A Framework for Meta-level Control in Multi-Agent Systems

Anita Raja
Department of Software and Information Systems
The University of North Carolina at Charlotte
Charlotte, NC 28223
anraja@uncc.edu

Victor Lesser
Department of Computer Science
University of Massachusetts Amherst
Amherst, MA 01003
lesser@cs.umass.edu

Abstract

Sophisticated agents operating in open environments mails¢ miecisions that efficiently trade off
the use of their limited resources between dynamic delilveractions and domain actions. This is the
meta-level control problem for agents operating in resedrounded multi-agent environments. Con-
trol activities involve decisions on when to invoke and theoant to effort to put into scheduling and
coordination of domain activities. The focus of this pagdraw to make effective meta-level control de-
cisions. We show that meta-level control with bounded cataianal overhead allows complex agents
to solve problems more efficiently than current approacheyhamic open multi-agent environments.
The meta-level control approach that we present is basedebddcision-theoretic use of an abstract
representation of the agent state. This abstraction celgaiaptures critical information necessary for
decision making while bounding the cost of meta-level aaratnd is appropriate for use in automatically
learning the meta-level control policies.

Keywords: Multi-Agent Systems, Bounded Rationality, Meta-leveln@ol Architecture

1 Introduction

Open environments are dynamic and uncertain. Complex sig@etating in these environments must rea-
son about their deliberations in real-time. Deliberatigmtcol actions include scheduling domain-level
actions and coordinating with other agents to completestessffuiring joint effort. These deliberations may
involve computation and delays waiting for arrival of agmiate information. Furthermore, new tasks can
be generated by agents at any time. Tasks have deadlinese admapleting the task after the deadline
could lead to lower or no utility. We define meta-level cohtte the ability of complex agents operating in
open environments to sequence domain and deliberativenadiv optimize expected performance. Meta-
level control supports decisions on when to accept, delaygject a new task; when it is appropriate to
negotiate with another agent; whether to renegotiate wheggatiation task fails; how much effort to put

into scheduling when reasoning about a new task; and whetlieschedule when actual execution perfor-
mance deviates from expected performance. These decisitusnce each other and affect the amount of
resources available for future computations. The interthisf paper is to show that a meta-level reason-
ing component with bounded and small computation overhaadie constructed such that it significantly
improves the overall performance of agents in a cooperativéti-agent system. Further, we show that
appropriately abstracting the agent state is key to thelolewveent of the meta-level control component and
that such abstraction can be the basis for automaticalipilggameta-level control policies.

A problem with most single-agent and multi-agent systemsl$4 23, 29, 35, 58] is that they do not
explicitly reason about the cost of deliberative compotatecause they assume all deliberative computa-
tions are always done and always done in the same way. This$,aygiems, have no way to trade off the
resources used for deliberative actions and domain actdnsgent is not performing rationally if it fails
to account for all the costs involved in achieving a desireal gFailure to account for all costs could poten-
tially lead to agents taking actions that are without opena significance [43]. Taking the entire cost of
computation into account leads to what Simon calls proa@dationality, Good refers to as type Il rational-
ity [13] and what Russell and Wefald refer to as bounded matity [37]. An agent exhibits such bounded
rationality if it maximizes its expected utility given itemputational and other resource limits. If significant
resources are expended on making this meta-level contecidide, then "meta-meta’-level decisions have
to be made on whether to spend these resources on metadeteallc However, if the meta-level reasoning
process has a small computational overhead, there is ndoieexblicit meta-meta level reasoning. In this
work, we avoid infinite regress of the meta-level controligpeon by ensuring that the meta-level reasoning
process has a small and bounded computational overhead.

Meta-level control can be viewed as a sequential decisioblpm. The essence of sequential decision
problems is that decisions that are made now can have botkdfate and long-term effects; the best current
action choice depends on the types of future situationsdkatawill face and the action choices that have
to be made at those future decision points. For instancegmirce-bounds of the agent cause the current
meta-level action choices to affect the resources availablfuture action choices. Effective meta-level
control also needs to use past performance information temeedictions about the future to make non-
myopic decisions at each decision making point. This is mmst to myopic decision making which tries
to optimize only the next state of the system. Some of theacharistics of the meta-level problem in this
work that make it difficult are the complexity of the inforriaat that characterizes the state of the agent
and other agents it interacts with; variety of responseh diiffering costs and parameters available to the
situation; deadlines associated with these tasks; higredegf uncertainty caused by the non-deterministic
arrival of tasks and outcomes of primitive domain actiommsisequence of decisions are often not observable
immediately and may have significant down-stream effeabsoulr knowledge, meta-level control for such
a complex agent environment has not been studied.

In our work, each agent will have its own meta-level contmhponent and the meta-level control policy
will be computed offline. The problem environment is coofieeaas each agent has its individual goals to
achieve and some of these goals require cooperation of afjesits. The agents are trying to maximize the
sum of the utilities attainable by the multi-agent systera agole. The following assumptions are made in
this paper:

e The agents are cooperative and will prefer alternativesiticaease social utility/quality even if it is
at the cost of decreasing local utility.

e An agent may concurrently pursue multiple high-level g@aid completing a goal derives utility for
the system or agent. The high-level goals are generategt &ijhsensing internal event triggers or by

2

receiving requests for assistance from other agents.
e The high-level goals must often be completed by a certair tmorder to achieve any utility.

e It is not necessary for all high-level goals to be completedrder for an agent to derive utility from
its activities, and partial satisfaction of a high-levelhfjs sometimes permissible while trading-off
the amount of utility derived for decrease in resource usage

e The overall objective of the system or agent is to maximizeutility generated over some finite time
horizon. Although a fixed horizon is used in the experimethtis, information is not provided to the
agents. This was deliberately done to equip the agents tai@o@ domains and environments with
indefinite horizons (an unknown finite horizon).

To equip the agents with the ability to perform this type oftanlevel control, we augment the clas-
sic agent architecture [36] with meta-level control thats@ns about the deliberative actions (also called
control actions) and alternative ways of performing therigufe 1 describes the meta-level control agent
architecture. The arrival of percepts trigger the metalleontrol layer to determine the tasks which the
agent desires to pursue. The agent’s control layer detesiow these chosen tasks will be processed and
mapped into action sequences.

AGENT
Meta-Level Control
Layer

Control Layer

Scheduler| ++ | Scheduler| [Neg Type |+ Neg Typd
1 M 1 N

_{

Percepts

Actions

Figure 1: Meta-level control architecture for a boundedbreatl agent

The three classes of deliberative actions discussed inptper are: information gathering actions,
planning/scheduling actions and coordination actionse flitst type of deliberative action is information
gathering which can be of two kindsgfathering information about the environmganddetermination of
complex state feature3 he environmental information gathered by an agent incfyichformation about the
state of other agents, is used by its meta-level contraldetermine the relevant control actions. These ex-
ternal information gathering actions do not use signifitacel processor time but they delay the meta-level
deliberation process because of the end-to-end delay tfgébformation from other agents. However,
information gathering that involves determination of céexpstate features of the agent can involve a sig-
nificant amount of local computation. These features, fstaince, can compute detailed timing, placement
and priority information about the primitive actions whiblave to be executed to complete the agent’s
tasks. The agent must make explicit meta-level controlsi@as on whether to gather complex features and
determine which complex features are appropriate.

The second type of deliberative action involves planning scheduling. Planning is the process in
which the agent uses beliefs about actions and their coesega to search for solutions to one or more

3

high-level tasks (goals) over the space of possible pldetérmines which domain actions should be taken
to achieve the tasks. Scheduling is the process of decidirenvand where each of these actions should be
performed. In this paper, planning is integrated with sciiag. The agent’s scheduling decisions involve
choosing which subset of these high-level goals to pursdenaw to go about achieving them. The meta-
level control decision is to decide whether to invoke a salerdwhich scheduler to invoke, and how much
resources to invest in the scheduling process. Finallythilnd type of deliberative action, coordination,
is the process by which a group of agents achieve their tasksshared environment. In this research,
coordination is the inter-agent negotiation process thtdbtishes commitments on finish times of tasks
or methods done by one agent in the context of constraintmathar agent’s activities. The meta-level
control decisions on coordination involve choosing th&dakat require coordination, deciding whether to
coordinate with another agent and how much effort to spendoandination. We make the simplifying
assumption that results of coordination are binding and dfi@er agents will not decommit from their
commitments at later stages. We believe that as we build adbranced agents operating as a group in less
predictable real-time environments, reasoning abouttaggivities from a meta-level perspective will be
crucial for effective agent operation.

The paper is structured as follows: We first present the heste-agent architecture which can support
reasoning about costs at all levels of the decision makinggss; various meta-level decisions that need to
be made; and the state information necessary to make thesgods. A description of high-level features
that capture the state information concisely while bougdire size of the state space is also provided. We
then describe a formal model of the problem with an emphasis@sequential decision making process that
is involved. We discuss the difficulty in using this formal dedb for this complex problem which motivates
our approximate solution method which capitalizes on thiktyato model and use an abstract representation
of the state. We then describe two strategies based on learetaged heuristics: the Naive Heuristic Strategy
and the Sophisticated Heuristic Strategy. They differ mamount of environmental information available
as part of the system state. These strategies use the kigjifdatures that will be provided to the meta-
level learning strategy. Snapshots of the meta-level reag@rocess for specific exogenous events are also
presented. The performance of the hand-generated sastpgvide a sanity check on the effectiveness
of the state features to allow for effective meta-level oointBased on the positive results of the previous
section, we show that a reinforcement learning strateggdas the abstract state features can be used
to learn meta-level control policies within a reasonablenbar of learning episodes. These policies are
shown to be as effective as those that are hand-generatetheweonclude the paper with a review of the
important ideas presented in the paper and experimentdtgesd briefly discuss future work.

2 An Agent Architecture with Meta-Level Control

Meta-level control is the process of optimizing an agentgggrmance by choosing and sequencing domain
and control activities. In this section we present a claagent architecture augmented with a meta-level
control component. This includes a description of the axtdon among the various components in the
architecture and the agent’s ability to reason about cbotsts as first class entities. A high-level repre-
sentation of the state which captures the critical inforamatvhile bounding the computation required to
process the state is also described.

We will describe the role of meta-level control in the agawh#@ecture by concentrating on the control
flow among the various components (see Figure 2). In thisteathre, the control components such as the
schedulers, negotiation components and execution sasyisteract with the meta-level control (MLC)
component. The MLC is invoked when certain exogenous orriateevents occur (e.g. the request by

4

another agent to perform a task for it). Both the meta-lemdl@ntrol components are involved in the agent
decision making process. There are a number of data stesctuich help keep track of the agent’s state.
The NewTask List contains the tasks which have just arrivéldeaagent from the environment. The Agenda
List is the set of tasks which have arrived at the agent buteghsoning about how to achieve the tasks has
been delayed. They have not been scheduled yet. The Schaslukethe set of high-level tasks chosen to
be scheduled and executed. The Execution List is the setroitipe actions which have been scheduled to
achieve the high-level tasks and maybe in execution or yiet texecuted. Examples of the decision making
process corresponding to particular agent states aredma\later in the section.

The meta-level is invoked when a new task arrives at the ageen if the agent is in the midst of
executing another task. The execution subsystem is invelkezhever the agent has to act upon the envi-
ronment. These actions may or may not have immediate rewaltieen an action completes execution,
the execution subsystem sends the execution charaderistihe meta-level controller which is also the
monitoring subsystem.

New task
arrives

A New task

_______ N pprove

< NegMechl Negotiation

Coordinate with Meta-Level < Drop
other agent Controller | |Task Key:
€« —— —-> NegMech2 Approve

Send

delayed
tasks
Delay’
Call Task

cheduler f
Agenda List \Dala Flow

Execution
Schedule Results

List

TaskSet,

TaskSet, Criteria

Criteria
Execute

Negotiation
Simple Complex Action

Scheduler Scheduler

Execution

Executable Subsytem
Action

Figure 2: Control flow in meta-level control agent architeet

The control layer may consist a number of schedulers andtiagiga protocols. For the purposes of
our discussion, we consider two schedulers, simple and lexn@nd two negotiation protocols that differ
in their performance profiles.

Simple Scheduler: The simple scheduler is invoked by the meta-level contraltel receives the task
structure and goal criteria as input. It selects the mostggpjate schedule for the current context from a
set of pre-computed task schedules. This choice does retriakaccount other tasks that could be simul-
taneously scheduled with this task. When an agent has talgleha task but doesn’t have the resources or
time to call the complex domain-level scheduler, the prejooted information about the possible schedules
of the task structure can be used to provide a reasonabldtbatran-optimal schedule. The agent gathers
knowledge about all tasks that it is capable of executingdsjopming off-line analysis on each task. This
off-line process constructs potential schedules in thenfof linear sequences of primitive actions. Each

5

sequence has associated performance characteristicas@stpected quality distribution, expected dura-
tion distribution, and expected duration uncertainty fohiaving the high level tasks. These performance
characteristics are discovered by systematically seagabwer the space of objective criteria. The task ab-
straction hides the details of these schedules and prowitgshe high level information necessary to make
meta-level choices.

Complex Scheduler: The domain level scheduler depicted in the architecturanisxdended version
of the Design-to-Criteria (DTC) scheduler [54]. Desigr&@dteria (DTC) scheduling is the soft real-time
process of finding an execution path through a hierarchasi hetwork such that the resultant schedule
meets certain design criteria, such as real-time deadlows limits, and utility preferences. Casting the
language into an action-selecting-sequencing probleeptbcess is to select a subset of primitive actions
from a set of candidate actions, and sequence them, so thanthresult is an end-to-end schedule of an
agent’s activities that meets situation specific desigeai. If the meta-level action is to invoke the complex
scheduler, the scheduler component receives the taskwsiuobjective criteria and a set of scheduler
parameters as input and outputs a satisficing schedule ayuars® of primitive actions. The complex
scheduler, in contrast to the simple scheduler, can redsmut and schedule multiple tasks simultaneously.
A detailed description of the scheduler parameters ardgdvater on in this section.

Negotiation Protocols: There are two types of negotiation protocols [SMegMechlandNegMech2
The choice of the exact negotiation protocol will dependh@relative gain of doing the associated task and
the likelihood of the other agent doing the task. NegMechd sggle-shot negotiation protocol that works
in an all or nothing mode. A single proposal is sent out anglsiresponse is received. It is inexpensive but
has a lower probability of success than the other negatigiotocol. NegMech2 is a multi-step negotiation
protocol which tries to achieve a commitment by a sequengera@fosals and counter-proposals until a
consensus is reached or time runs out. It is more expensarettte single-shot protocol because of the
computation and communication overhead. It, however, tragheer probability of success.

We will now discuss how the architecture equips the agert e capability to adapt to changing
conditions in an unpredictable environment. This architec accounts for computational and execution
cost at all three levels of the decision hierarchy: domaintrol and meta-level control activities. The cost
of domain activities is modeled directly in the task struetwhich describe the tasks. Domain activities are
reasoned about by control activities like scheduling amatadioation. Performance profiles of the various
control activities are used to compute their costs and asored about by the meta-level controller. Meta-
level control activities in this architecture are modeledaetivities with small yet non-negligible costs which
are incurred by the computation of state features whichitag the decision-making process. These costs
are accounted for by the agent, whenever events trigger-lmathactivity. The state features and their
functionality are described in greater detail below. This@®/&rchitecture is an open architecture in that the
modules belonging to the various layers can be replaced lopl@® with better performance characteristics
and the advantages of the architecture described belovgtillithold true [34].

There are five types of event triggers that require metd-tis@sion making in our framework.

1. Arrival of a new task from other agents or the external emrnent.
2. Presence of a task in the current task set that requiresiation with a non-local ageht

3. Failure of a negotiation to reach a commitment.

! Another agent in the multi-agent system that owns the taskethod that enables a task or method in the local agent of
concern. These tasks and methods are called non-localaadkson-local methods respectively.

