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Overview

● Design issues in adding hybrid key exchange to Internet protocols
● Open Quantum Safe project
● Compatibility issues of post-quantum & hybrid key exchange and 

authentication in SSH and TLS
● Performance of post-quantum & hybrid key exchange and authentication 

in TLS
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“Hybrid”
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“Hybrid” or “composite” or “dual” or “multi-
algorithm” cryptography

● Use pre-quantum and post-
quantum algorithms together

● Secure if either one remains 
unbroken

Why hybrid?
● Potential post-quantum security 

for early adopters
● Maintain compliance with older 

standards (e.g. FIPS)
● Reduce risk from uncertainty on 

PQ assumptions/parameters
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Hybrid ciphersuites

● Need PQ key exchange before we need PQ authentication because future quantum 
computers could retroactively decrypt, but not retroactively impersonate

6

Key exchange Authentication

1 Hybrid traditional + PQ Single traditional

2 Hybrid traditional + PQ Hybrid traditional + PQ

3 Single PQ Single traditional

4 Single PQ Single PQ

Likely focus 
for next 5-10 years



Hybrid key exchange and authentication to date

● Hybrid key exchange Internet-Drafts at IETF:
○ TLS 1.2: Schanck, Whyte, Zhang 2016; Amazon 2019
○ TLS 1.3: Schanck, Stebila 2017; Whyte, Zhang, Fluhrer, Garcia-Morchon 2017; Kiefer, 

Kwiatkowski 2018; Stebila, Fluhrer, Gueron 2019/20
○ IPsec / IKEv2: Tjhai, Thomlinson, Bartlet, Fluhrer, Geest, Garcia-Morchon, Smyslov 2019

● Hybrid key exchange experimental implementations: 
○ Google CECPQ1, CECPQ2; Open Quantum Safe; CECPQ2b; …

● Hybrid X.509 certificates:
○ Truskovsky, Van Geest, Fluhrer, Kampanakis, Ounsworth, Mister 2018
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Design issues for hybrid key exchange 
in TLS 1.3
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Douglas Stebila, Scott Fluhrer, Shay Gueron. Hybrid key exchange in TLS 1.3. Internet-Draft. Internet 
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Goals for hybridization

1. Backwards compatibility
○ Hybrid-aware client, hybrid-aware server

○ Hybrid-aware client, non-hybrid-aware server

○ Non-hybrid-aware client, hybrid-aware server

2. Low computational overhead
3. Low latency
4. No extra round trips
5. No duplicate information

● How to negotiate algorithms
● How to convey cryptographic data 

(public keys / ciphertexts)
● How to combine keying material

Design options
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Negotiation: How many algorithms?

2

Done in all(?) implementations to date.

≥ 2
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Negotiation: How to indicate which algorithms to use

Negotiate each algorithm individually

1. Standardize a name for each algorithm
2. Provide a data structure for conveying 

supported algorithms
3. Implement logic negotiating which 

combination

Done in Amazon s2n TLS 1.2

Negotiate pre-defined 
combinations of algorithms

1. Standardize a name for each desired 
combination

● Can use existing negotiation 
data structures and logic

Done in all(?) other implementations to date

11
Which option is preferred may depend on how many 
algorithms are ultimately standardized.



Conveying cryptographic data (public keys / ciphertexts)

1) Separate public keys
● For each supported algorithm, send 

each public key / ciphertext in its own 
parseable data structure

● Done in Amazon s2n TLS 1.2
2) Concatenate public keys
● For each supported combination, 

concatenate its public keys / ciphertext 
into an opaque data structure

● Done in all other implementations to 
date.

#1 requires protocol and 
implementation changes

#2 abstracts combinations into “just 
another single algorithm”
But #2 can also lead to sending 
duplicate values
● nistp256+bike1l1
● nistp256+sikep403
● nistp256+frodo640aes
● sikep403+frodo640aes 12

3x nistp256, 
2x sikep403, 
2x frodo640aes 
public keys



Combining keying material

Top requirement: needs to provide 
“robust” security: 
● Final session key should be secure 

as long as at least one of the 
ingredient keys is unbroken  

● (Most obvious techniques are fine, 
though with some subtleties; see 
Giacon, Heuer, Poettering PKC’18,
Bindel et al. PQCrypto 2019, … .)

● XOR keys
● Concatenate keys and use directly
● Concatenate keys then apply a 

hash function / KDF
● Extend the protocol’s 

“key schedule” with 
new stages for each key

● Insert the 2nd key into an unused 
spot in the protocol’s key schedule

13



Draft-00 
@ IETF 104

draft-stebila-tls-hybrid-design-00

Contained a “menu” of design options 
along several axes

1. How to negotiate which algorithms?
2. How many algorithms?
3. How to transmit public key shares?
4. How to combine secrets?

