Motivation

• Permit simultaneous use of traditional and post-quantum key exchange

• Enable early adopters to get post-quantum security without discarding security of existing algorithms

• Why do this?
 • Uncertainty re: newer cryptographic assumptions
 • Temporary need to keep traditional algorithms for e.g. FIPS certification
Goals

Define data structures for negotiation, communication, and shared secret calculation for hybrid* key exchange

Non-goals

• Hybrid/composite certificates or digital signatures
• Selecting which post-quantum algorithms to use in TLS

* Some people use the word “composite” instead of “hybrid”.
Mechanism

Idea: Each desired combination of traditional + post-quantum algorithm will be a new (opaque) key exchange “group”

• Negotiation: new named groups for each desired combination will need to be standardized

• Key shares: concatenate key shares for each constituent algorithm

• Shared secret calculation: concatenate shared secrets for each constituent algorithm and use as input to key schedule
Other design options

Negotiation
- 2 vs \(\geq 2 \) algorithms
- Extension for representing algorithm options and constraints

Key shares
- Separately list key shares for each algorithm
- Use extensions for extra key shares

Shared secret
- Apply KDF before inserting into key schedule
- XOR shares
- Insert into different parts of TLS key schedule

See Appendix A of draft for related work and Appendix B for detailed discussion of other design options.
Questions

• What else is required before this draft can advance?
 • Currently listed as a working group milestone for November 2021

• Should this document include concrete hybrid group combinations for e.g. existing elliptic curves + NIST PQCrypto Round 3 finalists?