4. Domain action completes execution requiring a checkeafgbere is a significant deviation of online
schedule performance from expected performance.

5. Decision to schedule a new set of tasks or to rescheduérexiasks.

These particular event triggers were chosen because tloey fsequently in the domain described in
this paper. It is our view that most meta-level decisions tireo multi-agent applications [34] could be
mapped into one of these five event trigger classes.

In order to illustrate the meta-level control decision nmgkiprocess, we describe a simple scenario
consisting of two roverfRoverAandRoverB Rovers are unmanned vehicles equipped with cameras and a
variety of scientific sensors for the purpose of planetarfase exploration. The discussion here will focus
on the various meta-level questions that will have to be esigrd byRoverB Figure 3 describegssist
Sample Collectionalso called tasiSOwhich is performed byrRoverA Analyze Rockalso called task 0,
andExplore Terrain also called tasK'1, which are the tasks performed BpverB as well as the non-local
enables relationship that exists betw@&wverAandRoverB

..

Assist Sample
Collection
(S0)

Analyze Rock
(TO)

Explore Terrain
(T1

Process Collected
Samples
(N4)

Focus Spectrometer
on Rock
(M2)

enables

Arrive at Location
(N5)

Getto Rock Location
M1)

Examine Terrain Collect Samples
(N2)

Q:90%1010% 12 !
D:90% 10 10% 12

Q: 100% 10 Q:98% 102% 0
D: 100% 10 D:90% 5 10% 8

Q:100% 6
D: 100% 8 D: 90% 10 10% 12 D: 100% 8

Q:90% 10 10% 12 Q: 100% 12

enables

Figure 3: TaslAssist Sample Collectidrelongs to RoverA; Task&nalyze RockndExplore Terrainbelong
to RoverB

In this example, each top-level task, as described in the B4k description language [7], is decom-
posed into two executable primitive actions. In order ta@ahthe taslAnalyze RockRoverBmust execute
both primitive actiongGet To Rock Locatiomnd Focus Spectrometer on Roitksequence. All primitive
actions in TEMS callednethodsare statistically characterized in two dimensions: qualnd duration.
Quality is a deliberately abstract domain-independentepinthat describes the contribution of a particular
action to overall problem solving. Thus, different applicas have different notions of what corresponds to
model quality. The sequence is denoted by the enables aetwebn the two actions and the min quality
attribution factor (which denotes a conjunction operastales that the minimum of the qualities of the two
actions will be attributed to th&nalyze Rockask. To achieve the tagkxplore Terrain RoverBcan execute
one or both primitive actionExamine TerrairandCollect Samplesvithin the task deadline and the quality
accrued for the task will be cumulative (denoted bysbenfunction).

RoverAis equipped with a storage compartment wileverBis not. TheCollect Samplesnethod
requiresRoverAand RoverBto coordinate:RoverBhas the ability to pick up the soil sample and put it
in RoverA's storage compartment. This relationship betwda two agents is denoted by the non-local

2This meta-level control decision is triggered as a consecgief one of the four decisions mentioned above.

7

enablesfrom RoverAs Arrive at Location (N5)method toRoverBs Collect Samplesnethod. Utility and
duration distributions for each primitive action are pawndl.

To illustrate the trade-offs involved in the meta-levelidemn making process, we frame the meta-level
questions for thérrival of new task event trigger in the context of the rover example. We thermrites
the cost/benefit trade-offs. In the interests of space, fee tige readers to [33] for the cost/benefit trade-offs
for the other four meta-level event triggers as well as tetdime-line execution trace of a sample run of
the exampleEvent Trigger: Arrival of a new task from the environment.

Meta-Level Question: ShouldRoverBschedule a new task immediately at the time it became known or
postpone scheduling to sometime in the future or drop thaiicpéar instance of the task.

Benefit: If the new task has low expected utility, its deadline is velgse and there is a high probability
of a high utility task arriving in the future, then it shoul@ discarded. This meatoverBchooses not to
expend its limited resources on a low priority task and mdteill wait for a future high priority task. If
the incoming task has very high priority, in other words, #éx@ected task utility is very high and it has a
relatively close deadline, thdRoverBshould override its current schedule and schedule the nekvira
mediately. If the current schedule has average utility ihaignificantly higher than the new task and the
average deadline of the current schedule is significantigerl than that of the new task, then reasoning
about the new task should be postponed till later.

Cost: There is the cost associated with this meta-level controisten. This is a small, fixed cost as de-
scribed in the next section. Additionally, if the new taskdheduled immediately regardless of its expected
utility or deadline, then its possible that the opporturityst of scheduling that task can be very high.
Scheduling the new task has an associated cost in time anéddition to costs for dropping established
commitments if the previous schedule is significantly reglier completely dropped. These costs can be
diminished or avoided completely if the decision about teesask is postponed to later or completely
avoided if the task is dropped.

We now describe how the MLC handles the five events and theiegmonding set of possible action
choices. Each of the external events and correspondinglmeatbdecisions has an associated decision tree.
The external action triggers a state change. The respotisasscexecution of domain action or complex
feature computation, are also modeled in the decision Wéeuse the rover example to illustrate the state
representation for thArrival of a new taskandPresence of task requiring coordination in current task set
event triggers. We refer the reader to [33] for details iie¢ato the rover example for the remaining event
triggers.

Arrival of a new task When a new task arrives at the agent, the meta-level coodrmponent has to
decide whether to reason about it later; drop the task cdamipjeor do scheduling-related reasoning about
an incoming task at arrival time and if so, what type of schiadu complex or simple. The decision tree
describing the various action choices named A1-A8 is showRigure 4. Scheduling actions have costs
with respect to scheduling time and decommit costs of pteshoestablished commitments if the previous
schedule is significantly revised or completely droppedesencosts are diminished or avoided completely
if scheduling a new task is postponed to a later convenierg by adding it to the agenda of unscheduled
tasks [A5] or completely avoided if the task is dropped [Alf]a task is of high priority relative to other
tasks in execution or on the agenda, the meta-level coatnolight decide to use the complex scheduler to
schedule the task [A3]. If the new task is of high priority a&hé currently executing schedule is also of
high priority, the meta-level controller could decide tsgkedule all the tasks using the detailed scheduler
[A4]. If there are tight constraints on scheduling the tdakk, simple scheduler could be invoked [A2]. The

3Resources that could have been invested in future highityrtasks are instead invested in lower priority tasks lagdo lower
overall utility gains.

meta-level controller could also determine that it doeshaoe enough information to make a good decision
and will consequently choose to spend more time in collgd@atures which will help with the decision
making process [A6]. The meta-level controller can henamsh to spend more resources to make a better
informed decision. After getting the additional state imnfiation, the meta-level control will choose from
one of the five possible choices described earlier (A7-A11).

Drop task [A1]

Use simple scheduler [A2]
on new task

New task ’
Use detailed scheduler [A3]

on new task

arrives

Use detailed scheduler
on all tasks including [A4]
partially executed tasks

Legend

state

pxecutable
action
external
event
fransition
function

Add new task [A3]
to agenda

Drop task [A7]

/|elo|O

Use simple scheduler [A8]
on new task

Get new [A6]
features

Use detailed scheduler [A9]
on new task

se detailed scheduler [A10]
on all tasks including
partially executed tasks

Add task to agenda [A11]

Figure 4: Decision tree when a new task arrives

To illustrate this control process, instances of the statgentRoverBand the corresponding decision
choice made by the meta-level controller are provided. &lae hand-generated rules specifying the re-
quired type of meta-level control decisions. These will&gresented as rules in the heuristic strategies and
learned automatically in the reinforcement learning strat

An example of the above described decision process occuan thikRoverBis in StateS1 It represents
the situation at time 2RoverBis in a wait state doing nothing when a new tédskalyze Rockwhich arrives
at time 1 with a deadline of 40, is added to the NewTaskIRstverB’smeta-level controller is invoked. All
the other lists are empty arRRloverBhas not executed any task and has accrued zero utility. Baséd
current stateRoverB’smeta-level control decision is Ball the Detailed Scheduler

State S1:
CurrentTime : 2
NewTaskList : AnalyzeRock 1,40 >; Agendalist :¢
ScheduleListyp; ExecutionList :¢
InformationGathered ¢
Utility of current schedule : 0.0; Duration of current schésd: 0.0;
Utility of interrupted action : 0.0; Duration of interrugtection : 0.0;
Total Utility accrued : 0.0
Meta-Level Control Decision Call Detailed Scheduler

“The cost of computing complex features for the experimeessiibed in this work is assumed to be low when compared to the
cost of scheduling actions. This was done to test the effantiss of these features on all the decision choices the¢sd¢hem.
The cost of the computing complex features can be significhigher than the cost of other control actions in certaimens.

In those domains, it might be appropriate to reduce the numbeptions available after the information gathering awti For
instance, if the cost of simple scheduling is 2 units and ts of computing complex features is 4 units, it might be g@ado
always execute the more expensive complex schedulingaishstiesimple scheduling, after computing complex features.

9

Here is another instance of the meta-level control decigiosess wher&overBis in stateS5and it is
time 16. A new taslExplore Terrainarrives at time 15 with a deadline of 80. The new task is addele
NewTask List andRoverB’smeta-level controller is invokedRoverBis in the midst of executing method
Focus Spectrometer on Roetkhich has executed for 2 time units. The current schedidgyaimed 6.0 utility
points andRoverBhas gained a total of 6.0 utility points also. Based on itsenrstate RoverB’smeta-
level control decision is tDelay Explore Terrain tasknd to add it to the Agenda List instedRloverBwill
continue execution of methdebcus Spectrometer on Rockhen execution of this method is completed
and if the NewTask List is emptyRoverBwill automatically make meta-level control decision on thik
tasks in the Agenda List.

State S5:
CurrentTime :16
NewTaskList :ExploreT errain < 15,80 >; AgendalList :¢
ScheduleListip; ExecutionList :{ FocusSpectrometeronRock ™}
InformationGathered ¢
Utility of current schedule : 6.0; Duration of current sché: 8.0;
Utility of interrupted action : 0.0; Duration of interrugt@ction : 2.0;
Total Utility accrued : 6.0
MLC Decision : Add New task to agenda

Event Trigger 2: Presence of task requiring coordinatiorcinrent task setSuppose there is a subtask
or method in the currently scheduled task set which eitheprires a non-local method to enable it or should
be sub-contracted out to another agent. The local agent llgside whether it is worthwhile to even initiate
negotiation and if so, which negotiation protocol to usee tecision tree associated with this meta-level
decision is described in Figure 5. This decision is madeguiaMetaNegnformation described below.

Drop Negotiation [B1]
& call reschedule
/,—\\ MetaNeg Choose NegMech 1 [B2]
\\—// & continue
completes
Legend
Choose NegMech? [B3]

& continue
state

executable

o action
o
N

external
event

transition
function

Figure 5: Decision tree on whether to negotiate and effort

Coordination actions are split into an external informatiathering phase and a negotiating phase, with
the outcome of the former enabling the latter. The negotiaphase can be achieved by choosing from a
family of negotiation protocols [57]. The information gating phase facilitates the negotiation phase and is
modeled as MetaNegmethod in the task structure (see Figure 6) and the negotiaiethods are modeled
as individual primitive actions. Thus, reasoning aboutdbgts of negotiation is done explicitly, just as it is
done for regular domain-level activities.

The MetaNeg method belongs to a special class of domain actions whialestcan external agent for
a certain set of information that does not require any sicgnifi use of local processor time. It queries the

10

other agent and returns information such as expectedyuflibther agent’s schedule, expected finish time
of other agent’s schedule, and amount of slack in the othentagschedule. This information assists the
meta-level controller in its decision making process.

Explore Terrain

Examine
Terrain

Q 100% 12
D 100% 8

Meta—Ned enables

Q 100% 0.01
D 100% 2

enables
collect

samples

Q 90% 10 10% 12
D 90% 10 10% 12

NegMechp

Q 80% 3 20% O Q95% 15%0
D 100% 3 D 80% 3 20% 5

Figure 6: Task ExploreTerrain modified to include meta-niegjon action

The following is an instance wheRoverBis in a state namef11at time 33. The Information Gathering
Action (MetaNeg) has completed execution. The followinépimation is returned by the information
gathering action: AgenRoverAis executing high utility tasks, has deadlines which areoffland has a
high amount of slack. Based on this informatiddoverBs meta-level controller is invoked and it uses the
above information to decide thRloverBshould negotiate witRoverAusing the NegMech?2 protocol about
the finish time oRoverA’'smethodArrive at Location

State S11:
CurrentTime :33
NewTaskList :¢; Agendalist :¢
ScheduleListip; ExecutionList { NegMech2, ExamineTerrain, CollectSamples}
InformationGathered« HIGH, HIGH, HIGH
Utility of current schedule : 0.0; Duration of current schéd: 1.0;
Utility of interrupted action : 0.0; Duration of interrugtection : 2.0;
Total Utility accrued : 18.0
MLC Decision :Choose NegMech2 and continue

Event Trigger 3: Negotiation process fails to reach a commeitt: Suppose there is a subtask or method
in the currently scheduled task set which has been negigdteut with a non-local agent and suppose the
negotiation fails. The local agent should decide whetheetegotiate and if so, which protocol should it
use. Figure 7 describes the associated decision tree.

Event Trigger 4. Domain action completes executid¢hen a primitive action is completed, the meta-
level controller checks to see if the real-time performanfe current schedule is as expected. If the actual
performance deviates from expected performance by morettigaavailable slack time, then a reschedule

11

o ReNegotiation [c1]

/7 Negotiation Renegotiate [cal
_/ fails using NegMech 1
Legend
O | state Renegotiate [c3l
pxecutable using NegMech2
O action
external
® event
transition
~ function

Figure 7: Decision tree on whether to renegotiate uponriiti previous negotiation

may be initiated. A decision to reschedule helps in two watysiould preclude the agent from reaching
a bad state in which too many resources are spent on a schedbléad performance characteristics;
and it would allow for meta-level activities to be processethout the detrimental effects such processing
would have on domain activities if slack is minimal. Hansewbrk [14] on meta-level control of anytime
algorithms using a non-myopic stopping rule is describe@eaation 5. It finds an intermediate strategy
between continuous monitoring and not monitoring at allcaih recognize whether or not monitoring is
cost-effective, and when it is, it can adjust the frequerfapanitoring to optimize utility. Thus, the decision
to reschedule in this paper can be viewed as a hon-myopipistppule within Hansen'’s work. The decision
tree associated with this meta-level decision is describ&tgure 8.

ontinue with
original schedule

(E1]

Scheduled Action

—/

Legend

completes

state Call reschedule [E2]

pxecutable
action
external
event
[ransition
function

Figure 8: Decision tree when a domain action completes é¢xecu

/|®0|O

Event Trigger 5: Invocation of the detailed schedul@ihe parameters to the planner/scheduler are
scheduling effort (E) and slack amount (S). They are detsthibbased on the current state of the agent
including characteristics of the existing schedule andg#t®f new tasks that are being scheduled. affat
parameter determines the amount of computational effattghould be invested by the planner/scheduler.
The parameter can be set to eithBGH, where a high number of alternative plans/schedules adupeal
and examined dcOW, where pruning occurs at a very early stage and hence feimaiiee plans/schedules
are compared, reducing the computational effort while cmmyising the optimality of the schedule. The
effort is proportional to the expected utility and comptgXin terms of number of possible alternative plans
) of the task. Although, the effort can be any discrete vatiwe, qualitative values are used in the current

12

implementation of the agent. These two values were suftitdeeshow the importance of varying the effort
based on problem solving context. Depending on the problemagh, one could increase and decrease the
number of feature values and the decision process will lestheim appropriately.

