11</td>
<td>Gene mutations in follicular granulosa cells of super-ovulated lacZ transgenic mice Douglas GR, Gingerich JD, Soper LM, MacMahon A, Foster WG</td>
</tr>
<tr>
<td>12</td>
<td>Mutagenicity of Ethylene Dibromide in Big Blue® Transgenic Mice Treated with Buthionine Sulfoximine Ganesh L, Smith-Dunn D, de Boer JG, Glickman BW, Shane BS</td>
</tr>
<tr>
<td>13</td>
<td>Evaluation of a Transgenic Cell Line as an Alternative in vitro Test for Mammalian Cell Mutagens Gunther WC, Newton RK, Mauthe RJ, Guzzie PJ</td>
</tr>
<tr>
<td>14</td>
<td>Constant mutation frequency in young and middle aged Big Blue® mice: The contribution of clonal expansion of mutations from embryogenesis Halangoda A, Kunishige M, Buettner VL, Hill KA, Farwell FD, Heinmoller PW, Sommer SS</td>
</tr>
<tr>
<td>15</td>
<td>Effect of O6-alkylguanine-DNA alkyltransferase on mutation induction by ENU in spermatogonial cells and liver cells of Muta Mouse® -Including the data of partial hepatectomy Hara T, Noshiro A, Sui H, Kawakami K, Shibuya T</td>
</tr>
<tr>
<td>16</td>
<td>Spontaneous mutation from fetus to senescence in Big Blue® mice: Two types of time courses and one core mutation pattern Hill KA, Buettner VL, Halangoda A, Kunishige M, Moore SR, Sommer SS</td>
</tr>
<tr>
<td>Poster</td>
<td>Abstract</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 17 | **Spontaneous mutation frequency is reduced in the cerebellum of mice transgenic for a human wild type SOD1 gene**
 | Kunishige M, Halangoda A, Heinmoller E, Riemer AM, Turner DM, Hill KA, Sommer SS |
| 18 | **DNA Adduct formation and Molecular analysis of in vivo lacI mutations in the mammary tissue of Big Blue® Rats exposed to 7,12-dimethylbenz(a)anthracene (DMBA)**
 | Manjanatha MG, Shelton SD, Culp SJ, Casciano DA |
| 19 | **Germ cell-specific mutation induction by a combined chemical/radiation treatment**
 | Martus HJ, Novak M, Blecher D, van Duyn-Doedhart A, Suter W, Gossen JA, van Buul PPW |
| 20 | **Transgene methylation and in vivo spontaneous mutation frequency**
 | Monroe JJ, Kort KL, Marino DR, Skopek TR |
| 21 | **Comparison of cII mutant frequencies in liver and lung tumors in Big Blue® mice treated with carcinogens**
 | Nguyen TV, Mirsalis JC, Johnson A, Fairchild DG, Winegar RA |
| 22 | **Dose Fractionation Does Not Affect Induction of Mutations by Benzo[a]Pyrene and Dibenzo[a,l]Pyrene in lacI Transgenic Mouse Lung**
 | Ross JA, Leavitt SA |
| 23 | **Increase in Mutation Frequency in Lung of Big Blue® Rat Caused by Diesel Exhaust**
 | Sato H, Sone H, Sagai M, Suzuki KT, Aoki Y |
| 24 | **Comparison of the Mutant Frequency (MF) and Mutation Spectrum (MS) of DimethylNitrosamine (DMN) at the lacI and IIc Loci from the Liver of Big Blue® Transgenic Mice**
 | Shane BS, Smith DL, deBoer JG, Glickman BW, Cunningham ML |
| 25 | **Can the Mutagenicity of Weak or Non-Mutagenic Carcinogens be Detected at the cII Locus in Big Blue® Transgenic Mice?**
<pre><code> | Singh VK, Ganesh L, Cunningham ML, Shane BS |
</code></pre>
<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Spontaneous mutation in Big Blue® Transgenic Mice: The effects of age, tissue type, genotype, vitamin E and carcinogenesis</td>
</tr>
<tr>
<td></td>
<td>Sommer SS, Hill KA, Buettner VL, Halangoda A, Kunishige M, Moore SR</td>
</tr>
</tbody>
</table>

27	210
	Role of O6-alkylguanine-DNA alkyltransferase in host E. coli cells for the detection of gene mutation by MMS and ENU in transgenic mice sperm
	Sui H, Suzuki M, Yamada M, Hara T, Shibuya T, Nohmi T, Sofuni T

28	222
	Sensitivity of PhiX174 Forward Assay in a Transgenic Mouse Embryonic Fibroblast Cell Line
	Valentine CR, Chen JB

29	231
	The Splenic Dose Response Mutation Frequency of PhiX174am3,cs70 Transgenic Mice Injected with Ethyl-nitrosourea
	Weaver RP, Malling HV

30	246
	Mutagenicity of Ethylene Dibromide (EDB) in Target and Non-Target Tissues in Big Blue® Transgenic Rats and Mice
	Zhang X, Ganesh L, deBoer JG, Shih P, Glickman BW, Shane BS

31	247
	2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induced mutation in the colon of BC-1/MSH2/- double transgenic mice
	Zhang S, De Boer JG, Jirik FR, Glickman BW

ANTI-CARCINOGENESIS/MUTAGENESIS

32	5
	Effect of dietary restriction on lymphocyte Hprt mutant frequency in aging rats
	Aido A, Mittelstaedt RA, Lyn-Cook LE, Duffy PH, Heflich RH

<p>| 33 | 8 |
| | Shiitake mushroom as a modulator of clastogenic effects in mice |
| | Alves de Lima PL, Denadai R, Salvadori DMF, Eira AF, Ribeiro LR |</p>
<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 50</td>
<td>The protective effect of mushroom Agaricus blazei teas on the genotoxicity induced by cyclophosphamid Denadai R, Alves de Lima PL, Salvadori DMF, da Eira AF, Bazo AP, Ribeiro LR</td>
</tr>
<tr>
<td>36 71</td>
<td>Indazoles and their antioxidative properties for the prevention of cellular/genetic damage Grimm CA, Pillai SP, Menon SR, Mitscher LA, Shankel DM</td>
</tr>
<tr>
<td>37 99</td>
<td>Protective effect of green tea and grape seed proanthocyanidin extract against benzo[a]pyrene-induced mutations in Big Blue® transgenic mice Jiang T, De Boer JG, Glickman BW</td>
</tr>
<tr>
<td>38 161</td>
<td>Glabrene analogs and their antioxidative proteiries Pillai SP, Menon SR, Telikepalli H, Gassen M, Grimm CA, Mitscher LA, Shankel DM</td>
</tr>
<tr>
<td>40 189</td>
<td>Investigating the role of the levels of calorie consumption on mutation frequency in murine development Shima N, Heddle JA</td>
</tr>
<tr>
<td>41 215</td>
<td>Protective effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in female but not male Big Blue transgenic rats treated with Aflatoxin B1 Thornton AS, Oda Y, Stuart GR, Holcroft J, de Boer JG, Glickman BW</td>
</tr>
<tr>
<td>42 240</td>
<td>Protection against 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine-induced mutation in colon of lacI transgenic rats by conjugated linoleic acid and 1,2-dithiole-3-thion Yang H, Stuart GR, de Boer JG, Glickman BW</td>
</tr>
<tr>
<td>Poster</td>
<td>Abstract</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 43 | 1 | Functional characterization of polymorphic metabolizing genes: role of CYP2D6 allelic variants in NNK-induced genetic damage
Abdel-Rahman SZ, Salama SA, Au WW, Hamada FA |
| 44 | 7 | Biomarker Responses in Butadiene Exposed Czech Workers: I. Exposure Assessment
Albertini RJ, Lynch J, Vacek PM, Sram RJ |
| 45 | 9 | Frequencies of hrt mutant lymphocytes in smokers who quit: a prospective study
Ammenheuser MM, Hastings-Smith DA, Carter JB, Wallfisch AB, Philips BU |
| 46 | 14 | Impact of Polymorphic Metabolizing Genes on Activities in Life
Au WW, Abdel-Rahman S, Sierra-Torres CH, Cajas-Salazar N, Salama SA, Szucs S |
| 47 | 18 | Maternal lifestyle factors and metabolic enzyme genotype impact somatic mutation in human newborns
Bigbee WL, Xi L, Zhang LF, Grant SG, Keohavong P, Romkes M |
| 48 | 25 | Interaction of susceptibility factors for development of lung cancer
Cajas-Salazar N, Zwischenberger J, Alpard S, Au WW |
| 49 | 34 | Variant alleles (T/T) of the NAD(P)H: quinone oxidoreductase (NQO1) gene polymorphism is associated with decreased risk for lung cancer
Chen H, Le Marchand L |
| 50 | 91 | The micronucleus assay does not effectively detect genotoxicity of occupational exposure to benzene
HollandNT, RothmanN, LiG, ZhangL, HayesRB, YinS, Smith MT |
| 51 | 108 | Human metabolism of PHIP, a mutagenic carcinogen found in cooked meats
Knize MG, Kulp KS, Malfatti MA, Salmon CP, Felton JS |
<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
</table>
| 52 | Evaluation of GAZT/AZT ratios as a biomarker of internal dose following transplacental AZT chemoprophylaxis in children of HIV-infected women
| 53 | Potential Application of Proto-Oncogene Expression as a Molecular Biomarker for Radiation Exposure: Effect of Interindividual Variation
Miller AC, Luo L, Prasanna PGS, Chin WK, Director-Myska AE, Blakely WF |
| 54 | Incorporation of AZT into blood cell DNA of mothers and infants at delivery and normal placentas exposed ex vivo
Olivero OA, Chougnet CA, Kovacs AS, Pirila R, Vakahangas K, Shearer GM, Poirier MC |
| 55 | Assessment of DNA damage in bone marrow cells from children with acute lymphoblastic leukemia by single cell electrophoresis/comet assay
Pérez-Vera P, Paniagua N, Carnevale A, Betancourt M, Paredes R |
| 56 | Analysis of cytochromeP450-2E1(CYP2E1) and glutathione transferases (GSTT1 AND GSTM1) polymorphisms in leukemic patients
Rithidech K, Gordon CG, Spitzer S |
| 57 | Comparison of chromosome alterations affecting the 1cen-q12 region in G0-lymphocytes, cultured lymphocytes and sperm of Indian pesticide workers using FISH with tandem labeling
Rupa DS, Eastmond DA, Robbins WA, Reddy PP |
| 58 | Role of GSTM1 and GSTT1 Genotypes in NNK-induced chromosome aberration
Salama SA, Abdel-Rahman SZ, Hamada FA, Au WW |
| 59 | Illegitimate V(D)J recombination events as potential biomarkers in peripheral blood lymphocytes
Scheerer JB, Knapp GW, Xi L, Bigbee WL, Fuscoe JC |
<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
</table>
| 60 | Genetic, Biological and Environmental Risk Factors for Cervical Cancer
Sierra-Torres CH, Arrastia CD, Tyring S, Au WW |
| 61 | The potential of oncogene proteins in body fluids as biomarkers for molecular epidemiology studies
Spruill MD, Whong W-Z, Ong T-M |
| 62 | Biomarker Responses in Butadiene Exposed Czech Workers II. Cytogenetic Analysis
| 63 | DNA Adducts in Placentas and Environmental Exposure
Sram RJ, Topinka J, Binkova B, Solansky I, Mrackova G, Dejmek J |
| 64 | Analysis of gene expression in uroepithelial cells from workers exposed to arsenic
Yager JW, Kirchner SC, Kavanaugh TJ, Faustman EM |
| 65 | Albumin and hemoglobin adducts of benzene oxide and 1,4-benzoquinone in benzene-exposed workers
| 66 | Gender Specific Frequency and Spectrum of Background Somatic Mutations at the HPRT Locus in Cord Blood T Lymphocytes from Preterm Newborns
Yoshioka M, Vacek PM, Posen T, Silver R, O’Neill JP, Finette BA |

CARCINOGENIC MECHANISMS

<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
</table>
| 67 | Androgen- and Glucocorticoid-Like Activity in p-Nonylphenol and PCBs
Cowell S, Portigal C, Nelson CC, Rennie PS, Glickman BW |
| 68 | Photoreactivation Abrogates UVR-Induced Growth Arrest in a Marsupial Cell Line
Kusewitt DF, Edwards BS |
<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
</table>
| 69 | Mutation analysis of p53 gene in skin squamous cell carcinomas from PUVA treated psoriasis patients: PUVA and UVB Type Mutations
Ren ZP, McNiff J, Ho V, Gasparro FP |
| 70 | Proto-oncogene activation and genotoxic instability in beryllium-induced transformed BALB/c-3T3 cells
Whong W-Z, Song B, Klishis M, Spruill MD, Ong T-M |
| **RISK ASSESSMENT** |
| 71 | The Genetic Effects of Some Chloroacetanilides and Related Compounds
Dearfield KL, McCarroll NE, Protzel A, Stack HF, Jackson MA, Waters MD |
| 72 | Chromosomal aberrations, sister chromatid exchanges and mitotic activity in human lymphocytes after occupational exposure to pulsed ultrasound
Garaj-Vrhovac V, Kopjar N |
| 73 | Results of Short-term Tests for Mutagenic Carcinogens - Evidence Published in the IARC Monographs
Jackson MA, Stack HF, Waters MD |
| 74 | Statistical Analyses of In vivo Rodent Micronucleus Assay
Kim B, Cho M, Kwak HI |
| 75 | Assessment of human health risk from environmental pollution in Upper Silesia, Poland
Motykiewicz G, Zemla B, Chorazy M, Santella RM |
| 76 | Recognition of structural alerts in genotoxicity
Muster W, Gocke E, Kirchner S, Marchant C |
| 77 | Development of a Graphic Activity Profile Database for Endocrine Disrupting Chemicals
Stack HF, Jackson MA, Waters MD |
| 78 | Evaluation of the added value of the single cell gel electrophoresis test to the standard battery of genetic toxicology tests
Van Gompel JAJ, Thilemans L, Geerts K, Vanparys P |
Poster Session I SUNDAY, MARCH 28 4:30pm-6:30pm