Feedback from working group:

● Avoid changes to key schedule
● Present one or two instantiations
● Specific feedback on some aspects
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Draft-01
@ IETF 105

draft-stebila-tls-hybrid-design-01

Kept menu of design choices

Constructed two candidate 
instantiations from menu for 
discussion

1. Directly negotiate each hybrid 
algorithm; separate key shares

2. Code points for pre-defined 
combinations; concatenated key 
shares

Additional KDF-based options for 
combining keys
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Draft-02
February 2020
draft-stebila-tls-hybrid-design-02

Number of algorithms:
● 2

Negotiation: 
● Negotiate pairs of algorithms in 

combination
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Draft-02
February 2020
draft-stebila-tls-hybrid-design-02

Conveying public keys: 
● Concatenated public keys

○ But with length encoding
○ Since some algorithms don’t have 

fixed-length public keys / ciphertexts

Combining keying material: 
● Concatenate shared secrets then 

put into TLS 1.3 key schedule 
○ Key schedule applies HKDF.Extract

● No length encoding
● Will be approved by NIST in 

upcoming revision of SP-800-56C
17



Open questions

● Still some debate about negotiation and using concatenate public keys / 
ciphertexts

● Is it safe to use an IND-CPA KEM for ephemeral key exchange in TLS 1.3?
○ Intuitively, seems like it should be safe for one-time use keys

§ Some implementations re-use ephemeral keys which wouldn’t match IND-CPA

○ But proofs of signed ephemeral DH in TLS 1.2  used an interactive assumption (PRF-
ODH) rather than a standard assumption (DDH) (JKSS, C’12); was later shown to be 
necessary (KraPatWee, C’13)

○ Proofs of  signed-DH in TLS 1.3 (BFGS CCS’15, …) also use PRF-ODH; no analysis of 
whether this is necessary, no generalization to KEMs) 18
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Open Quantum Safe Project

20

liboqs
key exchange / KEMs signatures

isogenies code-based lattice-based multi-variate 
polynomial

hash-based / 
symmetric

OpenSSL
• TLS 1.2
• TLS 1.3

• CMS

BoringSSL
Open
SSH

Language 
SDKs

C#, C++, 
Go, Python

Apache 
httpd nginx curl, 

links
Open
VPN

C language library, 
common API
• x86/x64 (Linux, Mac, 

Windows)
• ARM (Android, 

Linux)

Integration into forks of 
widely used open-
source projects

Use in applications

PQClean

Chromium

Standalone C 
reference 
implementations, 
heavily tested



OQS team

● Project leads
○ Douglas Stebila (Waterloo)
○ Michele Mosca (Waterloo)

● Industry collaborators
○ Amazon Web Services

○ Cisco Systems
○ evolutionQ
○ IBM Research

○ Microsoft Research

● Individual contributors

● Financial support
○ Government of Canada

§ NSERC Discoverry

§ Tutte Institute
○ Amazon Web Services

● In-kind contributions of 
developer time from industry 
collaborators
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liboqs

● C library with common API for 
post-quantum signature schemes 
and key encapsulation 
mechanisms

● MIT License
● Builds on Windows, macOS, Linux; 

x86_64, ARM v8

● 50 key encapsulation mechanisms 
from 9 NIST Round 2 candidates

● 52 signature schemes from 5 NIST 
Round 2 candidates

22



List of algorithms

Key encapsulation mechanisms
● BIKE: BIKE1-L1-CPA, BIKE1-L3-CPA, BIKE1-L1-FO, BIKE1-L3-FO
● FrodoKEM: FrodoKEM-640-AES, FrodoKEM-640-SHAKE, FrodoKEM-

976-AES, FrodoKEM-976-SHAKE, FrodoKEM-1344-AES, FrodoKEM-
1344-SHAKE

● Kyber: Kyber512, Kyber768, Kyber1024, Kyber512-90s, Kyber768-90s, 
Kyber1024-90s

● LEDAcrypt: LEDAcryptKEM-LT12, LEDAcryptKEM-LT32, 
LEDAcryptKEM-LT52

● NewHope: NewHope-512-CCA, NewHope-1024-CCA
● NTRU: NTRU-HPS-2048-509, NTRU-HPS-2048-677, NTRU-HPS-4096-