The slack parameter determines the amount of flexibility availabl¢him schedule so that unexpected
events can be handled by the agent without it detrimentéfiicting its expected performance characteris-
tics. The amount of slack to be inserted depends on threer§&athe amount of uncertainty in the schedule,
the importance of the currently scheduled tasks and theceegp@mount of meta-level control activity that
will occur during the duration of the schedule. The schedd&termines the amount of uncertainty in the
schedules it builds and automatically inserts slack to lahigjhly uncertain primitive actions. The meta-
level control component uses information about the arwfdlture tasks to suggest slack amounts to the
scheduler. Three slack values of 10%, 30% and 50% of thedwétdllable time are used in the current im-
plementation of the agent. These values, like in the cadeecéffort, can be varied as needed. The decision
tree describing the various action choices for this metatidecision is shown in Figure 9. Each of the
choices in the decision tree are combinations of possilibeteind slack values.

E=1, S=10%

E=1, S=30%

E=1, S=50%
(Re)schedule

E=2, S=10%

Legend E=2, S=30%

state

pxecutable
action
external
event
ransition
function

E=2, S=50%

arice)

Figure 9: Decision tree for invoking the scheduler

In the introduction, we presented meta-level control agjaeetial decision making process. In the next
sub-section, we describe a formal model of the meta-levatrabproblem which frames it as a sequential
decision making process.

2.1 A Formal Model of Meta-level Control Decision Problem

1. LetShe the set of states of the agent and S is a particular state of the agent. Since this is a finite
horizon problemj =0,1,2,3...,n
2. Ais the set of possible control actions and A is the action taken by the agent in state

Control actions do not directly affect the utility achievagthe agent since they affect only the agent’s
internal state. These actions consume time and have onhgaeffects on the external world.

Control actions are followed by the execution of utility ashng domain actions. These domain
actions are directly the result of control actions in therenr and preceding states. These domain
actions are not explicitly represented in this model sithey are encased by the control actions.

3. A policy 7 is a description of the behavior of the system. A stationastaatevel control policy
m: S — A specifies, for each state, a control action to be taken. Theyps defined for a specific

13

environment.

An environment is defined by three distributions descritangving task type, task arrival rate and
task deadline tightness.

4. 7(s;,a) is the probability of an agent taking an actiein states; under policyr.

5. s; isthe new state reached after executing control actifmtiowed by the execution of corresponding
domain actions that follow.

6. R(si,a,s;) is the reward obtained in staie as a consequence taking control actioin states; and
then executing the domain actions that follaw

The reward is the cumulative value of the domain actions Wwihie completed between the state
transitions. Since the values achieved by the tasks haweeiat=d uncertainties, the reward function
is represented as a distribution.

7. Ux(s;) is the utility of states; under policyr.
8. P(sj|s;,a) is the probability that agent is in stateas a result of taking actiomin states;.

The above model defines a finite Markov decision process [2].
According to decision theory, an optimal action is one whitdximizes the agent’s expected utility. For
a finite-horizon problem, this is given by

E[Ux(si)] = Ex{> 7 R(si,a,s;)}
j=1

. 7€[0,1) is a discount-rate parameter which determines the presdus of future utility gains.
This can be computed as follows

n

EUr(si)] = > _(si,a)>_P(sjlsi,a))[R(si, a,55) + 7 E[Ux(s)]]

J=1

The meta-level control problem for an individual agent iditml a best meta-level control policy*
which maximizes the expected return for all states. Thiswdtpolicy can be determined by using dynamic
programming [2] or reinforcement learning [48] methodsinRecement learning methods like Q-learning
will implicitly determine the transition probability motand reward function defined previously. If the
model were to be used as defined above for a sophisticatetlaghitecture, finding the optimal meta-level
control policy would be computationally intractable besawf the size of the state space. The quantitative
values of the agent’s state features contributes to thesixgpl of the state space. We feel that independent
of the approach used to formulate meta-level control, thigato appropriately abstract the agent state is
key to the development of an effective meta-level controhponent.

In this paper, we describe a computationally feasible aggrdo handle the above described complexity.
The following are the salient features of our approach:

1. We identify state features that are effective approxionatof the system state. This helps bound the
size of the state set making the problem tractable.

14

2. We test the effectiveness of this approximate representaf system state using two classes of hand-
generated heuristics for meta-level control. These hizegigse the approximate system state in their
decision making. We show that these strategies that legaraga-level control perform better than
strategies without any meta-level control.

3. We then use these features to define the state of a metavlavieov Decision Process for various
environments and use reinforcement learning techniquestimate the probability transition and
reward model. The resulting MDP is evaluated and a non-noym@ta-level control policy for agents
operating in complex environments is determined.

2.2 Agent State

The meta-level controller uses the current state of thetdagenake appropriate decisions. In Section 2.1, we
discussed that the use of quantitative feature values woake computing the optimal meta-level control
policy intractable. Consequently in this work, a distinatis made between the current state of the agent
(also called real state) and the approximate representatithe state and the use of qualitative values which
capture only the critical information about the currentesta

The real state of the agent has also the detailed informagiated to the agent’s decision making and
execution. It accounts for every task which has to be reakaheut by the agent, the execution characteris-
tics of each of these tasks, and information about the emviemt such as types of tasks arriving at the agent,
frequency of arrival of tasks and the deadline tightnessaohef these tasks. The real state is continuous
and complex. This leads to a combinatorial explosion in &z¢ state space even for simple scenarios. The
complexity of the real state is addressed by defining anadistepresentation of the state which captures
the important qualitative state information relevant & theta-level control decision making process. There
are eleven features in the abstract representation ofdteeand each feature can have one of four different
values. So the maximum size of the search spad is- 222, which is about a million states. Framing this
problem in the MDP framework would result in a search spaamithion states out of which only states in
the order of a few thousand are actually encountered bethedeature values are not independent of each
other and act as constraints on each other and the specifibe efhvironmental dynamics. For instance
when the utility goodness of the current schedule is HIGHtAedleadline tightness of the current schedule
is TIGHT, the amount of slack in local schedule is usually LOwever takes on the value HIGH.

The following are some characteristics of the system se&atifes, the environment and its dynamics.

1. The status of tasks currently being processed and thoss wiked future processing, e.g. New-
TaskList, AgendalList, ScheduleList, ExecutionList.

2. Environmental model, e.g. Probability of arrival of siiedypes of tasks and their deadline tightness.
3. Internal influences on action choice, e.g. Slack in thedules.

4. External influences on action choice, e.g. Utility of &ask other agents, Deadline Tightness of tasks
belonging to other agents, Slack in schedules of other agent

5. Real time performance characteristics, e.g. Deviatiom fexpected performance, Cost of decommit-
ing from existing tasks

These “real” features are used to construct the abstraet stpresentation that will permit effective
meta-level control for the domain described in this paper.

15

| FeaturelD| Feature | Complexity |

F1 Utility goodness of new task Simple
F2 Deadline tightness of a new task Simple
F3 Utility goodness of current schedule Simple
F4 Deadline tightness of current schedule Simple
F5 Arrival of a valuable new task Simple
F6 Amount of slack in local schedule Simple
F7 Amount of slack in other agent’s schedule Simple
F8 Deviation from expected performance Simple
F9 Decommitment Cost for a task Complex
F10 Relation of slack fragments in local schedule to new taskComplex
F11 Relation of slack fragments in non-local agent to new tasiComplex

Table 1: Table of proposed state features, their descniptnal category

2.3 Abstract Representation of the State

The overhead of meta-level control activities is accourftedby the cost of state feature computation.
The eleven features, which are of two categories - simpleifea where the reference values are readily
available by simple lookups and complex features which limr@omputation to determine their values.
Simple features help the agent make informed decisions eouéxble actions or whether to obtain more
complex features to make the decisions. An example of a siffigaiture would be the availability of slack
in the current schedule. If there is a lot of slack or toodittlack, the decision to accept the new task or drop
the new task respectively is made. However, if there is a mdd@mount of slack, the agent might choose
to obtain a more complex feature, namely computing theioglatf slack fragments which is described
below.

Complex features usually involve computations that takeetthat is sufficiently long that, if not ac-
counted for, will lead to incorrect meta-level decisionbeTcomputation of the complex features is cumber-
some since they involve determining detailed timing, plaeet and priority’ characteristics and provide
the meta-level controller with information to make moreweate action choices. For instance, instead of
having a feature which gives a general description of thekaléstribution in the current schedule i.e. there
is a lot of slack in the beginning or end of the schedule, tieeefeature which examines the exact charac-
teristics of the new task and makes a determination whetleemvtailable slack distribution will likely allow
for a new task to be included in the schedule. The agents mgiieie meta-level control decisions based
on whether to gather complex features and determine whiciplex features are appropriate.

In Section 2.1, a formal definition of the meta-level conprodblem was presented. The abstract repre-
sentation of the state defined in this section will be theestat the Markov Decision process model. The
control actions defined in section 2 will be the actions inti2P model. The probability transition function
and the reward function will be determined by estimatingrttieom data gathered in previous system runs.

Table 1 enumerates the features of the abstract reprdsentéditthe state used by the meta-level con-
troller.

F1: Utility goodness of new task It is a simple feature which describes the utility of a newatyived
task based on whether the new task is very valuable, modieratiiable or not valuable in relation to

5Priority accounts for quality and deadline.

16

other tasks being performed by the agent. The assignedréeatlues are HIGH, MEDIUM and LOW
respectively.

F2: Deadline tightness of a new task It is a simple feature which describes the tightness of the
deadline of a particular task in relation to expected deadliof other tasks. It determines whether the new
task’s deadline is very close, moderately close or far infiiere. The assigned feature values are TIGHT,
MEDIUM, LOOSE respectively.

F3: Utility goodness of current schedule It is a simple feature describes the utility of the current
schedule normalized by the schedule length and is basedfamiation provided by the scheduler. This
feature determines whether the current schedule is veoalild, moderately valuable or not valuable with
respect to other tasks and schedules. The assigned featues\are HIGH, MEDIUM and LOW respec-
tively.

F4: Deadline tightness of current schedulelt is a simple feature which describes the deadline tight-
ness of the current schedule in relation to expected desdiif tasks in that environment. If there are
multiple tasks with varying deadlines in the schedule, trexage tightness of their deadlines is computed.
It determines whether the schedule’s deadline is very closmlerately close or far in the future. The
assigned feature values are TIGHT, MEDIUM, LOOSE respelstiv

F5: Arrival of a valuable new task: It is a simple feature which provides the probability of gthi
utility, tight deadline task arriving in the near future bging information on the task characteristics like
task type, frequency of arrival and tightness of deadlirtecah take on the values of HIGH, MEDIUM,
LOW.

F6: Amount of slack in local schedule It is a simple feature which provides a quick evaluationhef t
flexibility in the local schedule. Availability of slack mea the agent can deal with unanticipated events
easily without doing a reschedule. The cost of insertingksisithat the available time in the schedule is not
all being used to execute domain actions. This feature ¢anda the values of HIGH, MEDIUM, LOW.

F7: Amount of slack in other agent’s schedule This is a simple feature used to make a quick evalu-
ation of the flexibility in the other agent’s schedule. Thisised when an agent is considering coordinating
with the other agent to complete a task. This feature candakbe values of HIGH, MEDIUM, LOW.

F8: Deviation from expected performance This is a simple feature which uses expected performance
characteristics of the schedule and the current amountiok $F6) to determine by how much actual per-
formance is deviating from expected performance. The featan take on the values of HIGH, MEDIUM,
LOW.

F9: Decommitment Cost for atask This is a complex feature which estimates the cost of dedtingn
from doing a method/task by considering the local and naatldown-stream effects of such a decommit.
This feature can take on the values of HIGH, MEDIUM, LOW.

F10: Relation of slack fragments in local schedule to new t&s This is a complex feature which
determines the feasibility of fitting a new task given theadet fragmentation of slack in a particular
schedule. It involves resolving detailed timing and plaeatrissues. This feature can take on the values of
HIGH, MEDIUM, LOW.

F11: Relation of slack fragments in non-local agent to new sk: This is a complex feature which
determines the feasibility of fitting a new task given theaded fragmentation of slack in a particular non-
local schedule. This feature can take on the values of HIGEDNUM, LOW.

Each of the state features takes on qualitative values. Uitietigative values such as utility of 80 versus
utility of 60 are classified into these qualitative buckétigl versus medium utility) in a principled way as
shown later in this section. As will be seen in the experirakrgsults in later sections, these qualitative
measures provide information that can be exploited to mH&et®e meta-level control decisions.

17

2.4 Computation of State Features

As described above, our goal is to bound the size of the spatees This is done by making the high
level state features time independent and also by elimigahe specifics of tasks and their performance
characteristics from the state. We adopt a qualitativeessptation for the state feature values and consider
the characteristics of task sets instead of individualdask

The following describes the mechanism that exploits kndggeabout the agent tasks and environmental
characteristics to determine the high-level features efient state.

e The multi-agent system M is a collection of n heterogenegesta. Each agent has a finite set of
tasksT' which arrive in a finite interval of timeNy is the total number of tasks that have arrived at
the system from the start to current tine

e Ataskt e T' upon arrival has an arrival timedT; and a deadlineD L, associated with it. A taskcan
be achieved by one of various alternative ways (plahsy, t3...t*.

e Aplant’ to achieve taskis an executable sequence of primitive actiéhs: {m1,ms, ...m, }. Each
plant/ has an associated utility distributiofi D,; and duration distributionDD,; .

Example: EzamineTerrain® and EzamineTerrain® are two alternate plans to achieve task
ExamineTlerrain.

(25% 22 50% 50 25% 100) is the duration distribution abzamineTerrain®, which means that plan
ExamineTerrain® takes 22 units of tim@5% of the time, 50 time unit50% of the time and 100
time units25% of the time. AlsoEzamineTerrain® has a utility distribution of 10% 30 90% 45).
ExamineTerrain® has a duration distributio(60% 32 30% 40 20% 45) and utility distribution of
(25% 20 75% 30).

UDE:DamineTerrainA = (10% 30 90% 45)
A = (25% 22 50% 50 25% 100)
ExamineTerrain® — (25% 20 75% 30)

B = (50% 32 30% 40 20% 45)

DD

ExamineTerrain

UD
DD

ExamineTerrain

e U, is the time required for scheduling a tasK it is chosen for scheduling.

Example :¥, is 2 unit$ if simple scheduling is chosen. If detailed scheduling issem, the cost is 4
units if the scheduling set has less than 5 primitive acttorsvaluate, 12 units if the scheduling set
has between 5 and 10 primitive actions to evaluate and 18 mitiite scheduling set has more than 10
primitive actions.

System execution is single threaded allowing for one prmiaiction at the most to be in execution
at any time. If a meta-level action is required when a prireitictionm is executing, the execution is
interrupted and control is turned over to the meta-levetrodier. When the meta-level control action
is completed, execution of. is always resumed

5The number of time units is the statistical average of thatitms obtained from offline simulations of executing thektasing
the particular deliberative mode. It is described in terfrsimulation ticks.

"This is an artifact of the simulation environment. In order the simulator to keep accurate records of utility accuadl, it
requires that executing actions should be fully completed.

18

e T, is the remaining time required for primitive action to complete execution.

e The earliest start timé’ ST} for a taskt is the arrival timeAT; of the task delayed by the sumof,,
the time required for completing the execution of the actiowhich is interrupted by a meta-level
control event andl;, the time required for scheduling the new task.

EST, = AT, + Y, + ¥,

e The maximum available duratiol/ D; for a taskt is the difference between the deadline of the task
and its earliest start time.
MD;, =DL; — EST;

Example: Suppos&zaminelerrain arrives at time 45 and has a deadline of 100. Also suppose
the execution of method is interrupted by the arrival db zamineT errain andm still needs about

8 time units to complete execution. Suppose the time spescbedulingEzamineT errain is 5
units. Then the maximum available duration for tdskamineT errain is 100 — 45 — 8 — 5 = 42

time units. The meta-level controller is aware that theremtinge of the maximum available duration
is not always available solely for the execution of this tagkhen the maximum available duration
ranges of a number of tasks overlap, the maximum duratiatahl@for a particular task is effectively
reduced.

e Given a taskt and its maximum available duratioh/ D;, the probability that a plart/ meets its
deadlinePDL,; is the sum of the probabilities of all values in the duratidatidbution of plant’/
which are less than the task’s maximum available duration.