Poster Abstract

<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
</table>
| 79 | Genotoxic Spectra of Salsolinol, a dopaminergic isoquinoline neurotoxin
Ryu JC, Youn JY, Choi YJ, Jung YJ, Surh JJ, Chang IM |
| 80 | Copper-Mediated Enhancement of Salsolinol-induced DNA Strand Scission and Genotoxicity
Ryu JC, Jung YJ, Youn JY, Choi YJ, Surh YJ |

LATE-BREAKING ABSTRACTS

<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
</table>
| 81 | Chromosomal Aberrations and Micronuclei Frequencies in Neurocysticercotic Patients Treated with Praziquantel
Herrera LA, Ramirez T, Sotelo J, Corona T, Rodriguez U, Lorenzo M, Ramos F |
| 82 | Oral Cancer in Southern Thailand
Kietthubthew S, Sriplung H, Au W W |
| 83 | Induction of P53 Protein by the Antiparasitic Drug Metronidazole
Menendez D, Rojas E, Ostrosky-Wegman P |
| 84 | Susceptibility to Cytotoxic Effects of Arsenic in Ataxia Telangiectasia Cells
Ostrosky-Wegman P, Menendez D, Mora G, Gatti R |
| 85 | Induction of Genetic Alterations in Germ Cells and Somatic Cells of Mice by Chronic Exposures to Ethylene Oxide
Preston RJ, Abernethy DJ, Donner EM, Meyer K, Pluta L, Wong B, Ricio L |
| 86 | Use of Genetically Modified CHO Cells to Characterize the Genotoxic Activity of a Coffee Substitute and Grilled Meat Extracts
Sasaki JS, Wu RW, Panteleakos F, Knize MG, Felton JS |
| 87 | The Comet assay with mouse multiple organs: Results with 206 chemicals evaluated by the IARC and U.S. NTP
Sasaki YF, Ueno S, Madarame H, Tsuda S |
| 88 | Repair Capacity of individuals exposed to gasoline. SCGE-Challenge Assay
Valverde M, Lopez MC, Meneses F, Rojas E |
SUNDAY, MARCH 28

7:30 pm - 9:00 pm

PLENARY TALK

Presidential Ballroom

Nuclear Structure and DNA Organization and Function

Don Coffee
Johns Hopkins University

8:30 pm - 10:00 pm

EMS RECEPTION
Congressional/Senate/Federal A

Sponsors:
BioReliance, Corporation and Covance Laboratories
MONDAY, MARCH 29

7:30am
CONTINENTAL BREAKFAST
Congressional/Senate

7:30am-8:30am
COMMITTEE MEETINGS

Alexander Hollaender
South American A

Education/Student
South American B

Organization
Federal B

Program
California

IAEMS
Massachusetts
MONDAY, MARCH 29

8:30am - 11:30am

SYMPOSIUM 4
Presidential Ballroom

Chromosome Structure and Function

Sponsor: Bristol Myers Squibb Pharmaceutical Research

Chair: Peter Stambrook, University of Cincinnati

8:30am Telomere dynamics in yeast
 Arthur Lustig, Tulane University

9:10am P53 mutation, centrosome hyperamplification and chromosome instability in human cancer
 Kenji Fukasawa, University of Cincinnati

9:50am Coffee Break

10:10am Mitotic checkpoints and human chromosome segregation
 Frank McKeon, Harvard University

10:50am Mammalian centromeres and artificial chromosomes
 Howard Cooke, Edinburgh University
MONDAY, MARCH 29

11:30am - 12:30pm

EMS AWARDS
Presidential Ballroom

12:30pm - 1:30pm

EMS BUSINESS MEETING
Presidential Ballroom
MONDAY, MARCH 23

1:30pm - 4:30pm

SYMPOSIUM 5
South American AB

Linking Cytogenetic and Somatic Cell Mutation Biomarkers to Future Cancer Risk

Sponsor: The Procter and Gamble Company

Chairs: Nathaniel Rothman, NCI, and Douglas Bell, NIEHS

1:30pm INTRODUCTION: A Molecular Epidemiologic Perspective, Nathaniel Rothman, NIH/NCI/EPN

1:50pm Chromosomal Damage in Peripheral Blood Lymphocytes and Risk of Cancer in Humans
Stefano Bonassi, Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy

2:25pm Potential Applications of Mutational Biomarkers in Prospective Epidemiology Studies
Martyn Smith, University of California

3:00pm Biology and Below Threshold Mutation Assays
Vincent L. Wilson, Louisiana State University

3:30pm MutEx/ACB-PCR for the Detection of Point Mutations in Somatic Cells
Barbara L. Parsons, National Center for Toxicological Research, Jefferson, AR

4:00pm Discussant
Richard Albertini, University of Vermont
MONDAY, MARCH 29

1:30 pm - 4:30 pm

SYMPOSIUM 6
Presidential Ballroom

Genetox Test Procedures
Sponsor: Olympus Optical Company

Chairs: Jim MacGregor, FDA, Rockville, MD
D. Kirkland, Covance Laboratories, North Yorks, UK

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30 pm</td>
<td>In Vitro Micronucleus Test</td>
<td>Micheline Kirsch-Volders, Vrije Universiteit Brussels, Belgium</td>
</tr>
<tr>
<td>1:50 pm</td>
<td>Photochemical Induced Mutation and Clastogenicity</td>
<td>Elmar Gocke, F. Hoffman-La Roche Ltd, Basel, Switzerland</td>
</tr>
<tr>
<td>2:10 pm</td>
<td>Mouse Lymphoma</td>
<td>Martha Moore, US-EPA, Research Triangle Park, NC</td>
</tr>
<tr>
<td>2:30 pm</td>
<td>Cytotoxicity In The Chromosomal Aberration Test</td>
<td>Sheila Galloway, Merck Research Labs, West Point, PA</td>
</tr>
<tr>
<td>2:40 pm</td>
<td>Comet Assay</td>
<td>Ray Tice, Integrated Laboratory Systems, RTP, NC</td>
</tr>
<tr>
<td>3:00 pm</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>3:20 pm</td>
<td>In vivo Micronucleus Test</td>
<td>Makoto Hayashi, National Institute of Health Services, Japan</td>
</tr>
<tr>
<td>3:40 pm</td>
<td>In vivo Transgenic Mutation Models</td>
<td>John Heddle, York University, Toronto, Canada</td>
</tr>
<tr>
<td>4:00 pm</td>
<td>Identification Of Adducts</td>
<td>David Phillip, Institute of Cancer Research, Surrey, UK</td>
</tr>
<tr>
<td>4:15 pm</td>
<td>Statistics In Genotoxicity Testing</td>
<td>David Lovell, Pfizer Central Research, Kent, UK</td>
</tr>
</tbody>
</table>
DNA REPAIR

<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
</table>
| 1 2 | Analysis of recombination phenotypes in ERCC1 knock-out cells transfected with wild-type or XpA binding-site deleted ERCC1 cDNAs
Adair GM, Rolig RL, Legerski RJ, Nairn RS |
| 2 6 | Identification of DNA Damage-inducible transcripts in Drosophila melanogaster
Al-Hajj M, Smith PD |
| 3 12 | Homologous recombination at an endogenous locus in V79 Chinese hamster cells is increased by overexpression of the CgRad51 protein
Arnaudeau C, Helleday T, Jenssen D |
| 4 20 | Cell cycle variation in expression levels of base excision repair genes
Bouziane M, Denissenko M, Bates SE, Miao F, Grunwald S, Sang BC, O'Connor TR |
| 5 22 | Rad51 paralog XRCC3 contributes to DNA repair and resistance to damage throughout the cell cycle
Brookman KW, Liu N, Thompson LH |
| 6 32 | The frameshift inducing agent, ICR191, causes increased mutation in mismatch repair-deficient human cancer cells
Chen WD, Sedwick WD, Markowitz SD, Aminoshaire B, Ma AH, Veloso N, Veigl ML |
| 7 33 | Screening for DNA repair gene deficiencies in a healthy human population using a protein truncation assay
Chen J, Yu Z, Ford BN, Brackley ME, Haesevoets RJC, Khaidakov M, Glickman BW |
Poster Session II MONDAY, MARCH 29 4:30pm-6:30pm

<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Role of DNA-dependent protein kinase (DNA-PK) in DNA end-joining in Xenopus egg extracts</td>
</tr>
<tr>
<td></td>
<td>Chen S, Gu X, Povirk LF</td>
</tr>
<tr>
<td>9</td>
<td>Comparison of the in vitro alkaline unwinding and comet assays to detect nucleotide excision</td>
</tr>
<tr>
<td></td>
<td>repair inhibition by hard metal dust in human lymphocytes</td>
</tr>
<tr>
<td></td>
<td>De Boeck M, Hartwig A, Kirsch-Volders M</td>
</tr>
<tr>
<td>10</td>
<td>Defining the damage recognition and catalytic mechanisms of the major human endonuclease</td>
</tr>
<tr>
<td></td>
<td>Erzberger JP, Hadi MZ, Mohrenweiser H, Wilson III DM</td>
</tr>
<tr>
<td>11</td>
<td>Saccharomyces cerevisiae RAD51 is Required for DNA Damage-Induced Sister-Chromatid Exchanges</td>
</tr>
<tr>
<td></td>
<td>Fasullo M, Bennett T, Samarakoon R, Bissonnette J</td>
</tr>
<tr>
<td>12</td>
<td>Methyl methanesulfonate-induced mutational specificity in mismatch repair-deficient human</td>
</tr>
<tr>
<td></td>
<td>cancer cell lines</td>
</tr>
<tr>
<td></td>
<td>Glaab WE, Tindall KR, Skopek TR</td>
</tr>
<tr>
<td>13</td>
<td>DNA damage and DNA repair induced by hydrogen peroxide in lymphocytes from malnourished</td>
</tr>
<tr>
<td></td>
<td>children</td>
</tr>
<tr>
<td></td>
<td>González C, Nájera O, Toledo G, Cortés E, Betancourt M, Ortiz R</td>
</tr>
<tr>
<td>14</td>
<td>Adaptation of global nucleotide excision repair: in vivo Michaelis kinetics</td>
</tr>
<tr>
<td></td>
<td>Holmquist GP, Ye N</td>
</tr>
<tr>
<td>15</td>
<td>A mechanism of thiol cellular DNA radioprotection in isolated lymphocytes</td>
</tr>
<tr>
<td></td>
<td>Kolanko CJ, Prasanna PGS, Nath J, Xapsos MA, Blakely WF</td>
</tr>
<tr>
<td>16</td>
<td>DNA base excision repair (BER) and gene transfer: Use of the human N-methylpurine DNA</td>
</tr>
<tr>
<td></td>
<td>glycosylase (MPG) to sensitize tumor cells to chemotherapy</td>
</tr>
<tr>
<td></td>
<td>Limp-Foster M, Xu Y, Williams DA, Kelley MR</td>
</tr>
<tr>
<td>17</td>
<td>Characterization of a mismatch repair-deficient cell line with defined mutations in both</td>
</tr>
<tr>
<td></td>
<td>alleles of the hPMS2 gene from a patient with sporadic colon cancer</td>
</tr>
<tr>
<td></td>
<td>Ma AH, Xia L, Swinerl S, Modrich P, Veigl ML, Markowitz SD, Sedwick WD</td>
</tr>
</tbody>
</table>
18 167 Somatic alterations induction by azide compounds and the effect of DNA repair: PAPIT1: IN207196
 Ramos-Morales P, Ordaz MG, Islas MJ, Rivas H, Dorantes AY, Ramirez A

19 197 Changes in the DNA Repair and Redox Capacity of Human Keratinocytes Exposed to Very Low Doses of Arsenic
 Snow ET, Hu Y, Chouchane S, Yan CC

20 229 Comparison of gene-specific repair capacity between tumor and normal cells assayed by multiplex quantitative PCR and RT-PCR
 Wang YC, Chang YY, Lee PJ

21 237 Use of DNA base excision repair (BER) genes to protect cells: Retroviral expression of the yeast AP endonuclease (APN1) enhances the level of protection of mammalian cells against DNA oxidative and alkylating agents
 Xu Y, Parsons S, Hansen WK, Williams DA, Kelley MR

22 244 Human DNA repair systems: An overview
 Yu Z, Chen J, Ford BN, Brackley ME, Glickman BW

GENOMIC INSTABILITY

23 61 Folate, vitamin B12, homocysteine status and DNA damage in young Australian adults
 Fenech M, Aitken C, Rinaldi J