821, NTRU-HRSS-701
● SABER: LightSaber-KEM, Saber-KEM, FireSaber-KEM
● SIKE: SIDH-p434, SIDH-p503, SIDH-p610, SIDH-p751, SIKE-p434, SIKE-

p503, SIKE-p610, SIKE-p751, SIDH-p434-compressed, SIDH-p503-
compressed, SIDH-p610-compressed, SIDH-p751-compressed, SIKE-
p434-compressed, SIKE-p503-compressed, SIKE-p610-compressed, 
SIKE-p751-compressed

● ThreeBears: BabyBear, BabyBearEphem, MamaBear, 
MamaBearEphem, PapaBear,PapaBearEphem

Signature schemes
● Dilithium: Dilithium2, Dilithium3, Dilithium4
● MQDSS: MQDSS-31-48, MQDSS-31-64
● Picnic: Picnic-L1-FS, Picnic-L1-UR, Picnic-L3-FS, Picnic-L3-UR, 

Picnic-L5-FS, Picnic-L5-UR, Picnic2-L1-FS, Picnic2-L3-FS, 
Picnic2-L5-FS

● qTesla: qTesla-p-I, qTesla-p-III
● SPHINCS+-Haraka: SPHINCS+-Haraka-128f-robust, SPHINCS+-

Haraka-128f-simple, SPHINCS+-Haraka-128s-robust, 
SPHINCS+-Haraka-128s-simple, SPHINCS+-Haraka-192f-robust, 
SPHINCS+-Haraka-192f-simple, SPHINCS+-Haraka-192s-robust, 
SPHINCS+-Haraka-192s-simple, SPHINCS+-Haraka-256f-robust, 
SPHINCS+-Haraka-256f-simple, SPHINCS+-Haraka-256s-robust, 
SPHINCS+-Haraka-256s-simple

● SPHINCS+-SHA256: SPHINCS+-SHA256-128f-robust, 
SPHINCS+-SHA256-128f-simple, SPHINCS+-SHA256-128s-
robust, SPHINCS+-SHA256-128s-simple, SPHINCS+-SHA256-
192f-robust, SPHINCS+-SHA256-192f-simple, SPHINCS+-
SHA256-192s-robust, SPHINCS+-SHA256-192s-simple, 
SPHINCS+-SHA256-256f-robust, SPHINCS+-SHA256-256f-
simple, SPHINCS+-SHA256-256s-robust, SPHINCS+-SHA256-
256s-simple

● SPHINCS+-SHAKE256: SPHINCS+-SHAKE256-128f-robust, 
SPHINCS+-SHAKE256-128f-simple, SPHINCS+-SHAKE256-128s-
robust, SPHINCS+-SHAKE256-128s-simple, SPHINCS+-
SHAKE256-192f-robust, SPHINCS+-SHAKE256-192f-simple, 
SPHINCS+-SHAKE256-192s-robust, SPHINCS+-SHAKE256-192s-
simple, SPHINCS+-SHAKE256-256f-robust, SPHINCS+-
SHAKE256-256f-simple, SPHINCS+-SHAKE256-256s-robust, 
SPHINCS+-SHAKE256-256s-simple
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PQClean

● Sister project to OQS
● Goal: standalone, high-quality C 

reference implementations of PQ 
algorithms
○ Lots of automated code analysis and 

continuous integration testing

○ Builds tested on little-endian and big-endian

● MIT License and public domain

● Not a library, but easy to pull out 
code that can be incorporated into 
a library
○ liboqs consumes implementations from 

PQClean

● In collaboration with Peter 
Schwabe and team at Radboud 
University, Netherlands

https://github.com/PQClean/PQClean
24
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OpenSSL

● OQS fork of OpenSSL 1.0.2
○ PQ and hybrid key exchange in TLS 1.2

● OQS fork of OpenSSL 1.1.1
○ PQ and hybrid key exchange in TLS 1.3

○ PQ and hybrid certificates and signature authentication in TLS 1.3
○ PQ and hybrid signatures in Cryptographic Message Syntax (CMS)

● Can be readily used with applications that rely on OpenSSL with few/no 
modifications

25



OQS demo: OpenSSL

26



BoringSSL

● OQS fork of BoringSSL (which is a fork of 
OpenSSL)
○ PQ and hybrid key exchange in TLS 1.3

● After a few modifications, can be used with 
Chromium!