PDL,; = Z 1pojo ((p;% ;) € DDy) A (z; < MDy)
j=1

Example: Suppose the maximum available duration for #8skmineT errain is 42. There is only

one duration value i D 4 which has a value less than 42 and that value is 22 and

occurs 25% of the time.

ExamineTerrain

25
PDLyomi = 2025
EzamineTerrain® 100 0

There are two duration valuesinD,5 Which have a value less than 42 and they are 32
and 40 which occur 50% and 30% respectively in the distrdipuiti

50 + 30
B = 20+ =0.8

ExamineTerrain 100

PDL

e The expected duratioR D,; of a plant/, is the expected duration of all values in the duration distr
bution of plant’ which are less than the maximum available duration for treikta

1 100 ¥y
ED,; =]PD—LH ((pj% ZL'j) e DDyj) A (l’j < MDy)

Example: For the above constraint where the maximum avaithivation for taskzzamineT errain
is 42

(*22)
EDE:pamineTerrainA = IO%T =22
(100 * 32 + 100 * 40)
ED g amineTerrain® = 0.8 =%

19

e The expected utilityoU,; of a plant/, is the product of the probability that the alternative nseits
deadline and the expected utility of all values in the wtititstribution of alternative” .

EUy; =Y PDLy * 1ijo sa;: ((p;% x;) eUDy,)
j=1

Example: When the maximum available duration for tAskamineT errain is 42,

10 90
E . 4= 0.2 x — .25 %« — x 45 = 10.875
UExamzneTerraznA 0.25 * 100 #*30 + 0 * 100 * 0.8
25 75
EU B=08%— 20 + 0.8% — %30 = 22

ExamineTerrain 100 100

e Given the maximum available duration for a task, the preferalternativeALT; for a taskt is the
alternative whose expected utility to expected duratidiors the highest. ALT; is the alternative
which has the potential to obtain the maximum utility in mmaoim duration within the given deadline.

n EUtJ'

ALT, =t/ -

Example: Suppose the maximum available duration for tagkmineT errain is 42. Consider each
of ExamineTerrain’s alternative plans which were described earlier. PammineT errain’s
expected utility to expected duration ratioss™ = 0.494 and planEzamineTerrain®’s expected
utility to expected duration ratio % = 0.629. So the alternative with the maximum expected utility
to expected duration rafias ExamineT errain®.

ALTE amineTerrain = EzamineTerrain®

e The utility goodnes$/ D; of a taskt (feature F1 in Table 1) is the measure which determines how
good a task’s preferred alternative is in relation to the fereed alternatives of all the other tasks
which arrive at the system.

The tasks with high utility are the tasks which are in the §&hcentile (top 1/3rd) of the expected
utility to expected duration ratio of the task’s preferrdigiaative.

HIGH, gg’:ii 15 above the 66th percentile

UD; =< MEDIUM, ZlaLn

> EDarm,

LOW, otherwise

15 between the 66th and 33rd percentile

Example: The utility goodness of tagkrcamineT errain given a deadline of 100 and a maximum
available duration of 42 i% = 0.628 which lies above the 66th percentilél D gy omineTerrain =
HIGH

8The assumption here is that there may be other tasks thaseaheavailable time. If we add a model of opportunity cdss, t
definition can be modified. This is an area of future work.

20

e The deadline tightnesBD; of a taskt (feature F2 in Table 1) measures the flexibility of the maximu
available duration. It determines how much unexpected #iesl activities and similar delays affect
the maximum available duratiorBuppose a meta-level activity on average has an expectatiaur
of Cyr. Theexpected amount of time required for handling unexpecteth-taeel activities();,
during the execution of tagk is computed as follows:

N,
Qt :CJ\/[L*F\P*MDIS

Example: Suppose the average time per meta-level acts/Ryinits, 4 tasks have arrived at the agent
and the currenttime is 6 D; is 42 as determined previous&.r.omineTerrain = 2*%*42 = 5.6
The amount of time expected to be spent on future meta-letgitaes is 5.6 units.

In order to determine if a given deadline is tight, feposed maximum available duratiom/ D;X
for a proposed scenarili is computed. It is the maximum available duration which ascounts for
the anticipated meta-level costs of future activities.

MD¥ = MD, — Q,

Example: From the previous example, theD =42-56=236.4

ExamineTerrain

The related paramete®®D LY, ., EDX, ., EUJ;, and the expected utility to expected duration
EUX

ratio = D’;‘(LTt for the proposed scenario are also recomputed with respéioe redefined/ D)X .
ALTy
X _ X _
PDLExamineTerrainB = 0.5, EDExamineTerrainB =32
X X EngamineTerrainB
EUEmamineTeTrainB = 11257 UDE:BamineTerrain - EDX = 0.3451
ExamineTerrainB

The expected utility to expected duration ratio now fallkotethe 33rd percentile,
UDgxamineTerrain = LOW

TIGHT,(UD; = HIGH) A (UD;* # HIGH
TD; ={ LOOSE,(UD; = HIGH) AN (UD{ = HIGH)
MEDIUM,Y other values of UDy, UD;*

Example: SincéU D g zamineTerrain = HIGH) A (UD3 amineTerrain = LOW), the time spent on
unexpected meta-level control activities is detrimergabiskt’s utility gain, which in turn means its
deadline is tight.

TDExamineTerrain =TIGHT

e The high priority task set for an agent H PT'S,, is the set of tasks whose utility goodness is HIGH
and deadline tightness is TIGHT.

HPTS, = {T};} : UGy, = HIGH) A (TDy, = TIGHT)

Example:
HPTS4 = {ExamineTerrain}

21

e The arrival rate of high priority tasks for an agent ART,, (feature F5 in Table 1), is the ratio of the
number of high priority tasks that arrive at the system totthtal number of tasks that have arrived
at the system.

T,
ART,, = u : T, e HPTS,,
n

e The probability of a high priority task arriving in the neantire PH'T,, depends on the arrival rate
of high priority tasks.The intuition behind this relation is that the charactarssbf tasks that arrived
in the past can be used to predict the characteristics of tésk will arrive in the near future. The
assumption made by the system that the past information €aséxd to predict the future is a valid
assumption since the environment is stationary for a fimtezon.

For instance, ifART,, is less than 0.04 (arrival rate is less than 4%), tR&T,, is also low.

LOW, ART, < 0.04
PHT, ={ MEDIUM, 0.04 <= ART, < 0.10
HIGH, ART, >=0.10

e The slack in the scheduleL AC K ..., (used to compute features F6 and F7 in Table 1), is the total
amount of flexibility that should be inserted in the schedwdhat unexpected meta-level activities
and uncertainty in method execution durations of all th&saseing scheduled can be accommodated
without expensive rescheduling control actiofie slack is defined using a simple slack distribution
strategy, where the duration of each method in the scheglgeténded by equal fractions of the total
slack.

SLACKsur = Y

Vtescur

The following sections will test the hypothesis that usihig tstate information, the best sequence of
control and domain actions can be determined for each emieat. The action sequence can either be de-
termined by a heuristic hand-generated rules as descrilibd next section or can be learned automatically
as described in Section 4.

3 Heuristic Strategies

We have discussed the reasons for the intractability of cmimgp a meta-level control policy using the real
system state in Section 2.1. We also defined an approximptesentation of the state that will control
the complexity of the meta-level control problem. In thistgen we validate the effectiveness of the ap-
proximate state representation using hand-generatestiesifor meta-level control. These hand-generated
heuristics will then be used as a baseline for evaluatingei®rmance of a reinforcement learning approach
that we propose to use to learn the meta-level control malifir different environments.

We address the three following questions: Does meta-levdtal lead to better performance in rational
agents situated in the domain described in this paper? ésdiple to construct a hand-generated meta-level
control policy based on the high-level state features dssdrearlier for specific environments. Does this
hand-generated policy outperform a deterministic metatleontrol policy?

Two heuristic strategies, the Naive Heuristic Strategy thiedSophisticated Heuristic Strategy, that use
context sensitive rules for meta-level control are degdiilBoth strategies use high-level state features and
they serve as a test-bed for the effectiveness of the statierés for efficient meta-level control. The Naive

22

Heuristic Strategy (NHS) uses state-dependent hand-geckeheuristics to determine the best course of
meta-level control action. The current state informatiath allow the meta-level controller to dynamically
adjust its decisions. The heuristics, however, are myopitdo not reason explicitly about the arrival of
tasks in the near future. The Sophisticated Heuristic &ga{SHS), on the other hand, is a set of hand-
generated rules that use knowledge about task arrival mooleredict the environment characteristics. The
agent’s environment is typically characterized by the etgxb utilities of the tasks, their deadline tightness
and frequency of arrival. In this work, the information ore tthree parameters is available to the SHS.
Though not implemented in the context of this paper, thisrimiation can be learned by the SHS by gath-
ering statistics over multiple runs. The meta-level cdigracan make non-myopic decisions by including
information about its environment in its reasoning process

In the interests of space, we describe a simple example ferafitiate the decision making process
between the two strategies and provide details of the SH#8stiea for theArrival of New Taskevent
trigger. We refer the reader to [33] where details of the Nig8ristic rules as well the SHS heuristics for
all five event triggers are described in detail. Table 2 arlnleT& describe SHS rules required to support
each of the actions on the new task in Figure 4 forAméval of new taskevent trigger. For instance the first
row in the Table 2 describes the following rule: If new task h®W utility goodness and TIGHT deadline;
HIGH probability of high priority tasks arriving in the nefture, then best action Brop Task (A1) When
a feature is not specifically addressed in a rule, it is asduime the feature can take on any of its domain
values. So in the above example the Current Schedule UBlitydness (CSUG) state feature can be HIGH,
MEDIUM or LOW and the rule would still hold true. We now dedmian example that the decision making
process using NHS and SHS rules respectively. Considectrasgo where a new task arrives at the agent
at timet. The agent has to decide whether to delay the reasoning tifeotatsk until later; never execute the
task (drop task); execute the task immediately at arrivagtby calling for a reschedule action or add the
new task to the agenda. Now suppose an agent has to make &ewgdtdecision in the following context:
the utility of the new task is MEDIUM; the deadline tightnesfsthe new task is TIGHT; utility of current
task setis MEDIUM; and the deadline of the existing task isDMEM; and the probability of a high priority
task (HIGH utility, TIGHT deadline) arriving in the near tue is HIGH. An agent equipped with NHS rules
would make the myopic decision @all the Detailed Scheduler on All Lists (A4$ it does not have access
to the information about the probability of arrival of a highority task in the near future. This decision
implies that the agent is willing to incur the cost of intgring the current schedule and reschedules the
current task and new task expecting that this would produbmleer quality schedule. A second agent
equipped with SHS rules has access to the knowledge thatitharhigh probability of a high priority task.
The SHS rule in the third row of Table 2 prescribes that theart®tel control decision iBrop Task This
implies that the new task will be dropped and the agent wilticme execution of the current schedule until
the schedule completes execution or another meta-levisideds triggered. Given that the high probability
of arrival of a high priority task arriving in the near futungll trigger a reschedule using both NHS and SHS
rules, the SHS decision would be the correct non-myopicoghioi most environments as it would avoid the
cost of the first reschedule prescribed by the NHS rules.

3.1 Single-agent Experiments

This sub-section provides performance comparisons of ddterent strategies to single-agent meta-level
control: Naive Heuristic Strategy (NHS); SophisticateduHigtic Strategy (SHS); Deterministic Strategy;
and Random Strategy in different types of problem enviramsieSpecifically, we empirically validate the

advantage of using the heuristic strategies that dynalyiadjust to context. We also show that knowledge

23

| ID | NTUG | NTDL | CSUG| CSDL| P | MLC Decision
1 L T * * H Drop Task (Al)
2 L * H T * Drop Task (A1)
3 | HM M/T H/M M/IT H Drop Task (Al)
4 H T L * * Simple Scheduler (A2)
5 L * - - L Simple Scheduler (A2)
6 L * * * Simple Scheduler (A2)
7 H M * * M/L Detailed Scheduler (A3)
8 H T L T L Detailed Scheduler (A3)
9 H T L T L | Detailed Scheduler on All Lists (A4
10 H LS H M/LS | L/IM Add New Task to Agenda (A5)
11| MI/L M/LS H * L Add New Task to Agenda (A5)

Table 2: SHS rules foArrival of New Taskevent trigger (Actions A1-A5). The column headers are ID =
Heuristic Rule Number; NTUG = New Task Utility Goodness stigature; NTDL = New Task Deadline
state feature; CSUG = Current Schedule Utility Goodneds fgature; CSDL = Current Schedule Deadline
state feature; P = Probability of Arrival of High Priority ks in the near future state feature; MLC Decision
= Meta-level Control Action Choice. The column values are fibllowing : H = HIGH; M = MEDIUM; L
=LOW; T = TIGHT;, LS = LOOSE; * = all possible values; - = no value

about the type of problem environment, specifically knowkedbout the future, is advantageous.

We define a deterministic strategy as one that uses a fixedeclobimeta-level action. When a new
task arrives, this strategy always chooses to perform aexrgdheduling on the new task along with the
tasks in the current schedule and tasks in the agenda. Thdudehis invoked with a fixed effort level of
high and fixed slack amount of 10% of the total schedule dumatiThe deterministic strategy also does
not automatically reschedule upon execution failure. Tdrdom strategy randomly chooses its actions
for each of the three single-agent meta-level control dmtss when to accept, delay or reject a new task,
how much effort to put into scheduling when reasoning abautva task and whether to reschedule when
actual execution performance deviates from expected ipegioce. The following costs are assumed for
the experiments. The meta-level control actions have aocided cost of 1 time unit; the drop task and
delay task actions take 1 time unit also. These actions aigrd to be very quick, yet they are actions
with costs. Hence they are assigned a duration of 1 simulaitit each. The call to the simple scheduler
costs 2 time unitsand the cost of computation of complex features costs 2 tinits,.the cost of detailed
scheduling tasks with less than five methods is 4 units, \with than ten methods is 12 time units and greater
than ten methods is 18 time units. The duration of the control action is proportional to thioeflevel.
Actions requiring higher effort levels will require longeurations.

The agents in the experimental test-bed were implementied) tse Java Agent Framework (JAF)
framework [53] and situated in the Multi-Agent SurvivatyliSimulator (MASS) environment [18]. In
order to randomly generate different types of problem emvirtents, we implemented a task environment
generator that varied the following environment paranseter

9As defined earlier, the number of time units is the statistiwarage of the durations obtained from offline simulatiofis
executing the task using the particular deliberative mode.

10The non-linear increase in processing time is due to thegdesfi the heuristic complex scheduler. The Design-to-@ste
scheduler is shown to work well for tasks with fewer than lintive actions[54].