24 72 High Rate of Interchromosomal Gene Conversion in Genomically Unstable Human Cells
 Grosovsky AJ, Pongsaensook PP, Moore KK, Quintana PJE, Ritter LE, Parks KK, Neuwirth EAH

25 104 Genomic Instability in Silica- and Cadmium-Chloride Transformed BALB/c-3T3 and Tumor Cell Lines by RAPD Analysis

26 107 Quantitative PCR Assay Detects V(D)J Recombinase-Mediated Gene-Rearrangements: A Mouse Model For A Possible Biomarker Of Lymphoid Malignancy Risk
 Knapp GW, Setzer RW, Fuscoe JC
<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
</table>
| 27 | 163 Non-Mendelian Transmission of Genomic Instability Among Sibling Sub-Clones
Pongsaenook P, Ritter LE, Parks KK, Grosovsky AJ |
| 28 | 178 Genomic instability induced by low-energy protons and gamma rays: analysis of chromosome aberrations and HPRT mutants in the progeny of irradiated human lymphocytes
Russo A, Mognato M, Ferraro P, Bortolotto E, Favaretto S, Cherubini R, Celotti L, |
| 29 | 190 Effect of Viral Transformation upon Nucleotide Excision Repair in Human Cells: Implications for Carcinogenic Mechanisms
Sicard DM, Bowman KK, Ford JM, Hanawalt PC |
| 30 | 228 Genetic instability of microsatellite sequences and p53 mutations in lung cancer patients in Taiwan
Wang YC, Chang JW, Chen SK, Chen YC, Chen CY |
| 31 | 238 Hypermutability in PMS2 knockout mice
Xu XS, Narayanan L, Baker SM, Liskay RM, Glazer PM |
| 32 | 243 Genomic Instability and Gene Rearrangements induced by radiomimetic antibiotic Bleomycin in nontransformed 184B5 mammary epithelial cells
Yu Y |

DNA AND PROTEIN ADDUCTS

<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
</table>
| 33 | 17 Oxidative DNA damage in tissues of pregnant rats and fetuses in response to environmental tobacco smoke exposure
| 34 | 26 The Effect of Toluene on 14C-Benzene Macromolecular Binding at Very Low Doses in B6C3F1 Male Mice using Accelerator Mass Spectrometry
Carver TA, Dingley KH, Turtlesaute KW |
| 35 | 84 Methylation of nearest neighbor cytosines and the ratio of 1S vs 1R adducts formed by three isomers of 3,4-Dihydroxy-1,2-epoxy-1,2,3,4-tetrahydronobenzene(c)phenanthrene
He YJ, Yagi H, Jerina DM, Cheh AM |
Poster Session II MONDAY, MARCH 29 4:30pm-6:30pm

Poster Abstract

36 109 Benzo[a]pyrene treatment of the estuarine fish, Fundulus heteroclitus, collected from a PCB-contaminated site results in decreased hepatic DNA adducts compared to reference site
Kohan MJ, Nacci D, Pelletier M, Coiro L, George SE

37 172 Understanding peroxyl radical-induced DNA damage at the molecular level
Rodriguez H, Valentine MR, Akman SA, Termini J

38 185 Transcription Coupled Repair of Benzo[a]pyrene Diol Epoxide DNA Adducts in Human Cells
Schild LJ, Smith CA, Hanawalt PC, Baird WM,

39 192 Quantitation of metal-DNA adducts by inductively coupled plasma mass spectrometry as a biomarker for exposure to toxic metals
Singh J, McLean JA, Pritchard DE, Carlisle DL, Montaser A, Patierno SR

METABOLIC ACTIVATION

40 13 Development of UMU-Test System: Bioactivation of aromatic amines by human P450 1A2, NADPH-P450 Reductase and/or O-acetyltransferase-expressing Salmonella typhimurium strains
Aryal P, Yoshikawa K, Terashita T, Parikh A, Guengerich FP, Shimada T, Oda Y

41 44 The Use of Alternative Metabolic Activation Systems in In Vitro Genetic Toxicology Assays
Cyr MO, Sanok KE, Watson TM, Mauthe RJ, Ku WW

42 102 Human P450 1A2 enzymes with altered catalytic activities: generation by random mutagenesis and detection by a rapid phenotypic screen
Josephy PD, Pugsley KL, Evans DH, Brown S, Parikh A, Guengerich FP

43 113 Detection of photochemical-induced mutations at the gpt locus in AS52 Chinese hamster ovary cells (AS52/XPRT Assay): development and definition of system
Kraycer JA, Stankowski Jr LF

34
<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>117</td>
</tr>
</tbody>
</table>
| | Genotoxicity of bromoform in human blood lymphocytes and of chlorodibromomethane in Salmonella: role of red blood cells and GSTT1-I polymorphism
Landi S, Hanley NM, Warren SH, Pegram RA, Kligerman AD, DeMarini DM |
| 45 | 147 |
| | Induction of micronuclei by chloral hydrate (CH) in CYP2E1 competent cells and in rat hepatocytes
Mueller L, Kasper P, Kersten B, Kaufmann G |
| 46 | 207 |
| | Comparison of photochemical-induced mutation and chromosome aberrations in four in vitro test systems
Stankowski Jr LF, Kraycer JA, Berta MJ, Lantsch KH, Lucenti SM, Messina DM |
| 47 | 236 |
| | Genetically modified CHO cells expressing Phase II metabolic enzymes for studying the genotoxicity of heterocyclic amines from cooked foods
Wu RW, Kadkhodayan S, McManus ME, Felton JS |

GENETIC TOXICOLOGY TEST DEVELOPMENT/NEW TECHNOLOGIES

<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>19</td>
</tr>
</tbody>
</table>
| | Improved methodologies to enhance the performance of SHE cell morphological transformation assays
Borman H, Nourbakhsh A, King K, Brauninger R, Custer L |
| 49 | 40 |
| | Evaluation of the direct count scoring method for the autoradiographic unscheduled DNA synthesis assay
Clay P, Lane MP, Jones E, Elliott BM |
| 50 | 51 |
| | Malaria-infected erythrocytes as a tool for configuring flow cytometers for micronucleus analyses
Dertinger SD, Torous DK, Hall NE |
| 51 | 52 |
| | Multiplex fluorogenic 5' nuclease PCR: further studies on the development of a quantitative assay for the 5-kb common deletion of mitochondrial DNA
Director-Myska AE, Hamel CJC, Lofts RS, Zullo SJ, Merrill CR, Blakely WF |
| 52 | 83 |
| | Development of HPRT mutant lymphocyte assays with California sea lions (Zalophus Californianus)
Hastings-Smith DA, Ammenheuser MM, Ward, Jr JB |
<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Development of a High Throughput Assay for Detection of Repairable Adducts by Growth Inhibition using DNA Repair Deficient CHO Cells (DRAG test) Helleday T, Jenssen D</td>
</tr>
<tr>
<td>54</td>
<td>A microplate-based mammalian cell cytotoxicity assay Irani SH, Plewa MJ</td>
</tr>
<tr>
<td>55</td>
<td>A rapid quantitative single cell gel electrophoresis assay (Comet Assay) system developed for applications in environmental toxicology analysis Kolanko CJ, Pyle MD, Nath J, Lloyd D, Magnusen J, Loats H</td>
</tr>
<tr>
<td>56</td>
<td>Modification of the Microsuspension Assay for use as a sensitive bacterial mutation screening tool Lawlor TE, Orantes CE, Gulick A, Burnett K, McCrea R, Mecchi MS</td>
</tr>
<tr>
<td>57</td>
<td>Evaluation of a Mini-Ames Assay for Pharmaceutical Compound Screening: Use of 96-well Microtiter Plates for Treatment Mayo JK, Smith AL, Mattes WB, Aaron CS</td>
</tr>
<tr>
<td>58</td>
<td>Validation of the microwell mouse lymphoma TK+/- forward mutation assay (MLA) Messina DM, Kraycer JA, Ruane JL, Stankowski Jr LF</td>
</tr>
<tr>
<td>59</td>
<td>Peptide Nucleic Acid-based enrichment of H-ras DNA sequence: an approach for isolating target DNA molecules for mutational analysis Parsons BL, Heflich RH</td>
</tr>
<tr>
<td>60</td>
<td>Microgravity - based, three - dimensional, transgenic cell models to quantify genotoxic effects Sognier MA, Pingerelli PL, Glickman BW, De Boer J, Rogers B, Yang TC, Gonda SR</td>
</tr>
<tr>
<td>Poster</td>
<td>Abstract</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 62 | 95 | Mutagenicity of Munitions Compounds and their Metabolites in a Microsuspension Bioassay
Huggins-Clark G, Brooks LR, Hampton M, George SE |
| 63 | 106 | The Compatibility of Low and High pH Solvents in the Bacterial Mutation Assay
Klug ML, Twardzik SC, Walton EW, Caruthers SM, Kline LR, Wagner III VO |
| 64 | 140 | Mutagenicity of Heavy Metals Used in Military Applications: Comparison of Depleted Uranium, Tungsten, and Nickel
Miller AC, Page N |
| 65 | 194 | Visualization of DNA double strand breaks
Singh NP, Stephens RE, Lai H |

MAMMALIAN GENETIC TOXICOLOGY TEST RESULTS

<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
</table>
| 66 | 41 | Lack of genotoxic activity of trichloroethylene and its metabolite of S-(1,2-dichlorovinyl)-L-cysteine in rat renal proximal tubular cells in vivo using the comet assay
Clay P, Elliott BM, Jones E, Green T, Lee RA |
| 67 | 43 | SHE cell transformation assay carcinogenicity predictions for 6 compounds in the ILSI program on alternative carcinogenicity models
Custer L, Brauning R, Gibson D |
| 68 | 60 | The Mouse Lymphoma Assay (MLA) using the microtitre methodology: historical data and cell cleansing
Fellows M, Clements J, Wilkinson J, Kirkland DJ |
| 69 | 65 | Effects of pulmonary surfactant on the cytotoxicity and genotoxicity of respirable quartz and kaolin
Gao N, Keane M, Ong T-M, Wallace WE |
| 70 | 75 | Evaluation of the rat chronic micronucleus assay: Summary of the 13th collaborative study by CSGMT/JEMS-MMS
Hamada S, Morita T, Wakata A, Sutou S, Shimada H, Nakajima M, Hayashi M |
<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
</table>
| 71 | Strain differences in the rat to induction of micronuclei by cyclophosphamide
Hamada S, Hayashi M, Yamazaki K, Nakanishi S, Serikawa T |
| 72 | Evaluation of the mutagenic activity and mode of action of bromate, an ozonation disinfection by-product
Harrington-Brock K, Collard DC |
| 73 | Hydrogen peroxide and nitric oxide generators induce genotoxic effects in G12 transgenic Chinese hamster cells
Harris CE, Su L, Klein CB, Abu-Shakra A |
| 74 | Use of the alkaline Comet Assay in routine testing in vitro: comparative investigation with the micronucleus and Ames tests
Hartmann A, Poetter F, Elhajouji A, Martus HJ, Suter W |
| 75 | Genotoxic Effect of 2,4-Dichlorophenoxycetic Acid Measured with the Comet Assay in Mouse
Hernandez-Ceruelos CA, Lopez-Martinez S, Madrigal-Bujaidar E |
| 76 | Anemia-Induced Micronucleus Formation in Mice
Holden HE, Studwell DB, Majeska JB |
| 77 | The Effect of Acetonitrile on the Incidence of Micronucleated Polychromatic Erythrocytes in Mouse Bone Marrow and Peripheral Blood
Jones E, Fox V, Elliott BM, Ogden EJ, Moore N |
| 78 | Evaluation of the Genotoxicity of Stevioside and Steviol using in vitro Mouse Lymphoma L5178Y Gene Mutation Assay and in vivo Hepatocyte Micronucleus Assay
Oh HY, Han ES, Sohn SJ, Kim JW, Park CH, Eom MO, Ha KW |
| 79 | Genotoxicity of Radio Fields Generated from Analog, TDMA, CDMA, and PCS Technology Evaluated using a ThreeTest in vitro Battery
Phillips LP, Blackwell DB, Clancy JC, Donner MD, Tice RT, Hook GH, McRee DM |
| 80 | Mutagenicity of Selected Nitrated Polycyclic Aromatic Compounds in Human Cells
Phousongphouang PT, Arey J, Eastmond DA, Covarrubias M, Grosovsky AJ |
<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
</table>
| 81 170 | Inhibitory effect of Cysteine on the micronuclei induced by cisplatin in mouse
Reyes-Cadena S, Madrigal-Bujaidar E, Mota P, Pérez J, Velasco O, Hernández N |
| 82 217 | Analysing micronuclei in rat peripheral blood by flow cytometry after long-term dosing with cyclophosphamide or 2-acetyl aminofluorene
Torous DK, Dertinger SD, Tometsko CR, Hall NE |
| 83 220 | The usefulness of rat tibia as an additional source of bone marrow for the micronucleus assay
Urda GA, Criswell K, Zielinski D, Pegg D, Krishna G |
| 84 225 | Genotoxicity of radio frequency fields generated from analog, TDMA, CDMA, and PCS in human blood cells evaluated using the single cell gel (SCG) electrophoresis and the cytochalasin B micronucleus (CB-MN) assay
Vasquez MV, Clancy JC, Blackwell DB, Donner MD, Tice RT, Hook GH, McRee DM |
| 85 227 | Predictions and correlations of carcinogenic potentials of specific nickel compounds by short-term in vitro assays using C3H 10T1/2 mouse embryo cells
Verma A, Ohshima S, Ramnath J, Thakore KN, Landolph JR |
| 86 248 | Cell transforming potential of beryllium in cultured mammalian cells
Zhou G, Hubbs AF, Battelli L, Keshava N, Ong T-M, Whong W-Z |
MONDAY, MARCH 29

7:30pm - 8:30pm

PUBLIC LECTURE
Presidential Ballroom

Safety of Soft Drinks

Richard Adamson
National Soft Drink Association
Washington, DC

ZENECA
Central Toxicology Laboratory
“The Full Spectrum of Genetic Toxicology Services”

Based on over two decades of pioneering genetic toxicology research and regulatory testing, CTL provides a wide range of clients with genetic toxicology services from our portfolio including:

- Bacterial and mammalian mutation assays.
- *In vitro* and *in vivo* micronucleus and chromosomal aberration assays.
- *In vitro* and *in vivo* DNA repair (UDS) assays.
- *In vitro* and *in vivo* comet assays.
- Dominant lethal assays.
- Transgenic mutation assays.