27



OQS demo: Chromium with BoringSSL talking to Apache
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OpenSSH

● OQS fork of OpenSSH
○ PQ and hybrid key exchange
○ PQ and hybrid signature authentication

29



OQS demo: OpenSSH
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Using OQS

● All open source software available on GitHub
● Instructions for building on Linux, macOS, and Windows
● Docker images available for building and running OQS-reliant applications

○ Apache httpd
○ curl

○ nginx
○ OpenSSH

31



Prototyping post-quantum and hybrid key 
exchange and authentication in TLS and SSH

32

Eric Crockett, Christian Paquin, Douglas Stebila. Prototyping post-quantum and hybrid key exchange 
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Case study 1: TLS 1.2 in Amazon s2n

● Multi-level negotiation following TLS 1.2 design style:
○ Top-level ciphersuite with algorithm family: e.g. 

TLS_ECDHE_SIKE_ECDSA_WITH_AES_256_GCM_SHA384

○ Extensions used to negotiate parameterization within family:
§ 1 extension for which ECDH elliptic curve: nistp256, curve25519, …

§ 1 extension for which PQ parameterization: sikep403, sikep504, …

● Session key: concatenate session keys and apply KDF with public key/ciphertext as 
KDF label 

● Experimental results: successfully implemented using nistp256+{bike1l1, sikep503}

33



Case studies 2, 3, 4:
TLS 1.2 in OpenSSL 1.0.2
TLS 1.3 in OpenSSL 1.1.1
SSH v2 in OpenSSH 7.9

● Negotiate pairs of algorithms in pre-defined combinations
● Session key: concatenate session keys and use directly in key schedule

● Easy implementation, no change to negotiation logic

● Based on implementations in liboqs
○ KEMs: 9 of 17 (BIKE round 1, FrodoKEM, Kyber, LEDAcrypt, NewHope, NTRU, NTS (1 variant), Saber, SIKE)

○ Signature schemes: 6 of 9 (Dilithium, MQDSS, Picnic, qTesla (round 1), Rainbow, SPHINCS+)
34



1st circle: PQ only
2nd circle: hybrid ECDH

= success

= fixable by changing
implementation 
parameter

= would violate spec
or otherwise 
unresolved error

† = algorithm on testing 
branch

FrodoKEM 976, 1344 
• OpenSSL 1.0.2 / TLS 1.2:

too large for a pre-
programmed buffer size, 
but easily fixed by 
increasing one buffer size

• OpenSSL 1.1.1 / TLS 1.3:
same

NTS-KEM
• OpenSSL 1.0.2 / TLS 1.2:

theoretically within spec’s 
limitation of 224 bytes, but 
buffer sizes that large 
caused failures we 
couldn’t track down

• OpenSSL 1.1.1 / TLS 1.3:
too large for spec 
(216-1 bytes)

• OpenSSH: theoretically 
within spec but not within 
RFC’s “SHOULD”, but 
couldn’t resolve bugs 35



1st circle: PQ only
2nd circle: hybrid RSA

= success

= fixable by changing
implementation 
parameter

= would violate spec
or otherwise 
unresolved error

† = algorithm on testing 
branch

TLS 1.3:
• Max certificate size: 224-1
• Max signature size: 216-1

OpenSSL 1.1.1:
• Max certificate size: 

102,400 bytes, but 
runtime enlargeable

• Max signature size: 214

36



1st circle: PQ only
2nd circle: hybrid RSA

= success

= fixable by changing
implementation 
parameter

= would violate spec
or otherwise 
unresolved error

† = algorithm on testing 
branch

OpenSSH maximum 
packet size: 218

37



Summary

● Several design choices for hybrid key exchange in network protocols on 
negotiation and transmitting public keys, no consensus

● Protocols have size constraints which prevent some schemes from being used

● Implementations may have additional size constraints which affect some schemes, 
which can be bypassed with varying degrees of success

38



Extensions and open questions

Remaining Round 2 candidates
● Welcome help in getting code into our 

framework – either directly into liboqs
or via PQClean

Constraints in other parts of the protocol 
ecosystem
● Other client/server implementations
● Middle boxes

Performance
● Latency and throughput in lab 

conditions
● Latency in realistic network conditions 

à la [Lan18]
Use in applications
● Tested our OpenSSL experiment with 

Apache, nginx, links, OpenVPN, with 
reasonable success

● More work to do: 
S/MIME, more TLS clients, … 39



Benchmarking PQ crypto in TLS

40

Christian Paquin, Douglas Stebila, Goutam Tamvada. Benchmarking post-quantum cryptography in 
TLS. In PQCrypto 2020, to appear. https://eprint.iacr.org/2019/1447
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Goals

● Measure effect of network latency and packet loss 
rate on handshake completion time for post-
quantum connections of various sizes

● Out of scope:
○ Effect of different CPU speeds from client or server
○ Effect of network bandwidth / throughput 41



Prior Work

2016
Google, with 
NewHope in 
TLS 1.2

Google, with 
“dummy 

extensions”

2018 2019
Google and 

Cloudflare, with 
SIKE and NTRU-
HRSS in TLS 1.3

42



What if you 
don’t have 
billions of clients 
and 
millions of servers?