24

ID | NTUG | NTDL | CSUG| CSDL | CSSL | AGUG | AGDL | DC | P | MLC Decision

12 * * M/H | LS/M * M/H LS/M * L Get More Features (A6)

13 * * M M L M M LM | * Drop Task (A7)

14 * * M/H M * M/H M * * Simple Scheduler (A8)

15| M/H M M/H M H * * * * Detailed Scheduler (A9)

16 H * H M H H * M | * | All Lists Detailed Scheduler (A10
17 H LS H M M * * * * | Add New Task to Agenda (Al11)

Table 3: SHS rules foArrival of New Taskevent trigger (Actions A6-All). The column headers are ID
= Heuristic Rule Number; NTUG = New Task Utility Goodness; DT= New Task Deadline; CSUG =
Current Schedule Utility Goodness; CSDL = Current Schefdadline; CSSL = Slack in Current Sched-
ule; AGUG = Utility Goodness of tasks in Agenda; UGDL = DeadliTightness of tasks in Agenda; DC =
Decommitment Cost; P = Probability of Arrival of High PrityriTasks in the near future; MLC Decision =
Meta-level Control Action Choice. The column values areftiiowing : H = HIGH; M = MEDIUM; L
=LOW; T = TIGHT;, LS = LOOSE; * = all possible values; - = no value

Get Image

min

Develop

Choose Object
enables Image

Q 70% 70 30% 78
D 60% 27 40% 20

Capture Image Capture Image Capture Image
from angle 1 from angle 2 from angle 3

Q 50% 55 50% 50 Q 100% 52 Q 90% 64 10% 68
D 90% 30 10% 32 D 100% 28 D 90% 30 10% 32

Figure 10: A complex task in a single agent environment

1. complexity of taske ¢ {simple(S), complex(C), combination(A)}
2. frequency of arrivaf e {high(H), medium(M),low(L)}
3. tightness of deadlinél e {tight(T), medium(M),loose(L)}.

Complexity of tasks refers to the expected utilities of taakd the number of alternative plans available
to complete the task. Typically, complex tasks have highpeeted utility, higher expected durations and
a greater number of alternatives than simple tasks. A sitaglehas two primitive actions and its structure
and number of possible alternatives is similar to the ArelRack task (Figure 3) described in Section 2.
The utility distribution and duration distribution of a qihe task is within a 5% range of the corresponding
distributions of AnalyzeRock. A complex task also has gtrresimilar to that of Getimage task described
in Figure 10. It has between four and six primitive actionke Ttility distribution and duration distribution
of a complex task is within a 5% range of the correspondingidigions of Getimage. The combination
value means that 50% of the tasks are simple and 50% are cotaples.

The frequency of arrival of tasks refers to the number ofgdist arrive within a finite time horizon. The

25

| Row# | | SHS | NHS | Deter. | Rand. |

1 AUG | 205.49| 192.10| 121.90| 89.97
o 7.0 12.5 12,55 | 19.114
CT 20.37%| 23.92%| 39.27%| 11.77%
RES 0% 14.53%| 0% 50.56%
PTC | 41.08% | 39.64%| 30.52% | 21.56%
PTDEL | 43.78% | 49.0% 0% 11.49%

o0 A~ WIN

Table 4: Performance evaluation of four algorithms ovemglsi environment AMM with a combination
of tasks, medium frequency of arrival and medium deadligkttiess. Column 1 is row number; Column
2 describes the various comparison criteria; Columns 3p6esent each of the four algorithms; Rows 1
and 2 show the average utility gain (AUG) and respectivedstethdeviations«) per run; row 3 shows the
percentage of the total 500 units spent on control actiohg(©w 4 is percent of tasks rescheduled (RES);
Row 5 is the percent of total tasks completed (PTC); Row 6 lisgre of tasks delayed on arrival (PTDEL)

resource contention among the tasks increases as the eégslefficy increases. Task arrival is determined
by a normal distribution with: = 250 ando? = 35. When the frequency of arrival is low, about one to ten
tasks arrive at the agent in 500 time unit horizon; when thgudency is medium, between ten and fifteen
tasks arrive at the agent; and when the arrival frequencigts fifteen to twenty arrive on average at the
agent. The tightness of deadline refers to the parameteredigfa the previous section and it is task specific.
The resource contention is also proportional to the deadigitness. If the deadline tightness is set to low,
the maximum available duration given to the task is betwedi¥d and 150% of the expected duration of
the task; if the deadline tightness is set to medium, the maxi available duration given to the tasks is
between 100% and 120% of the expected duration of the tadkf Hre deadline tightness is set to high, the
maximum available duration is between 80% and 100% of thea®rp duration of the task. Environments
are named based on values of these three criteria in the m®le#ioned above. For instance, environment
AMM is one that has a combination of simple and complex ta8kswith medium frequency of arrival (M)
and medium deadline tightness (M).

The experimental results described in Table 4 show the pedioce of the various strategies in the
environment, AMM, which, as mentioned before, containsralgioation of simple and complex tasks. The
frequency of task arrival in this environment is medium aamuges between 10 and 15 tasks in the 500 time
unit interval. The deadline tightness is also medium. Sgmgsks have a minimum duration of 8 time units
and a maximum duration of 20 time units while complex taske & minimum duration of 50 time units
and a maximum duration of 120 time units. Also the utilityrgad by completing a single task can range
between 6 and 24 while the utility gained from a complex taskdtween 70 and 80. Each strategy was
evaluated over 300 runs and each run has an associated ti@akraodel, lasts 500 time units and has an
average of 15 meta-level control decision points per run.

Column 1 is row number; Column 2 describes the various coisgraicriteria; Columns 3-6 represent
each of the four algorithms. Rows 1 and 2 of the table dest¢hibeaverage utility gained (AUG) by each
of the strategies and the corresponding standard dewgatidre heuristic strategies (SHS and NHS) signifi-
cantly (p< 0.05) outperform the deterministic and random strategidsnespect to utility gain. This shows
that heuristic strategies that dynamically adjust thegiglens to environmental state perform significantly
better than strategies that do not take state informatittnaocount in their decision making process.

SHS has about a 10% improvement in utility gain than NHS. ietanalysis of the data shows that

26

NHS assigns incorrect amounts of slack in the schedule whigdquired to handle unexpected meta-level
activities. This leads to frequent reschedule calls ancharease in time spent on control actions. The SHS
is able to allocate accurate amounts of slack because itdeassto the task arrival model information and
is able to avoid unnecessary control actions (particula@$ghedules). This shows that knowledge about the
future allows an agent to make better meta-level decisiortge allocations.

Row 3 shows the percent of the 500 time units for each run thatspent on control actions (CT) and
row 4 shows the percent of tasks that were rescheduled (RESup in the midst of their execution. For
the above mentioned reason, NHS has a significant numbesdiedules resulting in time being spent on
control actions instead of being spent the utility derivogmain actions. Row 3 shows that the duration
spent on control actions by NHS is significantly €p0.05) higher than that of SHS. The deterministic
strategy does not automatically reschedule but investisad time on control actions since the fixed strategy
is time-intensive. The random strategy spends the leastumimad time on control (11.77%) because it
attempts relatively few tasks (there is a high probabilita task being dropped randomly upon arrival).

Row 5 is the percent of total tasks completed (PTC). This veasid to be less than 50% for this
environment. This is because this environment is fairlyadgit (in terms of frequency of occurrence of
exogenous events) and has tight constraints (the deadlfnesk are of medium tightness) that limit the
number of tasks that can be successfully completed

Row 6 is percent of tasks delayed on arrival (PTDEL). Herealoout 45% of the tasks are delayed in
case of the heuristic strategies signifying there is sigaifi overlap among the tasks in terms of resource
usage. In other words, new tasks often arrive at the agent Wigeagent is busy with other tasks.

240

220 —
c 200 —
180
160 —
140
120
100

Average Utility Gai
3
I

)
o o
L1

N
o
1

o

AMM AMT AHT ALM AML AHL ALL

Environment
= RND [DET M NHS = SHS

Figure 11: Average utility comparison between heuristiatefgies and baseline strategies over 8 different
environments. The error bars are one standard deviatioreabw below each mean

We ran experiments for all 27 environments that were geeérby the enivronment generator. The
results showed that meta-level control was advantageoeggim of these environments. Figure 11 shows
the utility comparisons over these eight environments. Adwristic strategies (SHS and NHS), as in the
case of environment (AMM) described previously, signifttanutperform (p<0.05) the baseline strategies
(Deterministic and Random) over all eight types of envirents. In the discussion of the results, we
emphasize the characteristics of the environments thtiflyjtise cost of explicit meta-level control.

Table 5 provides the detailed information on the perforneacmmparison. Columns 2-5 show the av-
erage utility gained by each of the four algorithms for thatieenment. Column 6 named pl shows the
statistical significance (p-value) of SHS with respect toNKColumn 7 named p2 shows the statistical

27

| Environment| SHS | NHS | Deter. | Rand.| p1 | p2 | p3 |
AMM 205.49| 192.10| 121.90| 89.97 | 0.032 | 0.0001| 0.0001
AMT 117.34| 115.69| 82.17 | 67.33 | 0.4391| 0.0001| 0.0001
AHT 124.80| 123.96| 61.77 | 86.20 | 0.6906| 0.0001| 0.0001

ALM 135.05| 124.74| 115.93| 48.21 | 0.004 | 0.0001| 0.0001
AML 231.44| 218.07| 140.80| 105.16| 0.0045| 0.0001| 0.0001
AHL 229.07| 218.86| 94.55 | 127.47| 0.0024| 0.0001| 0.0001
ALL 151.31| 145.03| 130.80| 51.76 | 0.2596| 0.0001| 0.0001

CLL 163.77| 157.27| 103.33| 50.86 | 0.0643| 0.0001| 0.0001

Table 5: Utility comparisons over a number of environmeslumns 2-5 show the average utility gained
by each of the four algorithms for that environment. Colunmaéied pl shows the statistical significance
(p-value) of SHS with respect to NHS. Column 7 named p2 shbestatistical significance of SHS with
respect to the deterministic algorithm. Column 8 named mBvstthe statistical significance of NHS with
respect to the deterministic algorithm.

significance of SHS with respect to the deterministic athani Column 8 named p3 shows the statistical
significance of NHS with respect to the deterministic algponi. 1t can be observed from the table that the
SHS strategy is significantly better than the NH&(Qp05) in some environments (ALM, AML, AHL). All
three environments can be characterized as medium coredranvironments. In environment ALM, the
arrival frequency is loosely constrained while the deadtightness is MEDIUM. On detailed analysis of
the data, it was found that there were extended periods iohwio tasks arrived at the agent and then there
would be burst of task arrivals. So information on the nawifréuture tasks allowed the agent to make
better decisions during those periods of resource contEnfcaused by the medium deadlines). In the other
two environments, the deadline tightness was LOOSE whdathval frequency was either MEDIUM and
HIGH. Since the tasks have loose deadlines, they can bega®davhenever resources are available with-
out detrimentally affecting the utility. However since tival frequency is medium to tightly constrained,
there is a very high probability of overlapping tasks codtag for resources. The arrival model informa-
tion will allow the agent to dynamically adjust its decissoon tasks and use the bounded resources in an
efficient way. It can be deduced that the arrival model infation available to the SHS is advantageous only
in environments that are neither tightly constrained osé&p constrained.

The reason for the improved performance by the heuristitegires when compared to the deterministic
and random strategies is found in Figure 12 which shows theepeof control time comparisons over the
same set of environments. As described in earlier, contriibras do not have associated utility of their
own. Domain actions produce utility upon successful exenutnd the control actions serve as facilitators
in choosing the best domain actions given the agent’s stébemation. So resources such as time spent
directly on control actions do not directly produce utilitvhen excessive amounts of resources are spent
on control actions, the agent’s utility is reduced sinceueses are bounded and are not available for utility
producing domain actions.

The heuristic strategies use control activities that ogtntheir use of available resources (time in this
case). The deterministic strategy on the other hand alwakemthe same control choice, the expensive
call to the detailed scheduler, independent of context.ceehe deterministic strategy has higher control
costs, than the heuristic strategies and has less resdtime¥to execute domain actions and accrue utility.
The random strategy has low control costs but it doesn'toreadout its choices leading to bad overall

28

60 —

50

40

30

20

10

Average Percent of Control Time

pilllns

AMT AHT ALM AML AHL
Environment
= RND [DET M NHS = SHS

Figure 12: Average percent control time comparison betweamistic strategies and baseline strategies

over 8 different environments
\Environment#\ SHS \ NHS \ Deter.\ Rand.\

AMM 20.37%| 23.92%| 39.27% | 11.77%
AMT 24.95% | 20.32%| 36.59%| 8.07%
AHT 35.26% | 34.09% | 55.82%| 17.24%
ALM 10.11%| 10.32%| 14.42%| 4.61%
AML 23.45% | 22.73%| 38.77% | 12.12%
AHL 31.23%| 28.73%| 48.12%| 18.11%
ALL 10.99% | 10.44%| 14.83%| 4.82%
CLL 11.08% | 10.99%| 12.39%| 4.29%

Table 6: Control time comparisons over a number of envirarigjeColumn 1 is the environment type;
Columns 2-5 represents the % of total time spent on contt@recby each of the four algorithms for that
environment;

performance. Table 6 provides the details about the pedfdntal available time per episode (500 units)
that was spent on control actions.

Table 7 compares the percentage of tasks that were sudbessimpleted by the four algorithms in
different environments. In tightly constrained enviromtselike those with tight task deadlines (AMT,
AHT), the number of tasks completed is relatively low beeaniten there aren’t enough resources to execute
the task and process all the external events also. In logselstrained environments like ALM, CLL and
ALL, task arrival is few and far between allowing the agenttonplete one task successfully and to move
on to the next task.

3.2 Multi-Agent Experiments

An agent in a multi-agent setting not only makes decisiontherthree events described in the single agent
setup, but is extended to make decisions on tasks that cgesdg boundaries. We provide performance
comparisons of the four different strategies to meta-lewatrol: Naive Heuristic Strategy (NHS); Sophisti-
cated Heuristic Strategy (SHS); Deterministic Strategyt Random Strategy within a multi-agent context.

29

\Environment#\ SHS \ NHS \ Deter.\ Rand.\

AMM 41.08% | 39.64% | 30.52%| 21.56%
AMT 28.60% | 27.51%| 21.7% | 19.87%
AHT 22.08% | 21.28%| 12.47%| 13.97%
ALM 56.86% | 56.66% | 55.09%| 22.15%
AML 45.11%| 39.61% | 21.14%| 21.27%
AHL 33.80% | 28.75% | 22.0% | 19.04%
ALL 65.12% | 63.39%| 52.84% | 23.48%
CLL 76.95% | 71.78%| 28.11% | 24.51%

Table 7: Comparison of percent of tasks completed over a prumbenvironments; Column 1 is the en-
vironment type; Columns 2-5 represents the % of total timenspn control actions by each of the four
algorithms for that environment;

The experimental setup is similar to the single agent setxapp for the fact that two more decisions are
added to the decision process, whether to negotiate witthanagent about a non-local task and whether
to renegotiate if a previous negotiation falls through. Sehewo new decisions specifically require coordi-
nation with another agent for completing the task. The 'ty are the heuristics for the two additional
meta-level decisions. The NHS is a myopic variant of thesgisiics. Table 8 describes SHS rules required
to support each of the actions in Figure 5 for BPresence of task requiring negotiati@vent trigger. The
event occurs when thidetaNeginformation gathering action completes execution. Tabtke€cribes SHS
rules required to support each of the actions in Figure 7hieFailure of negotiationevent trigger.

| ID | NTUG | NTDL | NLUG | NLDL | NLS | P(HPT)] MLC Decision \
1 L * H * L H/M Drop Negotiation and Reschedule (B[1)
2 H * L * H L Choose NegMechl (B2)
3 M * L/M * H L Choose NegMechl (B2)
4 H M/LS L * H L/M Choose NegMech2 (B3)

Table 8: SHS rules foPresence of Task requiring Negotiatiewent trigger. The column headers are 1D
= Heuristic Rule Number; NTUG = New Task Utility Goodness; DIT= New Task Deadline;NLUG =
Utility Goodness of Non-Local agent’s task set; NLDL = Déadlof Non-Local task set; NLS = Slack
in Non-Local schedule; P(HPT) = Probability of Arrival of gh Priority Tasks in the near future; MLC
Decision = Meta-level Control Action Choice. The columnued are the following : H = HIGH; M =
MEDIUM; L =LOW; T = TIGHT,; LS = LOOSE; * = all possible values;= no value.