CTL is renowned for providing quality studies, combined with reliability at a competitive price. Whether you require a paper assessment of chemical structure activity, tailored assays for product selection or hazard handling, limited or full notification / registration packages, defence of an existing data-set or investigative genetic toxicology, CTL’s established experience provides the answer.

For further information or to discuss your specific requirements, please contact:

Central Toxicology Laboratory
A CENTRE OF EXCELLENCE
ALDERLEY PARK MACCLESFIELD CHESHIRE SK10 4TJ ENGLAND
TEL: 44 (0) 1625 514534 FAX: 44 (0) 1625 517314 EMAIL: Ann.Evans@CTL.Zeneca.com
TUESDAY, MARCH 30

7:30am
CONTINENTAL BREAKFAST
Congressional/Senate
Federal A Rooms
Sponsor: Covance Laboratories Inc.

7:30-8:30am
COMMITTEE MEETINGS

EMM Journal
Federal B Room

Nominating
Pan American Room

Public Relations
Massachusetts Room

Membership/Professional Development
New York Room

Strategic Planning
California Room
TUESDAY, MARCH 30

8:30am - 11:30am
SYMPOSIUM 7
Presidential Ballroom

The Continual Maintenance Of Genomic Integrity:
The Base Excision Repair Pathway

Chair: David M. Wilson, III, Lawrence Livermore National Laboratory

8:30am INTRODUCTION:
The Continual Maintenance of Genomic Integrity: The Base Excision Repair Pathway
David M. Wilson, III

8:50am Crystal Structures and Mechanistic Insights for Human and E. coli 3-Methyladenine DNA Glycoylase
Tom Ellenberger, Harvard Medical School, Boston, MA

9:30am Two Pathways Of Base Excision Repair: A DNA Polymerase Beta-Dependent Pathway And A PCNA-Dependent Pathway
Yoshihiro Matsumoto, Fox Chase Cancer Center, Philadelphia, PA

10:10am Coffee Break

10:30am DNA Ligases In Base Excision Repair
Alan Tomkinson, Institute of Biotechnology, San Antonio, TX

11:10am Use of DNA Base Excision Repair Genes in Gene Therapy: Translational Applications
Mark R. Kelley, James Whitcomb Riley Hospital for Children, Indianapolis, IN
TUESDAY, MARCH 30

8:30am - 11:30am
SYMPOSIUM 8
South American AB

Risk Assessment Principles

Sponsor: Eli Lilly & Co.

Organized by: Martha Moore, US-EPA, RTP, NC

8:30am John A. Vandenberg
US EPA, Research Triangle Park, NC

9:30am Rory Conolly
CIIT, Research Triangle Park, NC

10:30am Justin Teeguarden
Rochester, MN

12:00pm - 1:00pm

HOLLAENDER LECTURE
Presidential Ballroom

Sponsor: GD Searle and Company

Using Transgenic Mice to Understand the Mode of Action of Carcinogens

Frank Gonzalez
National Cancer Institute, Bethesda, MD

7:00pm
Odyssey Cruise
First bus from Capital Hilton (16th & K St. Entrance)
leaves promptly at 6:00pm.
WEDNESDAY, MARCH 31

7:30-8:30am

Special Interest Breakfasts
Transgenics
South American B
Environmental Genomics
Federal B Room
Risk Assessment
South American A

8:30am - 12:10pm

SYMPOSUIM 9
Presidential Ballroom

Mutator Phenotype In Cancer

Chair: Snorri Thorgeirsson
National Cancer Institute, Bethesda, MD

8:30am Gastrointestinal Cancer of the Microsatellite Mutator Phenotype
Manuel Peruchó, La Jolla Cancer Research Center, La Jolla, CA

9:10am Tissue-Specific Accumulation of Point Mutations and Genome Rearrangements in Aging Mice: Role of DNA Damage Processing and Repair
Jan Vijg, Harvard University, Boston, MA

9:50am Origins of a Mutator Phenotype of Cancer
Lawrence Loeb, University of Washington, Seattle, WA

10:30am Coffee Break

10:50am MUTATION RESEARCH AWARD LECTURE:
Studies of DNA Replication Fidelity and DNA Mismatch Repair
Thomas A. Kunkel, National Institute of Environmental Health Sciences, Research Triangle Park, NC

11:30am Chromosomal Instability in Cancer
Daniel P. Cahill, Johns Hopkins Oncology Center, Baltimore, MD
WEDNESDAY, MARCH 31

1:30pm - 4:30pm

SYMPOSIUM 10
Presidential Ballroom

Disease Susceptibility:
Is It The Genes Or The Exposures

Sponsor: Elsevier Sciences BV

Chair: Harvey Mohrenweiser
Lawrence Livermore National Laboratory, Livermore, CA

1:30pm Variation as a Tool for Understanding Biology: A Key Element in the Functional Genomic Era
Harvey Mohrenweiser

2:10pm Pharmacogenetics and Individualization of Therapy
Richard Weinshilboum, Mayo Medical School/Mayo Clinic,
Rochester, MN

2:50pm Coffee Break

3:10pm Cardiovascular Disease: A Case Study of a Disease with Multifactorial Inheritance and Genetic Susceptibility
Mike Province, Washington Univ. School of Medicine, St. Louis, MO

3:40pm Screening for Genetic Variation and Disease Susceptibility: Promises, Pitfalls and Reality
DNA Damage and Repair

New Products from PharMingen

- DNA Repair Enzymes
- DNA Repair Gene Expression Kits
- Anti-DNA Damage Antibodies

Orders: 1-800-848-6227
Technical Service: 1-800-825-5832
Telephone: 619-812-8800
Fax: 619-812-8888
http://www.pharmingen.com

For research use only. Not for use in diagnostic or therapeutic procedures.
WEDNESDAY, MARCH 31

4:30pm-6:30pm

POSTER SESSION III

Congressional/Senate/Federal A/Capital Terrace

Sponsor: Astra Pharmaceuticals, L.P.

<table>
<thead>
<tr>
<th>CYTOGENETICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poster</td>
</tr>
</tbody>
</table>
| 1 | 5 | Detection of hyperploidy in bladder epithelial cells of rats treated with ortho-phenylphenol using fluorescence in situ hybridization
Balakrishnan S, Hasegawa L, Rupa DS, Tadi-Uppala P, Eastmond DA |
| 2 | 21 | The Use Of Syrian Hamster Embryo Cells In A High Throughput Micronucleus Screening Assay
Brauninger R, Gollandi B |
| 3 | 38 | Whole Chromosome Painting Probes Made From Single Microdissected Chromosomes
Christian AT, Garcia HE, Tucker JD |
| 4 | 58 | High prevalence of the X chromosome in flow-sorted lymphocyte micronuclei of women
Falck G, Grawé J, Nüss M, Norppa H |
| 5 | 70 | In vivo micronucleus induction in the mouse by chronic low-level gamma radiation: Dose-response and effect of gender and exposure duration
Grawé J, Sorensen KJ, Abramsson-Zetterberg L, Tucker JD |
| 6 | 89 | Mechanisms of Enhancement of the Chromosome-Damaging Effect of Bleomycin by Amines and Thiols in Human Lymphocytes
Hoffmann GR, Buccola JM, Merz MS |
| 7 | 98 | Dose-Effect Relationship in the Production of Dicentric by High Background Radiation
Jiang T, Hayata I, Wang CY, Nakai S, Chen DQ, Yuan YL, Wei LX |
| 8 | 100 | Radiation-induced misrejoined breakpoints in human chromosomes: random or non-random?
Johnson KL, Brenner DJ, Tucker JD, Nath J, Geard CR |
<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Single-Strand DNA Breaks Following Exposure to Combined Therapeutic HIV/AIDS Agents Levin BC, Chen JT, Reeder DJ</td>
</tr>
<tr>
<td>10</td>
<td>Mouse liver micronucleus test using cyproterone as a mitogen Loquet CJ</td>
</tr>
<tr>
<td>11</td>
<td>Assessment of Genetic Variation for Complex Chromosomal Instability in a Neuroblastoma Tumor McGhee EM, Govberg I, Williams R, Berger M, Cotter PD</td>
</tr>
<tr>
<td>12</td>
<td>The kinetics of clastogenic activity and the mechanism of chromosome break foration by methylnitrosourea Morales-Ramirez P, Vallarino-Kelly T</td>
</tr>
<tr>
<td>14</td>
<td>Photoclastogenicity-an improved protocol, its validation and results with DMBA Murli H, Aardema M, Spicer C</td>
</tr>
<tr>
<td>15</td>
<td>Spontaneous chromosome aberrations in mice: Effects of age and strain Ramsey MJ, Spruill MD, Director-Myska AE, Nath JN, Tucker JD</td>
</tr>
<tr>
<td>16</td>
<td>Genetic characterization of two cell lines derived from a single Wilms' tumor Rossi MR, Nath J, Wenger SL, Todd JH, Sens DA, Somji S, Garrett S</td>
</tr>
<tr>
<td>17</td>
<td>Improved Detection Of Hyperdiploidy In Vincristine Sulfate Treated Mice Using Fluorescence In Situ Hybridization (FISH) In Combination With BrdU-Immunfluorescence Staining Schuler MJ, Hasegawa L, Eastmond DA</td>
</tr>
<tr>
<td>18</td>
<td>Translocation Analysis of Mice Exposed in vivo to Low Levels of Chronic Gamma Radiation Sorensen KJ, Grawe J, Abramsson-Zetterberg L, Tucker JD</td>
</tr>
<tr>
<td>19</td>
<td>Cytotoxicity Measurement in the In Situ Micronucleus Screening System Spicer C, Davis S, Curry P</td>
</tr>
</tbody>
</table>
Factors modulating the persistence of chromosomal damage in human cells
Surralles J, Puerto S, Ramirez MJ, Creus A, Marcos R

Application of the Mitotic Spindle Assay to Detect and Evaluate the Mechanism of Aneuploidy Induction of Estrogen Agonists In Vitro
Thiffeault C, Muchlbauer PA, Guzzi PJ

Persistence of chromosome aberrations induced by ionizing radiation
Tucker JD, Nelson DO, Chuang KI, Matsumoto K

Hyperdiploidy of chromosomes 1 and 7 and breakage affecting the 1q12 region in Go lymphocytes and granulocytes of benzene-exposed workers from China
Wang L, Schuler M, Shore R, Yin S, Li G, Qu Q, Eastmond DA

Frequency of chromosomal aberrations in lymphocytes of patients before and after initiation of anti-HIV drug therapy with dideoxynucleosides

Activity of isophosphamide and cyclophosphamide in the in vitro human lymphocyte cytogenetics assay using human liver S9 metabolic activation
Yu RL, Mattes WB, Voorman RL, Aaron CS

Chromosome aberrations are induced in vitro by phenolphthalein with or without S-9, appear unrelated to inhibition of thymidylate synthetase, and are associated with cytotoxicity, intracellular oxygen radicals and inhibition of DNA synthesis
Armstrong MJ, Gara JP, Greenwood SK, Hilliard CL, Galloway SM

Oxidative DNA Damage Inhibits Transcription Factor Binding
Brooks PJ

A multi-level analysis on mitochondrial DNA mutations
Chen JZ, Hebert PDN
29 37 Proofreading Infidelity in Saccharomyces cerevisiae
Chrenek MA, Tomaszewski RW, von Borstel RC

30 39 Mutagenic specificity of four nitro group-containing aromatic amines in Salmonella typhimurium xenometrix strains
Chung KT, Hughes TJ, Claxton LD

31 56 Ancient and recent mutations in the factor IX gene are similar: Polymorphisms found by screening 1.45 megabases of factor IX genomic sequence by restriction endonuclease fingerprinting
Drost JB, Feng J, Liu Q, Sommer SS

32 63 Assessment of genotoxic action of lead using acridine orange staining and micronucleus assay in rat peripheral blood
Fucic A, Kasuba V, Rozgaj R, Varnai V

33 68 Photogenotoxicity studies on a series of singlet oxygen generating pyridone derivatives
Gocke E, Chetelat AA, Csato M, Jakob-Roetne R, Kirchner S, Muster W, Potthast M

34 77 The mutagenic repair polymerase zeta is responsible for carbon source-dependent variation in spontaneous mutation rates
Hamilton MD, von Borstel RC