Emulate the 
network

+ more control over 
experiment parameters

+ easier to isolate 
effects of network 

characteristics

– loss in realism

43



Network emulation setup

● Linux kernel network namespaces
○ Independent copies of the kernel’s network stack, each having its own routes, 

addresses, firewall rules, etc.

● Virtual ethernet devices created in pairs – one outgoing, one 
incoming

● netem (network emulation) kernel module
○ Can instruct kernel to apply certain delay to packets 
○ Can instruct kernel to randomly drop packets with a certain rate

44



Experiment setup

s_timer

s_timer

s_timer

s_timer

nginx

nginx

All programs were built against 
OQS-OpenSSL 45



Network latencies

46
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Algorithms in experiment
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Key exchange
median, lower network latencies
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Key exchange
95th percentile, lower network latencies
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Key exchange
percentiles,
FrodoKEM-640-AES
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Key exchange
median and 95th

percentiles, 
higher network 
latencies
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Authentication
median and 95th

percentiles, 
lower network 
latencies
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Authentication
median and 95th

percentiles, 
higher network 
latencies
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Design issues for hybrid key exchange 
in TLS 1.3

64
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Follows draft-whyte-qsh-tls13-06

NamedGroup enum for 
supported_groups extension contains 
“hybrid markers” with no pre-defined 
meaning

Each hybrid marker points to a 
mapping in an extension, which lists 
which combinations the client 
proposes; between 2 and 10 algorithms 
permitted

Candidate Instantiation 1 – Negotiation

supported_groups: 
hybrid_marker00, hybrid_marker01, 
hybrid_marker02, secp256r1

HybridExtension:
• hybrid_marker00 → 
secp256r1+sike123+ntru456
• hybrid_marker01 → secp256r1+sike123
• hybrid_marker02 → 
secp256r1+ntru456

65



Server’s key shares:

● Respond with 
NamedGroup  = hybrid_markerXX

● Existing KeyShareServerHello only 
permits one key share

● => Squeeze 2+ key shares into 
single key share field by 
concatenation

struct {
KeyShareEntry key_share<2..10>;

} HybridKeyShare;

Client’s key shares:

● Existing KeyShareClientHello 
allows multiple key shares

● => Send 1 key share per algorithm
○ secp256r1, sike123, ntru456

● No changes required to data 
structures or logic

Candidate Instantiation 1 – Conveying keyshares
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Candidate 
Instantiation 1 –
Combining keys
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Follows draft-kiefer-tls-ecdhe-sidh-00, 
Open Quantum Safe implementation, ...

New NamedGroup element 
standardized for each desired 
combination

No internal structure to new code 
points

Candidate Instantiation 2 – Negotiation

68



KeyShareClientHello contains an entry for each code point listed in supported_groups

KeyShareServerHello contains a single entry for the chosen code point

KeyShareEntry for hybrid code points is an opaque string parsed with the following 
internal structure:

struct {
KeyShareEntry key_share<2..10>;

} HybridKeyShare;

Candidate Instantiation 2 – Conveying keyshares

69



Candidate Instantiation 1

Adds new negotiation logic and 
ClientHello extensions

Does not result in duplicate key shares 
or combinatorial explosion of 
NamedGroups

No change in negotiation logic or data 
structures

No change to protocol logic: 
concatenation of key shares and KDFing 
shared secrets can be handled 
“internally” to a method

Results in combinatorial explosion of 
NamedGroups

Duplicate key shares will be sent

Candidate Instantiation 2

70



Benchmarking PQ crypto in TLS

71

Christian Paquin, Douglas Stebila, Goutam Tamvada. Benchmarking post-quantum cryptography in 
TLS. In PQCrypto 2020, to appear. https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447


Key exchange
percentiles,
SIKE-p434
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Key exchange
percentiles,
Kyber512-90s
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Key exchange
percentiles, 
ECDH-p256
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Authentication
percentiles, 
Picnic L1 FS
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Authentication
percentiles, 
qTesla-P-I
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Authentication
percentiles, 
Dilithium2
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Authentication
percentiles, 
ECDSA-p256
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Data-centre-
to-data-centre

web page latency 
as a function of 
page size, median
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Data-centre-
to-data-centre

web page latency 
as a function of 
page size, 
95th percentile
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