Experimental results describing the behavior of two inteng agents is presented in Figure 13 and
Table 10. Performance comparison of the various stratégies environment, AMM, over a humber
of dimensions are provided. The results show that the cosdbirtilities of the two agents when using
the heuristic strategies is significantly higher than thealoimed utilities when using the deterministic and
random strategies. The utility obtained from using SHS dgmificantly higher than NHS and also 14%
more tasks are completed using SHS than the NHS. These pratinresults are encouraging since in this
specific environment, the performance of the multi-agestesy supports the hypothesis of this paper.

We have now presented two context sensitive heuristicegfied: the Naive Heuristic strategy (NHS)
that uses myopic information to make meta-level controloacthoices; and the Sophisticated Heuristic

30

| ID | NTUG | NTDL | NLUG | NLDL | NLS | P(HPT)] MLC Decision \

1 * T * * * * No ReNegotiation (C1)
2 M * L/M * H L Renegotiate using NegMech1 (CR)
3 H LS/M L * H L/M Renegotiate using NegMech2 (CB)

Table 9: SHS rules foFailure of Negotiationevent trigger. The column headers are ID = Heuristic Rule
Number; NTUG = New Task Utility Goodness; NTDL = New Task DigagNLUG = Utility Goodness of
Non-Local agent’s task set; NLDL = Deadline of Non-Localktaet; NLS = Slack in Non-Local schedule;
P(HPT) = Probability of Arrival of High Priority Tasks in theear future; MLC Decision = Meta-level
Control Action Choice. The column values are the following = HIGH; M = MEDIUM; L =LOW; T =
TIGHT; LS = LOOSE; * = all possible values; - = no value.

120

=

o

=]
1

@®
=}
1

N
o
1

Average Utility Gain
g
I

N
o
1

o

AMM
Environment

=z RND J DET B NHS = SHS

Figure 13: Average utility comparison between heuristiategies and baseline strategies in a multi-agent
environment. The error bars are one standard deviationeadnod below each mean

strategy (SHS) that uses current state information andgiivalinformation about the future to make non-
myopic action choices. A description of the decision ruleeduin each of these strategies is provided.
The experimental evaluation described in this section tedlde following conclusions : Meta-level control
reasoning is advantageous in resource-bounded agentfdredi types of environments; the high-level
features are good indicators of the agent state and faeiliifective meta-level control; the heuristic strate-
gies establish the positive effects of meta-level contraesource-bounded agents because they outperform
deterministic and random strategies; and predictive im&dion about future arrival tasks is useful in some
environments and not in others.

4 Reinforcement Learning Strategy

Can an agent automatically learn meta-level control pedidor specific environments based on the high-
level state information described in Section 2? Does thasnked policy outperform the corresponding
hand-crafted policy for that environment as described ictiSe 3? These are the two questions addressed
in this section.

The high-level goal of this paper is to create agents whidmeaximize the social utility by successfully
completing their goals. These agents also necessarilylimaied computation, and detailed models of the

31

| Row# | | SHS | NHS | Deter. | Rand. |

1 AUG | 111.44| 89.84 | 77.56 | 45.56
o 2.33 6.54 12.45 | 15.43
CT 9.21% | 8.09% | 14.28% | 7.15%

RES 0% 14.28% | 19.93%| 1.49%
PTC | 71.32%| 56.34% | 54.17%| 57.78%
PTDEL | 8.8% | 3.98% 0% 59.96%

o0 A~ WIN

Table 10: Performance evaluation of four algorithms for &gents in a environment AMM with a com-
bination of tasks, medium frequency of arrival and mediuradiiee tightness. Column 1 is row number;
Column 2 describes the various comparison criteria; CokBwe represent each of the four algorithms;
Rows 1 and 2 show the average utility gain (AUG) and respedtandard deviationg) per run; row 3
shows the percentage of the total 500 units spent on corttions(CT); row 4 is percent of tasks resched-
uled (RES); Row 5 is the percent of total tasks completed (PRGw 6 is percent of tasks delayed on arrival
(PTDEL)

task environments are not readily available. Reinforcantesarning is useful for learning the utility of
these control activities and decision strategies in sucitests. Section 4.1 describes the construction of a
Markov decision process-based [32] meta-level contrelleich uses reinforcement learning techniques to
approximate an optimal policy for allocating computatioresources. This approach to meta-level control
implicitly deals with opportunity cost as a result of the determ effects of the meta-level decisions on
utility. Sections 4.3 describes the complexities of theiessfaced by multi-agent reinforcement learning
agents. Experimental results describing the performahteedearned polices in both the single-agent and
multi-agent cases are provided.

4.1 Reinforcement Learning

Reinforcement Learning [1, 21, 49, 50, 48, 55, 56] is a matteral framework used by agents to learn how
to map situations to actions so as to maximize a numericanegsignal. Supervised Learning (commonly
used in research in machine learning, statistical pateognition and artificial neural networks) is learning
from examples provided by a knowledgeable external suparvikReinforcement Learning is different from
supervised learning in that the agent does not learn whinacto take from a “supervisor”. Instead the
usual approach taken by reinforcement learning agentsviesraliscovering which actions yield the most
reward by trying them out, associating expected rewardegalith different agent states, and using reward
values to choose actions.

Two key features of reinforcement learning are the explomagxploitation trade-off and credit assign-
ment. A reinforcement learning agent, to maximize its relvanust prefer (exploit) actions which it has
tried in the past and found to be effective in producing relsarBut to discover such actions, the agent
has to try (explore) actions it has not selected before. Geatasshould be able to explore the action space
to make better action selections in the future while at threestime progressively favor those actions that
appear best.

The temporal credit assignment problem involves distiiigutewards over a sequence of state-action
pairs that lead up to that reward. When actions are not rexdairdmediately but receive a large positive
or negative reward some time later, it is called delayedfoetement. Reinforcement learning algorithms
typically use a scheme for assigning the appropriate ctedill preceding state-action pairs after receiving

32

a delayed reinforcement.

The learning approach adopted for the meta-level contiablpm is based on the algorithm developed
in [46] where reinforcement learning is used in the desiga spoken dialogue system. Their problem is
similar to the meta-level control problem in that it is alseeguential decision making problems and there
is a bottle neck associated with collecting training data.d&scribed in the experimental setup in Section 3,
each episode lasting 500 simulation time clicks takes at8Qtreal-world seconds. It takes about 150
real-world hours to obtain data from 3000 training episade&ing data collection quite expensive.

As discussed previously, our MDP-based meta-level cdatr(WLC) uses a set of high-level qualitative
features that is constructed to abstract the real statemiafiton as much as possible without losing critical
information. The appropriate actions to take in each staelefined and the reward function is determined
by the utilities accrued by each completed domain task. Tég#evel control policy is a mapping from
each state to an action. An initial meta-level control polehich randomly chooses an action at each
state and collects a set of episodes from a sample of theoanvimt is implemented. Each episode is a
sequence of alternating states, actions and rewards. Aslosin [46], the transition probabilities of the
form P(s'|s, a) are estimated, which denotes the probability of a transiiiostates’, given that the system
was in states and took actiorw from many such sequences. The transition probability egéns the ratio
of the number of times in all the episodes, that the systemiwasand tooka and arrived at’ to the
number of times in all the episodes, that the system wasaind tooka irrespective of the next state. The
MDP model representing system behavior for a particulairenment is obtained from state set, action
set, transition probabilities and reward function. Coniiwkein the accuracy of the model depends on the
extent of exploration performed in the training data witbpect to the chosen states and actions. In the final
step the optimal policy in the estimated MDP is determinddgithe Q-value version of the standard value
iteration algorithm [48].7¢[0, 1) is a discount-rate parameter which determines the preséun of future
utility gains. In the experimental section, we vary the digtt rate to determine its effect on the meta-level
control decisions. The expected cumulative reward (or IReyaQ(s,a) of taking action from states is
calculated in terms of the Q-values of successor states@itbtiowing recursive equation [48]:

Qls,0) = R(s,0) +7 3 P(s/]s, @) max Q(s',)

Sl

When the value iteration algorithm convertfesan optimal meta-level control policy (according to the
estimated model) is obtained by selecting the action wighmtaximum Q-value at each state. The optimality
of the policy depends on the accuracy with which the estichetBP represents the particular environment.

4.2 Single-Agent Experiments

The experimental setup is as described in the previousosscti The training data for the RL strategy

consisted of 3000 episodes with each episode executin@dtie steps . The training data as mentioned
earlier is exploratory in that at each decision point on@adrom a set of allowable actions is chosen at
random. After the 3000 episodes were completed, the estthiegnsition probabilities and reward function

were determined. The meta-level control policy was deteethiusing the Q-value version of value iteration

as described above in the algorithm. The policy was then osedtest run consisting of 300 simulation test
episodes.

" The algorithm iteratively updates the estimate of Q(s,apHan the current Q-values of neighboring states and stops the
update yields a difference that is below a threshold.

33

Average Utility G

T T T T
AMM AMT AHT ALM

Environment

i NHs [sHs # RL3K

Figure 14: Utility comparison of learning method to heucistrategies for four different environments. The
error bars are one standard deviation above and below ez me

The results described in Figure 14 show the utility accrugdhie reinforcement learning, SHS and
NHS strategies for four environments AMM, AHT, AMT and ALMh€& data collection bottleneck de-
scribed previously limited the number of environments aered to four. The four environments were
chosen to represent problem classes where interestingibeb&meta-level control could occur: medium
constrained environments (AMM, ALM) and tightly constrathenvironments (AHT, AMT). The following
performance results are established experimentally:

1. In two of the environments, AMT and AHT, the RL strategyngsthe policy based on 3000 train-
ing episodes performed significantly better<p0.05) than the SHS with respect to utility and had
significantly lower control duration.

2. In the two other environments, AMM and ALM, the RL strategsing the policy based on 3000
training episodes performed as well as (no significant aifiee at p< 0.05) than the SHS with
respect to utility and had significantly lower control dimat

3. Inloosely constrained environments like ALM, agentsehamough resources to complete tasks suc-
cessfully within the deadlines without too much contentiddmesources.

Figure 15 describes the percent of total time spent on coattions. The RL method spends signif-
icantly less time on control actions & 0.05) than the heuristic strategies in all four environraenthe
RL optimizes its actions in a non-myopic fashion since it karn a more accurate model of the sequential
decision making process than the heuristic strategies.

Learning Curve Saturation: Figure 16 describes the effect of increasing training datahe perfor-
mance of the learned policies. After every 1000 episodes;uiimulative transition probabilities and reward
function were estimated and the corresponding policy wagptbed. This policy was then applied to 300
test episodes and the average results were computed. Toenpence of the agent improves with added
training but the improvement does not increase proporteynavith the training size. This seems to indi-
cate that increased training data will not necessarily ajutae a monotonic improvement in performance
and that the performance improvement will flatten out afteeain amount of training. This threshold is
determined for each specific environment experimentalthimpaper. 3000 seemed to be a good threshold

34

Average Percent of Control Time

40 —

20

it NHS

T
AMM

T T
AMT AHT

Environment

ALM

[0 sHs # RL3K

Figure 15: Control time comparison of learning method taristia strategies for four different environments

210
200
190
180
170
160
150

140

Average Utility Gain

130

120

110

i Y—

I I 1
1000 2000 3000

* i#MTMralnlng Episodes

® awmT ® AHT

Figure 16: Relation of average utility to increasing tragdata

for training size for the four environments described. Tipanithe curve for AHT at episode 2000 is a local
minima which occurred because of the tightly constrainedrenment. On deeper analysis of the data, we
found that tasks in episode 2000 had extremely tight desifirand hence considerably fewer number of
tasks could be completed. Figure 17 describes the relatitregpercent of control durations to increasing

training size.

Table 11 describes the actual values of the measures dagdnithe preceding discussion.

Significance of discounting ~ in the dynamic programming formulation denotes the distdéactor.
The discount factor determines how much value is given taréutewards. When is set to 1.0, the agent
gives a lot of importance to the long term effects of its cargecision. Wheny is set to 0.0, the agent does
a one-step look ahead and is very myopic in its decision ngakitigure 18 describes the utility gained by
the agent after 3000 training episodes. Three meta-levetagolicies with~ set to 1.0, 0.5 and 0.0 are
computed. These polices are then used to evaluate 300 isstlep and the average utilities over these 300
episodes are computed. Table 12 describes the values ofilihegained and the corresponding percent
of control time for the three different polices. Column 1l type of environment, Column 2 describes

2This is determined by the simulation environment.

35

Percent of Average Control Time
>
L

0 T 1
1000 2000 3000

* fMTMralnlng Episodes ® awmT ® AHT ALM

Figure 17: Relation of control time durations to increadiragning data

[Environment] RL-3000 | RL-2000] RL-1000] SHS | NHS |
AMM-UTIL | 207.69 | 200.05 | 198.65 | 205.49] 192.10
AMM-CT | 18.39% | 16.33% | 18.14% | 20.37%| 23.92%
AMT-UTIL | 15556 | 14511 | 140.57 | 117.34] 117.25
AMT-CT | 17.81% | 17.31% | 17.58% | 24.95%| 20.32%
AHT-UTIL | 160.68 | 138.84 | 153.97 | 124.80] 123.96
AHT-CT | 26.83% | 27.46% | 23.17% | 35.26%| 34.09%
ALM-UTIL | 140.32 | 130.09 | 119.64 | 135.05] 124.74
ALM-CT | 7.24% | 6.84% | 2.74% | 10.11%]| 10.32%

Table 11: Utility and control time comparisons over four ieorments; Column 1 is the environment type;
Column 2, 3 and 4 represent the performance characterigtitse RL policy after 3000, 2000 and 1000
training episodes respectively; Column 4 and 5 represenpdéinfformance characteristics of SHS and NHS
respectively;

the performance characteristics when the agent has a ciaypieyopic view §=0.0), Column 3 describes
the performance characteristics and control time when geatahas a partially myopic viewy€0.5) and
Column 4 describes the performance characteristics wigesighint gives a lot of priority to long term effects
of its decisions.

In medium constrained environments such as AMM and ALM, therage utility gained using the
policy with ~ set to 1.0 is significantly better £©.05) than the partially myopic policy with=0.5 and the
myopic policy with~+=0.0. In tightly constrained environments such as AMT andTAtie difference in
performance of the non-myopic policy, the partially myopddicy and the myopic policy was not significant
at the 0.05 level. These environments are so tightly canstlzand are too dynamic to be able to effectively
predict the future events and act on that information.

4.3 Multi-Agent Experiments

The agents in this domain are in a cooperative environmeththawe approximate models of the others
agents in the multi-agent system. The agents are willingeteal information to enable the multi-agent

36

240

n

=]

S
1

160 —

HH

120

Average Utility Gain
]
I

N
o
|

T T
AMM AMT AHT ALM

Environment

B gamma=0.0 gamma=0.5 # gamma=1.0

Figure 18: Utility gains with varying discount rate € 0.0, 0.5, 1.0). The error bars are one standard
deviation above and below each mean

| Environment| y=0.0 | y=0.5 | 7=1.0 |
AMM-UTIL | 185.19| 190.46 | 207.69
AMM-CT 19.56% | 18.63% | 18.38%
AMT-UTIL 151.48 | 151.99 | 155.56
AMT-CT 17.95% | 17.90% | 17.80%
AHT-UTIL 149.40 | 154.26 | 155.56
AHT-CT 26.42% | 26.23%| 17.81%
ALM-UTIL 122.16 | 122.74 | 140.32
ALM-CT 6.88% | 6.90% | 7.24%

Table 12: Comparison of utility gain and percent of contioid for four different environments while
varying the discount ratey(= 0.0, 0.5, 1.0)

system to perform better as a whole. In this section, we |lookudti-agent scenarios similar to the 2-rover
scenario described in Section 2. The multi-agent aspedteoptoblem arises only when there is task re-
quiring coordination with another agent. The agent rewamdkis domain are neither totally positively
correlated (team problem) nor are they totally negativelyralated (zero-sum game). Multi-agent rein-
forcement learning has been recognized to be much moresoailg than single-agent learning, since the
number of parameters to be learned increases dramaticahlytive number of agents. In addition, since
agents carry out actions in parallel, the environment isallgmon-stationary and often non-Markovian as
well [27]. The experiments describe results on the convergeates of the policies of the two agents in
simple scenarios.