35 79 A novel assay for mitochondrial DNA synthesis: non-correlation with UDS cytoplasmic grain counts
Harbach PR, Mattes WB, Cramer CT, Filipunas AL, Aaron CS

36 85 On the relationship between mutant frequency and time in vivo
Heddle JA, Sun B

37 93 Spindle poisons induce gene mutations through mitotic nondisjunction in mouse lymphoma cells
Honma MH, Momose MM, Matsuoka AM, Sakamoto HS, Hayashi MH, Sofuni TS

38 94 Characterization of p53 protein in Chinese hamster cell lines: CHO-K1, CHO-WBL, and CHL
Hu T, Aardema MJ
<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
</table>
| 39 | 121 | Patterns of antibiotic resistance among mismatch repair deficient bacterial mutators
Levy DD, Cebula TA |
| 40 | 122 | Additional evidence for the constancy of recent germline mutations in the factor IX gene
Li X, Drost JB, Roberts SC, Kasper CK, Sommer SS |
| 41 | 124 | Analysis of mutational spectra of UV induced mutants generated at low and high transcription levels
Lippert ML, Chen Q, Alavian CN, Liber HL |
| 42 | 128 | Creation of Heterozygous Thymidine Kinase Gene Target in a Mismatch Repair Deficient Human Colon Cancer Cell Line which Displays Reversible Expression of hMLH1 and hPMS2 Proteins
Ma AH, Veigl ML, Hart S, Lader G, Markowitz SD, Sedwick WD |
| 43 | 136 | Investigating hydrogen peroxide as a co-mutagen in Salmonella typhimurium TA1435 treated with the nitric oxide delivery system spermine nooxide
McQueen ET, Abu-Shakra A |
| 44 | 137 | In situ detection of the 4997-BP common mitochondrial DNA deletion
Melnov SB, Zullo SJ, Prasanna PGS, Merrill CR, Blakely WF |
| 45 | 142 | Mutation Spectra Induced by N-Hydroxy-2-acetylanifluorene in the lacI and Hprt Genes of Big Blue Rats
Mittelstaedt RA, Chen T, Casciano DA, Heflich RH |
| 46 | 150 | Preferential Recovery of Interchromosomal Gene Conversion in a Reversion Assay in Human Cells
Neuwirth EAH, Quintana PJE, Giver CR, Grosovsky AJ |
| 47 | 152 | In vivo translesion bypass of N-(2'-deoxyguanosin-8-yl)-2-acetylanifluorene adducts
Nokhbeh MR, Fuchs RPP, Lambert IB |
| 48 | 154 | Mutation spectra in Salmonella TA98, TA100, AND TA104 of two phenylbenzothiazole mutagens (PBTA-1 AND PBTA-2) detected in the Nishitakase River in Kyoto, Japan
Ohe T, Shaughnessy DT, Landi S, Terao Y, Nukaya H, Wakabayashi K, DeMarini DM |
<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>Enhanced asaerine-induced mutagenesis in plateau-phase CHO cells, with targeting of +1 frameshifts to free 3' ends of topoisomerase II cleavable complexes Patteson KP, Wang P, Povirk LF</td>
</tr>
<tr>
<td>50</td>
<td>Effect of sequence context on mutations induced during replication past site-specific cis-opened benzo[c]phenanthrene diol epoxide-deoxyadenosine adducts in E. coli Ponten I, Sayer JM, Pilcher T, Yagi H, Kumar S, Jerina DM, Dipple A</td>
</tr>
<tr>
<td>51</td>
<td>BPDE-induced gene conversion in a human cell line Quintana PJE, Neuwirth EAH, Grosovsky AJ</td>
</tr>
<tr>
<td>52</td>
<td>Adaptive mutation in E. coli upon prolonged exposure to fluorescent light Ronen A, Broit M</td>
</tr>
<tr>
<td>53</td>
<td>Mutation spectra in Salmonella TA98, TA100, and TA104 of chlorinated butenoic acids related to MX that are present in chlorinated drinking water Shaughnessy TD, Ohe T, Landi S, Goto S, Franzen R, DeMarini DM</td>
</tr>
<tr>
<td>54</td>
<td>Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons Smith LE, Denissenko MF, Amin S, Tang MS, Pfeifer GP</td>
</tr>
<tr>
<td>55</td>
<td>Bleomycin amplification assay in V79 cells for detection of non-covalent drug/DNA interactions Snyder RD</td>
</tr>
<tr>
<td>56</td>
<td>Re-examination of PhIP-induced mutational specificity in colon of male and female Big Blue® rats Stuart GR, de Boer JG, Glickman BW</td>
</tr>
<tr>
<td>57</td>
<td>DNA transgene methylation can be induced by different mutagens Su L, Klein CB</td>
</tr>
<tr>
<td>58</td>
<td>Genotoxicity of 3'-Azido-3'-Deoxythymidine (AZT) in the Human Lymphoblastoid Cell Line, TK6 Sussman HE, Olivero QA, Pietras SM, Poirier MC, O'Neill JP, Finette BA, Walker VE</td>
</tr>
<tr>
<td>Poster</td>
<td>Abstract</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>59</td>
<td>213 In vivo mutagenicity of N-ethyl-N-nitrosourea at the Hprt locus in thymic and splenic lymphocytes of transplacentally exposed B6C3F1 mice Sussman HE, Walker VE</td>
</tr>
<tr>
<td>60</td>
<td>221 Preferential Induction of 5'-GGGA-3' -> 5'-GGA-3' Deletion Mutation by 2-Amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) in the Mammary Gland of Female Big Blue® Rats Ushijima T, Okochi E, Watanabe N, Wakazono K, Sugimura T, Nagao M</td>
</tr>
<tr>
<td>62</td>
<td>232 Comparison of Glutathione Mediated Mutagenicity of Salmonella typhimurium TA1535 Expressing Methanobacterium DM11 or Rat GST 5-5 Wheeler JB, Guengerich FP</td>
</tr>
<tr>
<td>63</td>
<td>249 Inability of a Adozelesin, a Strong Alkylating Agent, to Induce HPRT Mutations in Cynomolgus Monkeys and Strain A/J Mice Zimmer DM, Mattes WB, Branstetter DG, Yu RL, Zhang W, Aaron CS</td>
</tr>
</tbody>
</table>

GERM CELL STUDIES

<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>3 1-Aminobenzotriazole reduces acrylamide-induced dominant lethal effects in sperm and spermatids of mice Adler ID, Baumgartner A, Friedman MA</td>
</tr>
<tr>
<td>65</td>
<td>4 Induction of aneuploidy in mammalian meiosis: a comparison between male and female germ cell sensitivity Adler ID, Schmied TE, Shi Q</td>
</tr>
<tr>
<td>67</td>
<td>16 Heritable effects of paternal irradiation on signaling protein kinase activities in F2 and F3 offspring Baulch JE, Enan EE, El-Sabeawy F, Raabe OG, Vance MM, Wiley LM</td>
</tr>
<tr>
<td>Poster</td>
<td>Abstract</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>68</td>
<td>119 Detection of mutation in the germ line of Drosophila melanogaster
Lee WR, Kristin BC, Guillot DA, Wilson VL</td>
</tr>
<tr>
<td>69</td>
<td>126 Aneuploid X-Y sperm increase with age and are correlated with disomy 21 sperm in older men
Lowe XR, Eskenazi B, Kidd S, Alme AKB, Aylstock M, Nelson DO, Wyrobek AJ</td>
</tr>
<tr>
<td>70</td>
<td>130 Sex ratio distortion and differential cytogenetic response of male and female mouse embryos after paternal exposure to acrylamide
Marchetti F, Bishop JB, Lowe X, Wyrobek AJ</td>
</tr>
<tr>
<td>71</td>
<td>132 Influence of p53 zygosity on select sperm parameters of the mouse
Marty MS, Singh NP, Holsapple MP, Gollapudi BB</td>
</tr>
<tr>
<td>72</td>
<td>133 Aneuploidy estimates in small sample size sperm-F.I.S.H studies
Matthews S, Blakey DH, Arbuckle T, Robbins WA</td>
</tr>
<tr>
<td>73</td>
<td>195 Healthy men produced more sperm with postmeiotic chromosome breaks than premeiotic and meiotic aberrations
Slooter E, Lowe X, Nath J, Wyrobek AJ</td>
</tr>
</tbody>
</table>

ENVIRONMENTAL STUDIES - WATER

<table>
<thead>
<tr>
<th>Poster</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>28 Development of the Single Cell Gel (SCG) Assay for Monitoring Contamination of Aquatic Ecosystems
Chang LW, Meier JR, Toth GP</td>
</tr>
<tr>
<td>76</td>
<td>103 Direct comparative genotoxicity assessment of drinking water disinfection by-products
Kargalioglu Y, McMillan BJ, Minear RA, Plewa MJ</td>
</tr>
<tr>
<td>Poster</td>
<td>Abstract</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>77</td>
<td>DNA-damage found in tissue of brown bullhead catfish isolated from various sites along Washington, DC’s Anacostia River. Kolanko CJ, Pyle MD, Loats H, Nath J, Spargo BJ, Campbell JR</td>
</tr>
<tr>
<td>78</td>
<td>Ultraviolet light enhances PAH-induced DNA damage as assessed by the SCGE ‘comet’ assay in Aurelia aurita jellyfish exposed to PAH’s in seawater. Quintana PJE, Archer DE, Steinert SA</td>
</tr>
<tr>
<td>79</td>
<td>Genotoxicity evaluation of a contaminated estuarine region in Brazil. Roubicek DA, Prosperi V, Umbuzeiro-Valent G</td>
</tr>
<tr>
<td>80</td>
<td>Correlations of water quality parameters with mutagenicity of drinking water samples. Schenck KM, Lykins, Jr. BW</td>
</tr>
<tr>
<td>81</td>
<td>The use of the Salmonella Mutagenicity Assay for routine evaluation of surface water quality. Umbuzeiro-Valent G, Roubicek DA, Sanchez PS, Sato MIZ</td>
</tr>
<tr>
<td>82</td>
<td>A Mass Balance of Surface Water Genotoxicity in the Providence River (Rhode Island, USA). White PA, Ho KT, Ohe T, DeMarini DM, Blaise C</td>
</tr>
</tbody>
</table>
WEDNESDAY, MARCH 31

7:30pm - 10:20pm

SYMPOSIUM I1
Presidential Ballroom

Structural and Biological Consequences
of DNA Modification

Sponsor: Merck & Company

Chairs: William Baird, Oregon State University
Anthony Dipple, National Cancer Institute, Frederick, MD

7:30pm INTRODUCTION: Introduction to DNA Adducts and their Repair
William Baird

7:40pm DNA Adduct Structures in Relation to Biological Effects
Nick Geacintov, New York University, New York, NY

8:20pm Targeted Gene Knockouts Mediated by Triple Helix Forming Oligonucleotides
Michael Seidman, NIH, GRC, NIA, Baltimore, MD

9:00pm PAH Adduct Induced Mutations and Effects on Cell Cycle
Tony Dipple

9:40pm Site Specific Mutagenesis With Carcinogen Adducts and Oxidative Damage
John Essignmann, MIT, Cambridge, MA

56
THURSDAY, APRIL 1

7:30am

SPECIAL INTEREST BREAKFASTS
Germ Cell: South American A Room
Repair: Federal B Room

8:30am-9:30am

PLENARY TALK
Presidential Ballroom

Predicting Protein Structure From DNA Sequence

John Moult, CARP, Rockville, MD

9:30am - 12:30pm

SYMPOSIUM 12
Presidential Ballroom

DNA Repair: Structural And Functional Studies

Chair: William F. Morgan
U. C. San Francisco, San Francisco, CA

9:30am Double-Strand Break Repair and at-Risk Motifs (ARMS) as Factors in Genome Stability
Michael A. Resnick, NIEHS, NIH, Research Triangle Park, NC

10:10am Role of DNA-PK in DNA Damage Repair and Lymphomagenesis
Gloria C. Li, Memorial Sloan Kettering Cancer Center, New York, NY

10:50am Structure-Function Studies of The Human Mre11/Rad50 Complex
James P. Carney, Lawrence Berkeley National Laboratory, Berkeley, CA

11:50am Crystallographic Structures of DNA Repair Complexes
John A. Tainer, Scripps Research Institute, La Jolla, CA
THURSDAY, APRIL 1

8:00am – 3:00pm

CONTINUING EDUCATION COURSE
ON THE NEW EPA
Pan American Room
(Pre-Registrants only)

Cancer Risk Assessment Guidelines

3:00 pm

ADJOURNMENT
1:00 pm - 5:00 pm

COUNCIL MEETING
South American B Room

Thanks to
The Hard Rock Cafe
for the donation of a gift certificate for our exhibit raffle!
They are located on the corner of 10th and E streets, NW
Washington DC. (202) 737-7625.
Restaurant open 11:00 am daily.

Thanks to
1789
for the donation of a gift certificate for our exhibit raffle!
The certificate is good for
The Tombs, F. Scott's, and 1789 restaurants.
EMSEXHIBITORS
1999 Washington, DC
Sunday, March 28- Tuesday, March 30

BioReliance
14920 Broschart Road, Rockville, MD 20850
Phone: 301-603-9240 Fax: 301-603-9327

BioReliance (formerly Microbiological Associates), is a Contract Research Organization (CRO) providing regulatory-compliant biological testing services to a variety of pharmaceutical, biopharmaceutical, medical device, and chemical companies worldwide. BioReliance offers complete genetic toxicology services in a number of well-characterized test systems. Our expertise also includes mammalian and molecular toxicology.

Charles River Laboratories
251 Ballardvale Street, Wilmington, MA 01887
Phone: 978-658-6000 Fax: 978-658-7132

Charles River Laboratories offers a wide range of specialty research animal models and Contract Research Services including small and large animal research services, diagnostic and molecular testing. New services offered include PCR testing, RFLP testing, microsatellite testing, southern and slot blot assays and biosafety and analytical testing.

Chrysalis Preclinical Services North America
100 Discovery Drive, Scott Technology Park, Olyphant, PA 18447
Phone: 800-300-8114 Fax: 570-586-3450

Chrysalis is a recognized leader in providing preclinical drug development services to the pharmaceutical, biotechnology and chemical industries. We specialize in: Toxicology-Genetic/Cytogenetic, Acute, Chronic/Subchronic, Reproductive/Developmental; Safety and General Pharmacology; Immunology; PK/ADME

Covance Laboratories Inc.
3301 Kinsman Blvd., Madison, WI 53704
Phone: 608-242-2645 Fax: 608-242-7963

Covance provides mutagenicity testing for international registration of pharmaceutical, food, biotechnology, agrochemical, and industrial products. With the world’s largest molecular and cellular toxicology facilities, combined with the talents and experience of internationally respected scientists, Covance provides an extensive range of investigative studies including ICH battery for genotoxicity testing, regulatory consulting, DNA adduct detection, SHE cell transformation assay, aneuploidy detection using FISH, photomutagenicity, and transgenics.
Elsevier Science
655 Ave of Americas, New York, NY 10010
Phone: 212-633-3758 Fax: 212-633-3112

EMS Membership/info Booth
Liz Von Halle
113 Wendover Circle, Oak Ridge, TN 37830
Phone: 423-483-5805 Fax: 423-574-9888

Faxitron X-ray Corporation
Bryan C. Goode
225 Larkin Dr. Suite 1, Wheeling, IL 60090
Phone: 847-459-9729 Fax: 847-459-9740

Faxitron X-Ray Corporation is the leading manufacturer of cabinet X-ray systems with more than 5000 units installed worldwide for imaging and irradiation. The Faxitron® is available for sample irradiation in a variety of cabinet sizes and radiation output with energy ranges form 10 to 160kVp. Units are completely shielded and interlocked for safe operation in a laboratory setting, requiring no special license or training.

Loats Associates, Inc.
Donna Heartley
201 East Main Street, Westminster, MD 21157
Phone: 410-876-8055 Fax: 410-876-5843

LAI provides comprehensive cost-effective bioautomation for the performance of GENTOX assays. Gentox-bioautomation increases productivity, reduced manpower, improved reliability and immediate customized reports. Automated assays include mouse micronucleus, chromosome-aberration and SCGE COMET. LAI's High-Resolution Colony Counter incorporates automated MLA and AMES. Extensions also permit soft agar and 96-well plate microtitre MLA.

Moltox
Ray Cameron
157 Industrial Park Dr., Boone, NC 28607
Phone: 828-264-9099 Fax: 828-264-0103

MOLTOX products include most materials required for Genetic Toxicology testing; e.g., bacteriological media, ControlChem chemical packages, STDiscs, ECDiscs, S9's and activation mix components. MOLTOX prepared bacteriological media are custom formulated and meet or exceed NCCLS criteria. MOLTOX S9's include those derived from laboratory rodent, dog, monkey and human liver - standard as well as custom tissues, buffers and inducing agents are available.

National Research Council/
National Academy of Sciences
Jane Dell'Amore
2101 Constitution Avenue, NW (TI2114), Washington, DC 20418
Phone: 202-334-2768 Fax: 202-334-2759

The National Research Council offers awards for postdoctoral scientific research at participating U.S. government laboratories. NCR exhibit representatives will
provide information to meeting attendees on the nature and scope of this program, including application procedures to be followed. Information is also available at world wide web address http://rap.nas.edu

PharMingen
10975 Torreyana Road, San Diego, CA 92121
Phone: 619-812-8800 Fax: 619-812-888

PharMingen supplies mAbs to mouse, rat, human, and rabbit CD antigens, adhesion molecules, cytokines, and cytokine receptors. Cell biology reagents include antibodies to cyclins and cyclin-dependent kinase inhibitors in addition to the usual immunosuppresors, oncproteins, signal transduction, and apoptosis-related molecules, and neurological proteins. PharMingen’s molecular biology line features BaculoGold baculovirus reagents, GST vector kits, and Ligation Independent Cloning products.

Sitek Research Labs
15235 Shady Grove Road, Rockville, MD 20850
Phone: 301-926-4900 Fax: 301-926-8891

SITEK Research Laboratories, established in 1984, provides high quality testing services for safety evaluation of chemicals and pharmaceuticals for regulatory submissions. Testing services are provided in the areas of genetic toxicology, general toxicology, in vitro toxicology, analytical chemistry, drug absorption metabolism and pharmacokinetics. Our laboratories located in Rockville, Maryland are state-of-the-art. We are a fully compliant GLP laboratory having JMAFF certification and AALAC accredited animal facilities. Our study reports are submitted to regulatory agencies worldwide and we have never had a study rejected. Let us help your company with its research and testing needs.

SRI International
333 Ravenswood Avenue, Menlo Park, CA 94025
Phone: 650-859-6459 Fax: 650-859-2889

SRI International has an integrated program for pharmaceutical R&D. Our quality services in Genetic Toxicology meeting OECD and ICH guidelines for regulatory submission include: microbial mutagenesis, UDS, mammalian cell mutagenesis, transgenic rodent mutagenesis, and in vivo and in vitro cytogenetics supported by expertise in toxicology, PK/metabolism, analytical chemistry, and formulation design.

Stratagene
11011 North Torrey Pines Road, La Jolla, CA 92037
Phone: 800- 424-5444 or (619) 535-5400 Fax: 619- 535-0071

Stratagene’s exhibit will feature products for Molecular Biology research. Our high quality products include instruments and systems for plasmids, phage, yeast, neuron and cell biology cloning, lambda packaging extracts, high efficiency competent E. coli and yeast, protein expression, nucleic acid hybridiza-
tion, PCR sequencing and mutagenesis. We also have unique modification and restriction enzymes, vectors, tissue culture media reagents, laboratory plastics and safety equipment.

Stockton Press
345 Park Avenue, South, New York, NY 10010-1707
Phone: 212-726-9244 Fax: 212-696-0052

Stockton Press is the publisher of a wide range of books and periodicals in the toxicology and environmental epidemiology fields, including the journals: TOXICOLOGY AND INDUSTRIAL HEALTH; ENVIRONMENTAL EPIDEMIOLOGY AND TOXICOLOGY; JOURNAL OF EXPOSURE ANALYSIS AND ENVIRONMENTAL EPIDEMIOLOGY; HUMAN AND EXPERIMENTAL TOXICOLOGY, and other highly ranked journals in the field of cancer research.

Taconic
273 Hoover Avenue, Germantown, NY 12526
Phone: 518-537-5200 Fax: 518-537-7287

Taconic Transgenic Models and Services features transgenic models specified to reduced latency mutagenicity and carcinogenicity studies. Included are: TSG-p53 knock-out mouse, deficient in the p53 tumor suppressor gene, PIM transgenic mouse, pre-disposed to lymphomas by chemical induction and TSG-p53/Big Blue® transgenic mouse, allowing tumor and mutation endpoints in one model.

TOPAZ Technologies
12710 Research Blvd., Suite 300, Austin, TX 78759
Phone: 512-219-2329 Fax: 512-249-8780

TOPAZ provides software applications and development services to the Pharmaceutical industry. We have just released version 1.0 of the GeneTox product, a complete Genetic Toxicology data capture and reporting system. This includes a Protocol module and an Ames module, designed in collaboration with Schering Plough, and intended to yield a “paperless lab” environment. A Formulation module will be released in Q2, with Micronucleus and Chromosome aberration modules by the end of 1999. At the show we will be demonstrating the GeneTox application, and can also discuss your custom software development needs.

Transgenomic
2032 Concourse Drive, San Jose, CA 95131
Phone: 408-432-3230 Fax: 408-432-3231

Transgenomic’s WAVE DNA Fragment Analysis System offers sensitive and automated high-throughput screening of mutant DNA sequences in the presence of an excess of wild type sequence. Using Temperature Modulated Heteroduplex Analysis (aka DHPLC), homoduplexes are easily distinguished from heteroduplexes formed by a sequence mismatch between mutant and wild type DNA.
INDEX

-A-
- Aderema M 48, 50
- Aaron CS 36, 48, 50, 53
- Abdel-Rahman SZ 19, 20
- Abernethy DJ 23
- Abrahamsson-Zetterberg L 47, 48
- Abur-Shakar A 38, 51
- Adair GM 30
- Adamson R 40
- Adler ID 53
- Aidoo A 14, 17
- Aitken C 32
- Akman SA 34
- Al-Hajj M 30
- Alaviani CN 51
- Albertini RJ 19, 21, 28
- Albertson D 13
- Alme AKB 54
- Alpard S 19
- Alves de Lima PL 17, 18
- Amin S 52
- Aminoshariae B 30
- Ammenheimer MM 19, 35
- Anderson D 53
- Anderson LM 33
- Aoki Y 16
- Arbuckle T 54
- Archer DE 55
- Arey J 38
- Armstrong MJ 49
- Amanadoro C 30
- Arrastia CD 21
- Aryal P 34
- Au WW 19, 20, 21, 23
- Aylstock M 54

-B-
- Baird WM 34, 56
- Baker SM 33
- Balakrishnan S 47
- Bates SE 30
- Battelli L 39
- Baulch JE 53
- Baumgartner A 37
- Bazo AP 18
- Bechtold W 21
- Beland FA 14
- Bell D 28
- Bellissario R 20
- Bennett T 31
- Berger M 48
- Berhow M 18
- Berta MJ 35
- Betancourt M 20, 31
- Bialkowski A 33
- Bigbee WL 19, 20
- Binkova B 21
- Bishop JB 49, 54
- Bissonette J 31
- Blackwell DB 38, 39
- Blaise C 55
- Blakey WF 20, 31, 35, 51
- Blakey DH 54
- Blecher D 16
- Bonassi S 28
- Borman H 35
- Bortolotto E 33
- Bouziane M 30
- Bowman KK 33
- Brackley ME 30, 32
- Branstetter DG 53
- Brauning R 35, 47, 53
- Brenner DJ 47
- Brinkworth MH 53
- Broit M 52
- Brookman KW 30
- Brooks LR 37
- Brooks PJ 49
- Brown S 34
- Rucci TJ 15
- Buccola JM 47
- Buettner VL 14, 15, 17
- Burnett K 36

-C-
- Cahill DP 44
- Cajas-Salazar N 19
- Campbell JR 55
- Carlisle DL 34
- Carnevale A 20
- Carney JP 57
- Carter JB 19
- Caruthers SM 37
- Carver TA 33
- Casciano DA 9, 12, 14, 16, 51
- Cebula TA 51
- Celotti L 33
- Chang IM 23
- Chang JW 33
- Chang LW 54
- Chang YY 32
- Ched AM 33
- Chen CY 33
- Chen DQ 47
- Chen H 19
- Chen J 30, 32
- Chen JB 14, 17
- Chen JT 48
- Chen JZ 49
- Chen Q 51
- Chen SK 33
- Chen T 14, 15, 51
- Chen WD 30, 53
- Chen YC 33
- Cherubini R 33
- Chetelat AA 50
- Chin WK 20
- Cho I 14
- Cho M 22
- Choi YJ 23
- Chorazy M 22
- Chouchane S 32
- Chouqnet CA 20
- Chrenk MA 50
- Christian AT 47
- Chuang KT 49
- Chung RT 50
- Clancy JC 38, 39
- Claxton LD 10, 50
- Clay L 35, 37
- Clements J 37
- Coffee D 25
- Cohen M 48
- Coiro L 34
- Collard DC 38
- Conolly R 43
- Cooke H 26
- Corona T 23
- Cortés E 31
- Cosentino L 9
- Cotter PD 48
- Covarrubias M 38
- Cowell S 21
- Cramer CT 50
- Cress A 49
- Criswell K 39
- Csato M 50
- Culp SJ 16
- Cunningham ML 16
- Curry P 48
- Custer L 35, 37
- Cyr MO 34