The meta-level control decisions that are considered imihidi-agent set up are: when to accept, delay
or reject a new task, how much effort to put into schedulinggmwreasoning about a new task, whether to
reschedule when actual execution performance deviates éspected performance, whether to negotiate
with another agent about a non-local task and whether t@uodiage if a previous negotiation falls through.
For all the experiments the costs described in Section 8.dssumed. Additionally, the decision to negotiate
and whether to renegotiate is assumed to take 1 unit of timansmission delay is 1 unit of time. The

37

| Environment| RL-3000| SHS | NHS |

AMM-UTIL 118.56 | 111.44| 89.84
AMM-CT 8.86% | 9.21% | 8.09%

Table 13: Utility and control time comparison for a multieany environment; Column 1 is the environment
type; Column 2 represents the performance characteristittse RL policy after 3000 training episodes;
Column 3 and 4 represent the performance characteristi6si8fand NHS respectively;

amount of time for the the other agent to respond is not fixaédheed on the duration of the meta-level
decisions at the other agent.

The task environment generator in the multi-agent setup r@adomly creates task structures while
varying the complexity of tasks, frequency of arrival arghthess of deadline as described in Section 3.1
for two agents instead of one. Experimental results ddsgrithe behavior of two interacting agents is
presented in Figure 19 and Table 13. AgRatverB’swas fixed to the best policy it was able to learn in the
single agent environment. AgeRbverAthen learned its meta-level control policy within theseditians.

We did not address the deep issues involved in Multi-agentif&eement Learning involving concurrent
learning [61] by agents. Performance comparison of theistaustrategies to the RL strategy in a single
environment, AMM, is provided. The results show that the bored utilities of the two agents when
using the RL strategy is as good as the SHS strategy whichems@®nment characteristic information in
its decision making process. The RL strategy also learnsipslthat significantly outperform the NHS
strategy in this environment. The performance of the nmagent system supports the hypothesis of this
paper.

HH

=

o

S
|

@
=}
|

N
s}
|

Average Utility Gain
(2}
o
I

n
=]
|

o

T
AMM

Environment

i NHs [sHs # RL3K

Figure 19: Average utility comparison between heuristiatsgies and RL strategy (3000 training episodes)
in a multi-agent environment. The error bars are one standiariation above and below each mean

We have described a reinforcement learning approach wihijgipe agents to automatically learn meta-
level control policies. The empirical reinforcement ldaghalgorithm used is a modified version of the
algorithm developed by [46] for a spoken dialog system. Bwthblem domains have the bottle neck of
collecting training data. The algorithm optimizes the rdeiael control policy based on limited training
data. The utility of this approach is demonstrated expantaily by showing that the meta-level control
policies that are automatically learned by the agent perfas well as the carefully hand-generated heuristic

38

policies. The sequential effects of the problem domain vea#igd by showing that varying the value of
future rewards significantly affects the agent’s perforoman

5 Related Work

There has been enormous amount of work on intelligent agenta e.g. [3, 10, 28, 54, 60]. These sys-
tems describe flexible and goal-directed mechanisms cadiécognizing and adapting to environmental
dynamics and resource bounds. The emphasis in these wakdisld an adaptive control layer which
reasons about domain-level costs. They do not, howevelicilypreason about the control costs. The
meta-level control architecture described in this papasaas explicitly about control costs and includes
reasoning about costs at all levels of computation.

We will first discuss two well-known agent architectures tieve some form of meta-level control. The
Procedural Reasoning System (PRS) [11] is a hybrid systdrarenbeliefs are expressed in first-order logic
and desires represent system behaviors instead of fixed. gibas an architecture for embedded systems
that need to deliberate in real-time. A PRS agent consisadatabase of the system’s current beliefs, a set
of current goals, a library of plans (called knowledge am@akAs) and an intention structure. The KAs
describe sequences of actions and tests that can be pedftomeset a goal or react to a situation. The in-
tention structure consists of a partially ordered set aé¢hyglans chosen for execution. An interpreter works
with these components to select an appropriate KA based lmisand goals, place that plan in the inten-
tion structure and execute it. Meta-level KAs are functliynsimilar to the meta-level control layer in the
agent architecture presented in this paper. The meta’évehre used to decide among multiple applicable
domain KAs in a particular situation, reason about failuredtisfy goals, and manage the flow of control
among intentions (including determining when to continpplging meta-level KAs versus executing the
current domain-level plan). KAs are interruptible wheneeral events cause changes to the database, thus
allowing rapid response to changing environmental sibuati PRS can be configured to respond to world
events within a bounded amount of time though there is nd@kphd-to-end reasoning nor performance
guarantees. PRS is not concerned with cost of meta-levebnéay explicitly and thus differs significantly
from the work presented here.

Hayes-Roth [16] describes an opportunistic control molaal tan support different control modes ex-
pected of an intelligent agent. The control model handleHiphel goals, limited resources, and dynamic
environments. She argues that in dynamic environmentsoftén necessary to make decisions that may not
be optimal, but are rather satisfactory under the curremtlitions. The meta-level control work described in
this paper similarly computes approximate solutions ratien optimal solutions. The system she develops
that solves problems closest to the complexity to the probleve are interested in is Guardian [17]. Itis an
experimental intelligent agent based on a blackboard t@atiire for monitoring patients in a surgical ICU.
The agent consists of a manager that filters and processets,irgpsatisficing control cycle to bound the
amount of time spent doing meta-level reasoning, and anrmeytiagnosis component. Large amounts of
input data arrive at the agent periodically. Much of thisow level data that just confirms current patterns,
but occasionally important or unexpected informationvasi The input manager dynamically builds and
modifies filters to sending new important information to begassed by the reasoning component while
not overburdening it with needless detail as problem-aglyirogresses. High-level control takes the form
of plans that are dynamically created at runtime by contnavidedge sources. They emphasize that such
dynamic construction is necessary because of the changguirements of the filters in different problem-
solving situations.

Guardian has an agenda based control mechanism. Its siagjgfantrol cycle chooses the best action to

39

perform by processing actions most likely to be rated hidingt. As soon as an action is found that is good
enough or the time limit for control reasoning has run o, st action found so far is recommended. This
time limit is set dynamically by control plans that can adljhe sequence and type of knowledge that is used
in a specific situation; control input filters to separate ioytortant data; and adjust the satisficing control
cycle to quickly determine how to respond to it. Guardianyéweer, is not equipped with an overall planning
mechanism to guide its real-time behavior. It does not matout long-term effects of choices explicitly.
Though Guardian has some ability to dynamically balanceatheunt of computation to invest in control
versus domain activities, it does it in a qualitative andlinifopmanner, rather than the more quantitative and
non-myopic approach taken in our work.

More generally, flexible, autonomous systems in complexrenmnents generally require the ability
to reason about resource allocation to computation at aimyt potime. Doyle’s 'rational psychology’
project [9] is based on the idea that computations, or steeges, are also actions to be reasoned about.
He used the idea of bounded rationality in the context ofiglintentions and learning. Horvitz [20] also
studied rational choice of computation in the context ofglasg intelligent systems.

The basic idea of bounded rationality arises in the work of@i with his definition of procedural ratio-
nality [43]. Simon’s work has addressed the implicationbaiinded rationality in the areas of psychology,
economics and artificial intelligence [45]. He argues thadpde find satisfactory solutions to problems
rather than optimal solutions because people do not hawmited processing power. In the area of agent
design, he has considered how the nature of the environnaerndetermine how simple an agent’s control
algorithm can be and still produce rational behavior. Indteza of problem-solving, Simon and Kadane [44]
propose that search algorithms for finding solutions to lerols given in terms of goals are making a trade-
off between computation and solution quality. A solutioattiatisfies the goals of a problem is a minimally
acceptable solution. Good’s type Il rationality [13] is sty related to Simon’s ideas on bounded ratio-
nality. Type Il rationality, which is rationality that takénto account resource limits, is a concept that has
its roots in mathematics and philosophy rather than psypgyol Good creates a set of normative princi-
ples for rational behavior that take computational limitiaccount. He also considers explicit meta-level
control and how to make decisions given perfect informaéibaut the duration and value of each possible
computation.

In order to make the trade-offs necessary for effective Aestal control, the meta-level controller needs
some method for predicting the effect of more computationthenquality of a plan. One method for do-
ing this is to use a performance profile. The idea comes fra@rsthdy of anytime algorithms. Anytime
algorithms can be interrupted at any point to return a pla ithproves with more computation [6]. The
performance profile gives the expected improvement in a @taa function of computation time. An al-
ternative to using performance profiles is to use the peidoae of the planner on the current problem to
predict the future. Nakakuki and Sadeh use the initial perémce of a simulated annealing algorithm on
a machine shop scheduling problem to predict the outcoma particular run [30]. They have found that
poor initial performance on a particular run of the algaritts correlated with poor final performance. This
observation is used to terminate unpromising runs earlyrasigrt the algorithm at another random initial
state.

Anytime algorithms can be combined to solve complex problerdilberstein and Russell [59] look
at methods for combining anytime algorithms and performmirega-level control based on multiple perfor-
mance profiles. Combining anytime algorithms produces rlawning algorithms that are also character-
ized by a performance profile. Compilation techniques dlesdrin [60], can be used to compile programs

40

consisting of both anytime and traditional algorithfhsHansen and Zilberstein [14] extend previous work
on meta-level control of anytime algorithms by using a noyepic stopping rule. It finds an intermediate
strategy between continuous monitoring and not monitoangll. It can recognize whether or not moni-
toring is cost-effective, and when it is, it can adjust thegfrency of monitoring to optimize utility. This
work has significant overlap with the foundations of the retel control reasoning framework described
in this paper. It deals with the single meta-level questibmonitoring and considers the sequential effects
of choosing to monitor at each point in time. It keeps the aetal control cost low by using a lookup-table
for the policy.

Harada and Russell [15] describe initial work where the agtaiponal process is explicitly modeled. It
provides initial ideas for using search as the model of cdatfmn in the Tetris domain. They propose the
use of Markov Decision Processes and reinforcement legq@asntheir solution approach. This work was
not pursued furthét. The methodology in this research was developed indepégdeftheir effort. It
was built for a complex domain where the meta-level decssioave down-stream effects. The domain is
characterized by uncertainty in action durations andtytdccrued. Russell and Wefald [39] define meta-
level control as the ability of an agent to choose betweepdi® a computational action which changes
the internal state of an agent and a physical action whichgd®mthe environment. They show that the
agent will continue to deliberate only if it is possible thlaé computation will change the agent’s current
choice of physical action. They describe an ideal contrgbathm as one that will continue to perform the
computation with the highest expected net value until nomatation has positive expected value. When
there is no computation left, the external action that igggred according to the internal state resulting
from the last computation is executed. They view the metatleontrol problem as one of calculating the
expected values of various computations. Since the coripusacan be arbitrarily long, they approximate
the expected value computation using simplifying assusngti Particularly, they use the agent’'s own utility
estimation function to estimate the expected value of cdatjuns. They also make the analysis tractable
by making myopic assumptions such as the meta-greedy agke sitep assumptions which could lead to
underestimation of some computations. From their modil,dkear that the knowledge necessary to assign
values to computations resides in the probability distrdsufor the future utility estimates of the top-level
actions (external actions). They assume that these piidpatistributions can be obtained by gathering
statistics on past computations. The approach we take imvotk is a constructive one that Russell calls
meta-level rationality. By approximating the correct mietael decisions, the agents attempt to produce
high expected utility within the resource limits. Howevére agents provide no guarantees about their
optimality. In our model we choose between an external adind sequence of computational actions in
a single episode. We reason about and execute sequenceshafexjuences that consist of both external
actions and computational actions that can occur in a sefgkode. Like Russell and Wefald [39], our goal
is to choose the sequence of control and domain (externi@nadhat would maximize performance in the
long run.

Goldman et al [12] develop computationally feasible hdimsshat make greedy deliberation scheduling
decisions quickly in the context of SA-CIRCA, a self-adaptcontrol architecture. They model the meta-
level the deliberation scheduling problem as a MDP. Theirkwbowever, does not handle the problem of
trading off deliberation versus domain activities. In tHeamework, the execution subsystem does not com-
pete for resources with the deliberation system and theceldnvolve only deliberative activities. Schut
and Wooldridge [41] have independently observed that a Maldecision Process-based model towards de-
cision making is most similar to the bounded optimality modée abstract representation of states in our

13The performance profile of a traditional algorithm is preabiy a single step function.
personal communication with second author.

41

MDP for meta-level control allows us to bound the complexitghe problem. Schut and Wooldridge [41]
provide a useful and in-depth comparison of continuousbdedition scheduling [3], discrete deliberation
scheduling [39] and bounded optimality [38] methods foglragent meta-level control. Russell, Subra-
manian and Parr [38] cast the problem of creating resouncedied rational agents as a search for the best
program that an agent can execute. This definition of rafityndoes not depend on the method used to
create a program or the method it uses to do computation bybarthe behaviors that result from running
the program. In searching the space of programs, the agatitesy bounded-optimal agents, can be optimal
for a given class of programs or they can approach optimébpaance with learning, again given a limited
class of possible programs. The computation of boundedaptgents can still be very hard and additional
assumptions are made in this work to tackle the complexityr &pproach to meta-level control involves
construction of agents similar to these bounded optimahtzd&8]. We too do not assume complete acces-
sibility to the environment, which makes our approach atlie to a wide range of problems and delivers
an execution model which makes it relevant to real-worldiappons. While our model has targeted only
finite horizon problems (episodic environments), our maaelounts for computational resources and takes
advantage of the Markov Decision model to bound computation

Algorithms for sequential Reinforcement Learning (RL)kesave been studied mainly within a sin-
gle agent context [1, 50, 55]. Some of the later work desdribelow have applied RL methods such as
Qlearning to multi-agent settings. In many of these stydresagents learn about either simple dependent
tasks or independent tasks. Sen et al. [42] describe 2-&fymrit pushing experiments, where the agents
try to make the block follow a line by independently applyiiogces to it. Tan [52] reports on grid-world
predator-prey experiments with multi-agent RL, focusimgtiee sharing of sensory information, policies,
and experience among the agents. Unfortunately, justtsligjarder prisoner’s dilemma problems [40]
have uncovered discouraging results. The standard Qhubgaatgorithms are not guaranteed to converge
in non-stationary environments where all agents are legraimultaneously. The agents had to keep de-
tailed accounts of their entire history and interactiortgrat, in addition to implementing long exploration
schedules to achieve convergence.

Crites and Bartoq] apply multi-agent RL algorithms to elevator dispatchimgyere each elevator car
is controlled by a separate agent. The agents don’'t commtenigith each other and an agent treats the
other agents as a part of the environment. The problem is lematgd by the fact that their states that
are not fully-observable and they are non-stationary dughsmging passenger arrival rates. Littman and
Boyan [25] describe a distributed RL algorithm for packeitiog, using a single, centralized Q-function,
where each state entry in the Q-function is assigned to aindtie network which is responsible for storing
and updating the value of that entry. In our work, the entirurtion, not just a single entry, is stored
by each agent. Littman [26] experiments with Q-learningragi¢hat try to learn a mixed strategy that is
optimal against the worst possible opponent in a zero-syoiayer game.

Lagoudakis and Littman [24] describe a RL-based approackiyinamically selecting the right algo-
rithm for a given instance based on instance features whilanizing overall execution time. This problem
has several interesting overlaps with the meta-level obptoblem although they only reason about a single
problem instance at any point in time. The sequential naitiiee decision process in our work complicates
the reasoning process. Other multi-agent learning relsées used purely heuristic algorithms for complex
real-world problems such as learning coordination stiatep}7] and communication strategies [22] with
varying success.