-D-
- da Eira AF 18
- Davis S 48
- DeAngelo T 11
- De Bock M 31
- de Boer J 14, 15, 16, 17, 18, 36, 52
- De Koning D 36
- Dearfield KL 22
- Dejmek J 21
- Dolker DA 14
- DeMarini DM 15, 35, 51, 52, 55
Denadai R 17, 18
Denisenko MF 30, 52
Dertinger SD 35, 39
Dingley KH 33
Dipple A 52, 56
Director-Myska AE 20, 35, 48
Dobo KL 48
Dobrovolsky VN 14, 15
Donner MD 23, 38, 39
Dorantes AY 32
Douglas GR 15
Drost JB 50, 51
Duffy PH 17
-E-
Eastmond DA 20, 38, 47, 48, 49
Edwards AJ 53
Edwards BS 21
Eira AF 17
El-Sabawy F 53
Elhajjouji A 38
Ellenberger T 42
Elliot BM 35, 37, 38
Enan EE 53
Eom MO 36
Erzenberger JP 31
Eskenazi B 54
Espiritu J 33
Essigmann J 56
Evans DH 34
-F-
Fairchild DG 16
Falck G 47
Farwell FD 15
Fasullo M 31
Faustman EM 21
Favaretto S 33
Fellows M 37
Felson JS 19, 23, 35
Fenech M 32
Feng J 50
Ferguson LR 18
Ferraro P 33
Filipunas AL 50
Finette BA 21, 52
Ford BN 30, 32
Ford JM 33
Foster WG 15
Fox V 38
Franzen R 52
Friedman MA 53
Fuchs RFP 51
Fucic A 50
Fukasawa K 26
Fuscoe JC 20, 32
Galloway SM 29, 49
Ganesh L 15, 16, 17
Gao N 37
Gara JP 49
Garaj-Vrhovac V 22
Garcia HE 47
Gardner G 10
Garrett S 48
Gasparro FP 22
Gassen M 18
Gatti R 23
Geacinp N 56
Gearn CR 47
Geerts K 22
George SE 34, 37
Gibson D 37
Gingerich JD 15
Giver CR 51
Glaab WE 31
Glazer PM 33
Glickman BW 14, 15, 16, 17, 18, 21, 30, 32, 36, 52
Gocke E 22, 29, 50
Gollapudi BB 14, 47, 54
Gonda SR 36
Gonzalez C 31
Gonzalez F 43
Gordon CG 20
Goslin JA 16
Goto S 52
Govberg I 48
Grant SG 19
Grave J 47, 48
Gray J 13
Green T 37
Greenwood SK 49
Grimm CA 18
Grosoecky AJ 32, 33, 38, 51, 52
Grunwald S 30
Gu X 31
Guengerich FP 34, 53
Guillot DA 54
Guillick A 36
Gunther WC 15
Guamc PJ 15, 48, 49
-H-
Ha KW 38
Hadi MZ 31
Haesevoets RJC 30
Halangoda A 14, 15, 16, 17
Hall NE 35, 37
Hamada FA 19, 20
Hamada S 37, 38
Hamel CIC 35
Hamilton CD 49
Hamilton MD 50
Hampton M 37
Han ES 38
Hannawa PC 33, 34
Hanley NM 35
Hansen WK 32
Hara T 15, 17
Harbach PR 50
Harrington-Brock K 38
Harris CE 38
Harris PJ 18
Hart S 51
Hartmann A 38
Hartwig A 31
Hasegawa L 47, 48
Hastings-Smith DA 19, 35
Hayashi M 29, 37, 38, 50
Hayata I 47
Hayes RB 19
He YJ 33
Hebert PDN 49
Heddie JA 8, 18, 29
Heflich RH 14, 15, 17, 36, 51
Heinmoller E 16
Heinmoller PW 15
Helleday T 30, 36
Helsby N 18
Hernandez N 39
Hernandez-Ceruelos CA 38
Herrera LA 23
Hill KA 15, 16, 17
Hill KH 14
Hilliard CL 49
Ho KT 55
Ho V 22
Hoffmann GR 47
Holcroft J 14, 18
Holden HE 38
Holland NT 19
Holmquist GP 31
Holsapple MP 54
Honma MH 50
Hook GH 38, 39
Hu T 50
Hu Y 32
Hubbs AF 39
Huggins-Clark G 37
Hughes TJ 10, 50
-I-
Iram SH 36
Ilas MJ 32
-I-
Jackson MA 22
Jakob-Rothe R 50
Jenssen D 30, 36
Jerina DM 33, 52
Jiang T 18
Jirik FR 17
Johnson A 16
-L-
Lader G 51
Lai H 37
Lambert IB 51
Landi S 37, 51, 52
Landolph JR 39
Lane MP 35
Lantszsch KH 35
Lawlor TE 36
Le Marchand L 19
Leavitt SA 16
Lee PJ 32
Lee RA 37
Lee WR 54
Legerski RJ 30
Levin BC 48
Levy DD 51
Lewis M 10
Lewis-Bevan L 51
Lewtas J 15
Li G 19, 21, 49
Li GC 57
Li X 51
Llibbus B 49
Liber HL 51
Limp-Foster M 31
Lippert ML 51
Liskay RM 33
Liu N 30
Liu Q 50
Lloyd D 36
Loats H 36, 55
Loeb L 44
Lofts RS 35
Lopez MC 23
Lopez-Martinez S 38
Loquet CJ 48
Lorenzo M 23
Lovell D 29
Lowe X 54
Lucenti SM 35
Luo L 20
Lustig A 26
Lykins Jr. BW 55
Lyn-Cook LE 17
Lynch J 19

-M-
Ma AH 30, 31, 51
MacMahon A 15
MacGregor J 29
Madarrane H 23
Madrigal-Bujaidar E 38, 39
Magnusen J 36
Majeska JB 38
Malfatti MA 19
Malling HV 17
Manjanatha MG 14, 16
Marchant C 22
Marchetti F 54
Marcos R 49
Marino DR 16
Markowitz SD 30, 31, 51
Martus HJ 16, 38
Marty MS 54
Mass M 11
Matsumoto K 49
Matsumoto Y 42
Matsuoka AM 50
Matters WB 36, 49, 50, 53
Matthews S 54
Mauther RJ 15, 34
Mayo JK 36
McCarroll NE 22
McCrea R 36
McDaniel LP 14
McGhee EM 48
McKeon F 26
McLean JA 34
McLean JRN 14
McManus ME 35
McMillan BJ 54
McNiff J 22
McQueen ET 51
McRee DM 38, 39
Mecchi MS 36
Meier JR 54
Melnov SB 51
Menendez D 23
Meneses F 23
Meng Q 20
Menon SR 18
Merrill CR 35, 51
Mertens M 36
Merz MS 47
Messina DM 35, 36
Meyer K 23
Miao F 30
Miller AC 20, 37
Minear RA 54
Mirsalis JC 16
Mitscher LA 18
Mittelstaedt RA 14, 17, 51
Modrich P 31
Mognato M 33
Mohrenweiser H 31, 45
Momose MM 50
Monroe JJ 16
Montaser A 34
Moore KK 32
Moore M 12, 29, 43
Moore N 38
Moore SR 15, 17
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mora G</td>
<td>23</td>
</tr>
<tr>
<td>Morales-Ramirez</td>
<td>48</td>
</tr>
<tr>
<td>Morita T</td>
<td>37</td>
</tr>
<tr>
<td>Mota P</td>
<td>39</td>
</tr>
<tr>
<td>Motykiewicz G</td>
<td>22</td>
</tr>
<tr>
<td>Moul Y</td>
<td>57</td>
</tr>
<tr>
<td>Mrackova G</td>
<td>21</td>
</tr>
<tr>
<td>Muchl Bauer PA</td>
<td>48, 49</td>
</tr>
<tr>
<td>Mueller L</td>
<td>35</td>
</tr>
<tr>
<td>Murli H</td>
<td>48</td>
</tr>
<tr>
<td>Musilova P</td>
<td>21</td>
</tr>
<tr>
<td>Muskhelishvili L</td>
<td>15</td>
</tr>
<tr>
<td>Muster W</td>
<td>22, 50</td>
</tr>
<tr>
<td>Myers B</td>
<td>53</td>
</tr>
<tr>
<td>Nacci D</td>
<td>34</td>
</tr>
<tr>
<td>Nagao M</td>
<td>53</td>
</tr>
<tr>
<td>Nairn RS</td>
<td>30</td>
</tr>
<tr>
<td>Nájera O</td>
<td>31</td>
</tr>
<tr>
<td>Nakai S</td>
<td>47</td>
</tr>
<tr>
<td>Nakajima M</td>
<td>37</td>
</tr>
<tr>
<td>Nakanishi S</td>
<td>38</td>
</tr>
<tr>
<td>Narayanan L</td>
<td>33</td>
</tr>
<tr>
<td>Naschansky K</td>
<td>18</td>
</tr>
<tr>
<td>Nath J</td>
<td>31, 36, 47, 48, 54, 55</td>
</tr>
<tr>
<td>Nelson CC</td>
<td>21</td>
</tr>
<tr>
<td>Nelson DO</td>
<td>49, 54</td>
</tr>
<tr>
<td>Neuworth EAH</td>
<td>32, 51, 52</td>
</tr>
<tr>
<td>Newton RK</td>
<td>15</td>
</tr>
<tr>
<td>Nguyen TV</td>
<td>16</td>
</tr>
<tr>
<td>Nohmi T</td>
<td>9, 17</td>
</tr>
<tr>
<td>Nokhbeh MR</td>
<td>51</td>
</tr>
<tr>
<td>Norppa H</td>
<td>47</td>
</tr>
<tr>
<td>Noshiro A</td>
<td>15</td>
</tr>
<tr>
<td>Nourbaksh A</td>
<td>35</td>
</tr>
<tr>
<td>Novak M</td>
<td>16</td>
</tr>
<tr>
<td>Nukeya H</td>
<td>51</td>
</tr>
<tr>
<td>Nilsse M</td>
<td>47</td>
</tr>
<tr>
<td>-O-</td>
<td></td>
</tr>
<tr>
<td>O'Connor TR</td>
<td>30</td>
</tr>
<tr>
<td>O'Neill JP</td>
<td>20, 21, 52</td>
</tr>
<tr>
<td>Oda Y</td>
<td>18, 34</td>
</tr>
<tr>
<td>Ogden El</td>
<td>38</td>
</tr>
<tr>
<td>Oh HY</td>
<td>38</td>
</tr>
<tr>
<td>Ohe T</td>
<td>51, 52, 55</td>
</tr>
<tr>
<td>Ohshima S</td>
<td>39</td>
</tr>
<tr>
<td>Okochi E</td>
<td>53</td>
</tr>
<tr>
<td>Olivero OA</td>
<td>20, 52</td>
</tr>
<tr>
<td>Ong T-M</td>
<td>21, 22, 32, 37, 39</td>
</tr>
<tr>
<td>Orantes CE</td>
<td>32, 36</td>
</tr>
<tr>
<td>Ordz MG</td>
<td>32</td>
</tr>
<tr>
<td>Ortiz R</td>
<td>31</td>
</tr>
<tr>
<td>Ostrosky-Wegman P</td>
<td>23</td>
</tr>
<tr>
<td>-P-</td>
<td></td>
</tr>
<tr>
<td>Page N</td>
<td>37</td>
</tr>
<tr>
<td>Panagua N</td>
<td>20</td>
</tr>
<tr>
<td>Pantelekos F</td>
<td>23</td>
</tr>
<tr>
<td>Paredes R</td>
<td>20</td>
</tr>
<tr>
<td>Parkh A</td>
<td>34</td>
</tr>
<tr>
<td>Park CH</td>
<td>38</td>
</tr>
<tr>
<td>Parks KK</td>
<td>32, 33</td>
</tr>
<tr>
<td>Parry JM</td>
<td>53</td>
</tr>
<tr>
<td>Parsons BL</td>
<td>28</td>
</tr>
<tr>
<td>Parsons S</td>
<td>32, 36</td>
</tr>
<tr>
<td>Pass K</td>
<td>20</td>
</tr>
<tr>
<td>Patierno SR</td>
<td>34</td>
</tr>
<tr>
<td>Patteson KP</td>
<td>52</td>
</tr>
<tr>
<td>Peg D</td>
<td>39</td>
</tr>
<tr>
<td>Pegg RA</td>
<td>35</td>
</tr>
<tr>
<td>Pelletier M</td>
<td>34</td>
</tr>
<tr>
<td>Pérez J</td>
<td>39</td>
</tr>
<tr>
<td>Pérez-Vera P</td>
<td>20</td>
</tr>
<tr>
<td>Peruchio M</td>
<td>44</td>
</tr>
<tr>
<td>Pfeifer GP</td>
<td>52</td>
</tr>
<tr>
<td>Philips BU</td>
<td>19</td>
</tr>
<tr>
<td>Phillip D</td>
<td>29</td>
</tr>
<tr>
<td>Phillips LP</td>
<td>19, 38</td>
</tr>
<tr>
<td>Phousongphouang PT</td>
<td>38</td>
</tr>
<tr>
<td>Pietras SM</td>
<td>52</td>
</tr>
<tr>
<td>Pichler T</td>
<td>52</td>
</tr>
<tr>
<td>Pillal SP</td>
<td>18</td>
</tr>
<tr>
<td>Fingerelli PL</td>
<td>36</td>
</tr>
<tr>
<td>Pinkerton KE</td>
<td>33</td>
</tr>
<tr>
<td>Pirila R</td>
<td>20</td>
</tr>
<tr>
<td>Plewa MJ</td>
<td>18, 36, 54</td>
</tr>
<tr>
<td>Pluta L</td>
<td>23</td>
</tr>
<tr>
<td>Poetter F</td>
<td>38</td>
</tr>
<tr>
<td>Poirier MC</td>
<td>20, 52</td>
</tr>
<tr>
<td>Polinkovsky A</td>
<td>53</td>
</tr>
<tr>
<td>Pongsaensook P</td>
<td>32, 33</td>
</tr>
<tr>
<td>Ponten I</td>
<td>52</td>
</tr>
<tr>
<td>Portigal C</td>
<td>21</td>
</tr>
<tr>
<td>Poseno T</td>
<td>21</td>
</tr>
<tr>
<td>Potthast M</td>
<td>50</td>
</tr>
<tr>
<td>Povirk LF</td>
<td>31, 52</td>
</tr>
<tr>
<td>Prasanna PGS</td>
<td>20, 31, 51</td>
</tr>
<tr>
<td>Preston RJ</td>
<td>23</td>
</tr>
<tr>
<td>Pritchard DE</td>
<td>34</td>
</tr>
<tr>
<td>Prosperi V</td>
<td>55</td>
</tr>
<tr>
<td>Protzel A</td>
<td>22</td>
</tr>
<tr>
<td>Puerto S</td>
<td>49</td>
</tr>
<tr>
<td>Pugsley KL</td>
<td>34</td>
</tr>
<tr>
<td>Pyle MD</td>
<td>36, 55</td>
</tr>
<tr>
<td>-Q-</td>
<td></td>
</tr>
<tr>
<td>Qu Q</td>
<td>49</td>
</tr>
<tr>
<td>Quintana PJE</td>
<td>32, 51, 52, 55</td>
</tr>
<tr>
<td>-R-</td>
<td></td>
</tr>
<tr>
<td>Raabe OG</td>
<td>53</td>
</tr>
<tr>
<td>Rabinowitz JR</td>
<td>11, 15</td>
</tr>
<tr>
<td>Ramirez A</td>
<td>32</td>
</tr>
<tr>
<td>Ramirez MJ</td>
<td>49</td>
</tr>
<tr>
<td>Ramirez T</td>
<td>23</td>
</tr>
<tr>
<td>Ramnath J</td>
<td>39</td>
</tr>
<tr>
<td>Ramos F</td>
<td>23</td>
</tr>
<tr>
<td>Ramos-Moralles P</td>
<td>32</td>
</tr>
<tr>
<td>Ramsey MJ</td>
<td>48</td>
</tr>
<tr>
<td>Rappaport SM</td>
<td>21</td>
</tr>
<tr>
<td>Rayburn AL</td>
<td>18</td>
</tr>
<tr>
<td>Reddy PP</td>
<td>20</td>
</tr>
<tr>
<td>Reeder DJ</td>
<td>48</td>
</tr>
<tr>
<td>Ren ZP</td>
<td>22</td>
</tr>
<tr>
<td>Rennie PS</td>
<td>21</td>
</tr>
<tr>
<td>Resnick MA</td>
<td>57</td>
</tr>
<tr>
<td>Reyes-Cadenas S</td>
<td>39</td>
</tr>
<tr>
<td>Ribeiro LR</td>
<td>17, 18</td>
</tr>
<tr>
<td>Ricio L</td>
<td>23</td>
</tr>
<tr>
<td>Riemer AM</td>
<td>16</td>
</tr>
<tr>
<td>Rinaldi J</td>
<td>32</td>
</tr>
<tr>
<td>Rithidech K</td>
<td>20</td>
</tr>
<tr>
<td>Ritter LE</td>
<td>32, 33</td>
</tr>
<tr>
<td>Rivas H</td>
<td>32</td>
</tr>
<tr>
<td>Robbins W</td>
<td>20, 49, 54</td>
</tr>
<tr>
<td>Roberts SC</td>
<td>51</td>
</tr>
<tr>
<td>Rodriguez H</td>
<td>34</td>
</tr>
<tr>
<td>Rodriguez U</td>
<td>23</td>
</tr>
<tr>
<td>Rogers B</td>
<td>36</td>
</tr>
<tr>
<td>Rejas E</td>
<td>23</td>
</tr>
<tr>
<td>Rolig RL</td>
<td>30</td>
</tr>
<tr>
<td>Romkes M</td>
<td>19</td>
</tr>
<tr>
<td>Ronen A</td>
<td>52</td>
</tr>
<tr>
<td>Ross JA</td>
<td>16</td>
</tr>
<tr>
<td>Rossi MR</td>
<td>48</td>
</tr>
<tr>
<td>Rossner P</td>
<td>21</td>
</tr>
<tr>
<td>Rothman N</td>
<td>19, 21, 28</td>
</tr>
<tr>
<td>Roubicek DA</td>
<td>55</td>
</tr>
<tr>
<td>Rozgaj R</td>
<td>50</td>
</tr>
<tr>
<td>Ruane JL</td>
<td>36</td>
</tr>
<tr>
<td>Rubes J</td>
<td>21</td>
</tr>
<tr>
<td>Rupa DS</td>
<td>20, 47</td>
</tr>
<tr>
<td>Russo A</td>
<td>33</td>
</tr>
<tr>
<td>Ryu JC</td>
<td>23</td>
</tr>
<tr>
<td>-S-</td>
<td></td>
</tr>
<tr>
<td>Sagai M</td>
<td>16</td>
</tr>
<tr>
<td>Sakamoto HS</td>
<td>50</td>
</tr>
<tr>
<td>Salama SA</td>
<td>19, 20</td>
</tr>
<tr>
<td>Salazar-Cajas N</td>
<td>19</td>
</tr>
<tr>
<td>Salmon CP</td>
<td>19</td>
</tr>
<tr>
<td>Salvadori DMF</td>
<td>17, 18</td>
</tr>
<tr>
<td>Samarakoon R</td>
<td>31</td>
</tr>
<tr>
<td>Sanchez PS</td>
<td>55</td>
</tr>
<tr>
<td>Sang BC</td>
<td>30</td>
</tr>
<tr>
<td>Sanok KE</td>
<td>34</td>
</tr>
<tr>
<td>Santella RM</td>
<td>22</td>
</tr>
<tr>
<td>Sasaki JS</td>
<td>23</td>
</tr>
<tr>
<td>Sasaki YF</td>
<td>23</td>
</tr>
<tr>
<td>Sato H</td>
<td>16</td>
</tr>
<tr>
<td>Sato MIZ</td>
<td>55</td>
</tr>
<tr>
<td>Sayer JM</td>
<td>34</td>
</tr>
</tbody>
</table>
Toxicology data is only as good as the company behind it.

The basis for any study should be good science. Good science begins with an experienced, well-trained staff and world-class facilities. The design and reporting of all toxicology testing performed at BioReliance is overseen by senior-level scientists with an average of 20 years of experience in genetic, mammalian and molecular toxicology. Please contact us to discuss your testing needs.

BioReliance
14920 Broschart Road
Rockville, MD 20850-3349 USA
Phone: 301.738.1000
Fax: 301.610.2590
E-mail: info@bioreliance.com
Web Site: www.bioreliance.com
<table>
<thead>
<tr>
<th>SATURDAY 27 MARCH</th>
<th>SUNDAY 28 MARCH</th>
<th>MONDAY 29 MARCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGISTRATION</td>
<td>REGISTRATION</td>
<td>REGISTRATION</td>
</tr>
<tr>
<td>3:30-8:00 pm</td>
<td>7:30 am-5:00 pm</td>
<td>7:30 am-5:00 pm</td>
</tr>
<tr>
<td>Foyer 1</td>
<td>Foyer 1</td>
<td>Foyer 1</td>
</tr>
<tr>
<td>STUDENT/NEW INVESTIGATOR BREAKFAST</td>
<td>Committee Meetings</td>
<td></td>
</tr>
<tr>
<td>7:00-8:00 am</td>
<td>7:30 am-8:30 am</td>
<td></td>
</tr>
<tr>
<td>Federal B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYMPOSIUM 1</td>
<td>Alexander Hollaender</td>
<td>IAEMS</td>
</tr>
<tr>
<td>8:30 am-11:30 am</td>
<td>South American A</td>
<td>Massachusetts</td>
</tr>
<tr>
<td>Somatic Mutations in Vivo</td>
<td>Education/Student</td>
<td></td>
</tr>
<tr>
<td>Presidential Ballroom</td>
<td>South American B</td>
<td></td>
</tr>
<tr>
<td>SYMPHOSIUM 2</td>
<td>Organization</td>
<td>SYMPOSIUM 4</td>
</tr>
<tr>
<td>9:00 am-5:00 pm</td>
<td>Federal B</td>
<td>Chromosome Structure and Function</td>
</tr>
<tr>
<td>Watershed Drinking Water Technology</td>
<td>Program</td>
<td>8:30 - 11:30 am</td>
</tr>
<tr>
<td>South American AB</td>
<td>California</td>
<td>Presidential Ballroom</td>
</tr>
<tr>
<td>WORKSHOP 1</td>
<td>EMS AWARDS</td>
<td>EMS BUSINESS MEETING</td>
</tr>
<tr>
<td>1:00 pm-4:00 pm</td>
<td>11:30 am-12:30 pm</td>
<td>12:30-1:30 pm</td>
</tr>
<tr>
<td>Interpretation of Mutation Data for Cancer Risk Assessment</td>
<td>Presidential Ballroom</td>
<td>Presidential Ballroom</td>
</tr>
<tr>
<td>Federal B Room</td>
<td>SYMPHOSIUM 5</td>
<td>SYMPHOSIUM 6</td>
</tr>
<tr>
<td>SYMPOSIUM 3</td>
<td>Mutation Biomarkers and Future Cancer Risk</td>
<td>Chromosome Structure and Function</td>
</tr>
<tr>
<td>New Technologies in Cytogenetics and Gene Expression</td>
<td>1:30-4:30 pm</td>
<td>1:30-4:30 pm</td>
</tr>
<tr>
<td>1:00-4:00 pm</td>
<td>South American AB</td>
<td>Presidential Ballroom</td>
</tr>
<tr>
<td>Presidential Ballroom</td>
<td>POSTER SESSION I</td>
<td>Poster Session II</td>
</tr>
<tr>
<td>POSTER SESSION I</td>
<td>4:30-6:30 pm</td>
<td>4:30-6:30 pm</td>
</tr>
<tr>
<td>7:00-10:00 pm</td>
<td>Senate/Federal A/Upper Lobby/Capital Terrace</td>
<td>Senate/Federal A/Upper Lobby/Capital Terrace</td>
</tr>
<tr>
<td>Congressional/Senate/ Federal A</td>
<td>PLENARY TALK</td>
<td>PUBLIC LECTURE</td>
</tr>
<tr>
<td>PLENARY TALK</td>
<td>7:30-9:00 pm</td>
<td>7:00-8:00 pm</td>
</tr>
<tr>
<td>Presidential Ballroom</td>
<td>EMS RECEPTION</td>
<td>Presidential Ballroom</td>
</tr>
<tr>
<td>EMS RECEPTION</td>
<td>8:30-10:00 pm</td>
<td></td>
</tr>
<tr>
<td>Congressional/Senate</td>
<td>PUBLIC LECTURE</td>
<td></td>
</tr>
<tr>
<td>COUNCIL MEETING</td>
<td>1:00-5:00 pm</td>
<td></td>
</tr>
<tr>
<td>South American B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STUDENT RECEPTION AND POSTER SESSION
7:00-10:00 pm
Congressional/Senate/ Federal A
<table>
<thead>
<tr>
<th>TUESDAY 30 MARCH</th>
<th>WEDNESDAY 31 MARCH</th>
<th>THURSDAY 1 APRIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGISTRATION
7:30 am-Noon
Foyer 1</td>
<td>REGISTRATION
7:30 am-5:00 pm
Foyer 1</td>
<td>REGISTRATION
7:30 am-Noon
Foyer 1</td>
</tr>
<tr>
<td>Committee Meetings
7:30-8:30 am
EMM Journal
Federal B Room
Nominating
Pan American Room
Public Relations
Massachusetts Room
Membership/Professional Development
New York Room
Strategic Planning
California Room</td>
<td>SPECIAL INTEREST BREAKFASTS
7:30-8:30 am
Transgenics
South American B
Environmental Genomics
Federal B Room
Risk Assessment
South American A</td>
<td>SPECIAL INTEREST BREAKFASTS
7:30-8:30 am
Germ Cell
South American A Room
Repair
Federal B Room</td>
</tr>
<tr>
<td>SYMPOSIUM 7
Excision Repair
8:30 -11:30 am
Presidential Ballroom</td>
<td>SYMPOSIUM 9
Mutator Phenotype in Cancer
8:30 am -12:10 pm
Presidential Ballroom</td>
<td>SYMPOSIUM 12
DNA Repair
9:30 am-12:30 pm
Presidential Ballroom</td>
</tr>
<tr>
<td>Symposium 8
10:00-11:00 am
Risk Assessment Principles
South American AB</td>
<td>SYMPOSIUM 10
Disease Susceptibility 1:30-4:30 pm
Presidential Ballroom</td>
<td>CONTINUING ED COURSE
ON THE NEW EPA
8:00 am-3:00 pm
Pan American Room</td>
</tr>
<tr>
<td>LECTURE
Noon-1:00 pm
Presidential Ballroom</td>
<td>POSTER SESSION II
4:30-6:30 pm
Senate/Federal A/Upper Lobby/Capital Terrace</td>
<td>ADJOURNMENT
3:00 pm</td>
</tr>
<tr>
<td>FREE AFTERNOON</td>
<td>SYMPOSIUM 11
Structural and Biological Consequences of DNA Modification 7:30-10:20 pm
Presidential Ballroom</td>
<td>EMS COUNCIL MEETING
1:00-5:00 pm
South American B</td>
</tr>
<tr>
<td>ODYSSEY CRUISE
7:00 pm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>