The meta-level control architecture described in this paliféers from the above mentioned works in
that it uses RL to make meta-level control decisions in a dergequential decision making, cooperative
multi-agent environment. It emphasizes the necessitylferrative ways of performing computations and

42

it dynamically reasons about the cost of computation basdti@current context.

Many researchers in Al have addressed the need for abstradt solve large-scale planning problems.
Abstraction is the process by which a system simplifies itssittn making process by choosing only the
information relevant to decision making process and igrpthe irrelevant information. In the RL litera-
ture, temporal abstraction and hierarchical control haenhused to combat the curse of dimensionality in a
principled way. The aim of hierarchical RL is to discover axghloit hierarchical structure within a Markov
decision problem. The options formalism of Sutton, Preaug &ingh [51] describes closed-loop policies
for taking action over a period of time. They show that omican be used interchangeably with primitive
actions in both planning methods and learning methods. dinedation of the theory of options is provided
by the existing theory of Semi-Markov Decision Process@&8$¥Bs) and associated learning methods. Parr
and Russell [31] developed an approach to RL in which thecigsliconsidered are constrained by hier-
archies of partially specified machines. This allows for tise of prior knowledge to reduce the search
space. The SMDP -based framework allows knowledge to beferaed across problems and for compo-
nent solutions to be recombined to solve larger and more boatgd problems. The MAXQ framework
of Dietterich [8] relies on creating a hierarchy of SMDPs whaolutions can be learned simultaneously.
He shows that hierarchical RL using the MAXQ framework camrbeeh faster and more compact than flat
RL. He also shows that recursively optimal policies can mdgosed into recursively optimal policies of
individual subtasks and these subtask policies can beagwkerever the same subtask arises.

These works emphasize the importance and advantages oddiost in RL. The meta-level control
work however is different from these works because it usefatt representation of the state based on the
similarity of states. In other words, A number of the ager#al states are represented by a single abstract
state because of their similarity of their feature valuesl(eding time) which is different from the temporal
abstractions described in the above three works.

6 Conclusions

This paper explores the issue of meta-level control in cemphents situated in social and dynamic envi-
ronments. As discussed in the introduction, complex agemsoncurrently perform several different goals
of varying worth and deadlines, dynamically choose altermays to achieve these goals and make choices
on how much effort to spend on deliberative actions. Deéiiens about the tasks may involve resource-
intensive computation. Also, the control decisions madékeyagent may have down-stream effects on the
availability of resources and processing available toriutasks. Meta-level control is the ability of an agent
to optimize its long-term performance by choosing and sedug its deliberation and execution actions
appropriately. It reasons about the cost of computatiotl Ehveels as a first-class entity.

This paper establishes the following hypothedieta-level control with bounded computational over-
head allows complex agents to solve problems more effigiantlynamic open multi-agent environments.
Meta-level control is computationally feasible througle tiise of an abstract representation of the agent
state. This abstraction concisely captures critical imh@tion necessary for decision making while bound-
ing the cost of meta-level control and is appropriate for irsautomatically learning the meta-level control
policies.

Main Results

A meta-level agent architecture for bounded-rational &gehich supports alternative approaches for delib-
erative computation is described. The meta-level contasllhmited and bounded computational overhead

43

and supports reasoning about costs of planning, schedaidgegotiation as first-class entities. Accounting
for costs of reasoning at all levels is necessary for guaedmg the performance characteristics of real-time
systems. An experimental testbed to evaluate the agemirpefce was set up using the MASS simulation
environment where the architecture described was fulliémented. Tasks of varying complexity were
used to study the performance of the architecture usingusupolicies for meta-level control. A determin-
istic policy was used as a base-line for evaluation. An agdile deciding to trade off deliberation versus
execution action is in effect reasoning on whether to retamtrol of its resources or to decide to perform
a task to gain the associated utility while at the same timmgiup control of the required resources. One
of the interesting contributions of this work is the way itpéoits knowledge of the tasks from the task
structures. The state features are computed using thdssivblich are specific to the task being analyzed.

This paper establishes that meta-level control in reseocmded rational agents is beneficial using em-
pirical evidence. Two context sensitive hand-generatedlisiic strategies are defined: the Naive Heuristic
strategy (NHS) that uses myopic information to make metatleontrol action choices; and the Sophisti-
cated Heuristic strategy (SHS) that uses current statenvaton and predictive information about the future
to make non-myopic action choices. The heuristic strategignificantly outperform ({0.05) determin-
istic and random strategies confirming the importance obr®itel control. We also experimentally show
that a few abstract features which accurately capture #te stformation and task arrival model enable the
meta-level control component to make computationallyAgbdecisions which significantly improve agent
performance.

An observation made from the experiments is that the cosbmifcl actions in terms of resources used
is an important factor in determining the need for metalleemtrol. Meta-level control is advantageous
in environments where the control costs are high enoughatdtk resources available for domain actions
are significantly constrained. When the cost of controlamstibecomes significantly inexpensive in a non-
stationary environment, the hand-generated rules have tewvritten to account for this fact. The learning
method, on the other hand, can automatically constructiaypeffline which adapts to the new costs.

This work also provides insight into the usefulness of micément algorithms in complex multi-agent
sequential decision-making problems. A reinforcementieg approach which equips agents to automat-
ically learn meta-level control policies is described. STbmpirical algorithm is a modified version of the
algorithm developed by [46] for a spoken dialog system. Bwthblem domains have the bottle neck of
collecting training data. The algorithm optimizes the rdeigel control policy based on limited training
data consisting of 3000 runs. The utility of this approacbemonstrated experimentally by showing that
the meta-level control policies that are automaticallyed by the agent perform as well as if not better
than the carefully hand-generated heuristic policieseapttD.05 level. One surprising and useful result was
that the agents were able to learn useful meta-level coptiaties with a small amount of training (3000
episodes). The sequential effects of the problem domaie wexified by showing that varying the value of
future rewards significantly affects the agent’s perforogan

Applying this work

This paper shows that meta-level control can be effectiveeat-time environments, characterized by un-
certainty and limited computational resources. In theser@mments, computational commodities such as
time, memory, or information can be traded for gains in theieaf computed results. It also shows that

efficient and inexpensive meta-level control which reasdrmut the costs and benefits of alternative compu-
tations leads to improved agent performance in resouraedexr environments. This is a flexible, run-time

approach which seeks to optimize rather than satisficeignlquality.

44

This work also shows that a meta-level control policy cardaeried in a non-deterministic, inaccessible
and model-free environment. In an inaccessible environjr@magent must maintain some internal state
to try to keep track of the environment, since it is not pdssibr states to be identified just based on
percepts. The learning strategy allows for meta-levelrobim uncertain environments whose model is not
available. The empirical reinforcement learning algarthllows the agent to construct a partial model of
the environment and use the information to define effectitima policies.

Additionally, the paper has identified scenarios in whiakdictive information about future task arrivals
has limited utility. If the environment is characterized high frequency of arrival of tasks with tight
deadlines, then the meta-level controller will constahdye to reevaluate its decisions every time a new task
arrives. These decisions are valid when made within a myapitext because of the dynamic environment.
Hence predictive information about the future does not semdly improve performance. If the environment
is characterized by low frequency of arrival of tasks and#is&s have loose deadlines, then the environment
is loosely constrained. In such environments, the dowastreffects of decisions is minimal, since the
tasks are spaced out enough so that there is minimal camenitresources by multiple tasks. This means
predictive information about the future does not providg aiditional performance advantage.

We plan to extend this work by introducing more complex feadithat will make the reasoning process
more robust. And finally, we plan to reason about coordimatmrganizational adaptation and commu-
nication as control actions [34] to achieve our overall gofintroducing efficient meta-level control in
cooperative multi-agent systems.

7 Acknowledgments

We would like to thank Professor Shlomo Zilberstein for hidphin constructing the model described in
Section 2.1 and Professor Andy Barto for his valuable contsnemthe Reinforcement Learning Algorithm.
We also thank the two anonymous reviewers and Dr. Claudidr@ah for their detailed comments.

"Effort sponsored by the Defense Advanced Research Psofsgency (DARPA) and Air Force Re-
search Laboratory Air Force Materiel Command, USAF, undgea@ment number #F30602-99-2-0525
P00005. The U.S. Government is authorized to reproduce sticbdte reprints for Governmental pur-
poses notwithstanding any copyright annotation theredre views and conclusions contained herein are
those of the authors and should not be interpreted as neitgsspresenting the official policies or en-
dorsements, either expressed or implied, of the Defensamhd Research Projects Agency (DARPA), Air
Force Research Laboratory or the U.S. Government.”

References

[1] A. Barto, R. Sutton, and C. Anderson. Neuronlike adaplements that can solve difficult learning
control problemslEEE Transactions on Systems, Man, and Cyberne8t4C-13:834-846, 1983.

[2] D. Bertsekas and J. TsitsikliNeuro-Dynamic ProgrammingAthena Scientific, Belmont, MA, 1996.

[3] M. Boddy and T. Dean. Decision-theoretic deliberatiarhexduling for problem solving in time-
constrained environmentértificial Intelligence 67(2):245-286, 1994.

[4] C. Boutlier. Sequential Optimality and CoordinationMultiagent Systems. Ifroceedings of the
Sixteenth International Joint Conference on Atrtificialditigence 1999.

45

[5] R. Crites and A. Barto, "Improving Elevator Performaridsing Reinforcement Learning”, Multi-ag
In Advances in Neural Information Processing Systqgmages 8: 1017-1023", 1996.

[6] T. Dean and M. Boddy. An analysis of time-dependent pilagin In Proceedings of the Seventh
National Conference on Artificial Intelligence (AAAI-8@Rpges 49-54, Saint Paul, Minnesota, USA,
1988. AAAI Press/MIT Press.

[7] K. Decker. Taems: A framework for environment centeredlgsis and design of coordination mech-
anisms. InFoundations of Distributed Artificial Intelligence, Chaptl6 pages 429-448. G. O'Hare
and N. Jennings (eds.), Wiley Inter-Science, January 1996.

[8] T. Dietterich. Hierarchical reinforcement learningtiwvithe MAXQ value function decomposition.
Journal of Atrtificial Intelligence Research3:227-303, 2000.

[9] J. Doyle. What is rational psychology? toward a modermtalephilosophy Al Magazineg 4(3):50-53,
1983.

[10] A. Garvey and V. Lesser. Issues in design-to-time tmaé scheduling. IMAAI Fall 1996 Symposium
on Flexible ComputationNovember 1996.

[11] M. Georgeff and A. Lansky. Reactive reasoning and plagnIn Proceedings of the Sixth National
Conference on Artificial Intelligence, Seattle, \Wages (2) 677—682, 1987.

[12] Goldman, R.; Musliner, D.; and Krebsbach, K. Managimjjree self-adaptation in real-time environ-
ments. INLNCS volume 2614. SV. 6-23, 2003.

[13] I. J. Good. Twenty-seven principles of rationality. \nP. Godambe and D. A. Sprott, editoFun-
dations of statistical inferencg@ages 108-141. Holt Rinehart Wilson, Toronto, 1971.

[14] E. Hansen and S. Zilberstein. Monitoring anytime aipons. SIGART Bulletin7(2):28-33, 1996.

[15] D. Harada and S. Russell. Extended abstract: Learrsiagch strategies. IRroc. AAAI Spring
Symposium on Search Techniques for Problem Solving undmrtamty and Incomplete Information,
Stanford, CA, 19991999.

[16] B. Hayes-Roth. Opportunistic control of action in ittigeent agents. IiProceedings of IEEE Transac-
tions on Systems, Man and Cybernetjgages SMC-23(6):1575-1587, 1993.

[17] B. Hayes-Roth, S. Uckun, J.E. Larsson, D. Gaba, J. Bad, J. Chien. Guardian: A prototype in-
telligent agent for intensive-care monitoring. Pnoceedings of the National Conference on Artificial
Intelligence pages 1503-1511, 1994.

[18] B. Horling, V. Lesser, and R. Vincent. Multi-agent syst simulation framework. [66th IMACS World
Congress 2000 on Scientific Computation, Applied Mathematnd SimulationEPFL, Lausanne,
Switzerland, August 2000.

[19] B. Horling, V. Lesser, R. Vincent, and T. Wagner. Thet¥éal-Time Agent Control Architecture.
Autonomous Agents and Multi-Agent Systet¢1):35—92, 2006.

[20] E. Horvitz. Reasoning under varying and uncertain ues® constraints. IiNational Conference on
Artificial Intelligence of the American Association for AAAI-88) pages 111-116, 1988.

46

[21] L. Kaelbling. Learning in Embedded Systeni®hD thesis, Stanford University, 1990.

[22] M. Kinney and C. Tsatsoulis. Learning communicatioratggies in multiagent systems, Applied
Intelligence pages 9(1):71-91, 1998.

[23] K. Kuwabara. Meta-level Control of Coordination Protés. InProceedings of the Third International
Conference on Multi-Agent Systems (ICMAS$S9@pes 104—-111, 1996.

[24] M. Lagoudakis and M. Littman. Reinforcement learnimy &lgorithm selection. IfProceedings of
the Seventeenth National Conference on Atrtificial Intelige (AAAI-200Q)page 1081, 2000.

[25] M. Littman and J. Boyan. A distributed reinforcemerdareing scheme for network routing. Technical
Report CS-93-165, 1993.

[26] M. Littman. Markov games as a framework for multi-agesinforcement learning. IRroceedings
of the 11th International Conference on Machine Learnind.{84), pages 157-163, New Brunswick,
NJ, 1994. Morgan Kaufmann.

[27] M. Mataric. Reinforcement learning in the multi-rolsdmain, InAutonomous Robagtpages 4(1):73-
83, 1997.

[28] D. J. Musliner, J. A. Hendler, A. K. Agrawala, E. H. DugfeJ. K. Strosnider, and C. J. Paul. The
Challenges of Real-Time Al. IlEEE Computerpages 28(1):58-66, 1995.

[29] D. Musliner. Plan Execution in Mission-Critical Donmai. InWorking Notes of the AAAI Fall Sympo-
sium on Plan Execution - Problems and IssUE396.

[30] Y. Nakakuki and N. Sadeh. Increasing the efficiency ofidated annealing search by learning to
recognize (un)promising runs. RProceedings of the Twelfth National Conference on Artifilsigelli-
gence (AAAI-94)pages 1316-1322, 1994.

[31] R. Parr and S. Russell. Reinforcement learning witmanizhies of machines. In Michael I. Jordan,
Michael J. Kearns, and Sara A. Solla, editokslvances in Neural Information Processing Systems
volume 10. The MIT Press, 1997.

[32] M. L. Puterman.Markov decision processes - discrete stochastic dynanoigramming.Games as a
Framework for Multi-Agent Reinforcement Learniniphn Wiley and Sons, Inc., New York, 1994.

[33] A. Raja. Meta-level Control in Multi-Agent SystemdPhD thesis, University of Massachusetts at
Amherst, Amherst, Massachusetts, June 2003.

[34] A.Raja, G. Alexander, and V. Mappillai. Leveraging Biem Classification in Online Meta-Cognition.
In Proceedings of AAAI 2006 Spring Symposium on Distributaed Bhd Schedule Management, Stan-
ford, pages 97-104, March 2006.

[35] A. Raja, V. Lesser, and T. Wagner. Toward Robust Agemté in Open Environments. IRro-
ceedings of the Fourth International Conference on AutammsnAgentspages 84-91, Barcelona,
Catalonia, Spain, July, 2000. ACM Press.

[36] S. Russell and P. NorvidArtificial Intelligence: A Modern ApproachPrentice Hall, 1995.

47

[37] S. Russell and E. Wefaldo the right thing: studies in limited rationalityMIT press, 1992.

[38] S. J. Russell, D. Subramanian, and R. Parr. Provabiynded optimal agents. IRroceedings of the
Thirteenth International Joint Conference on Artificiateéfigence (IJCAI-93)pages 338—344, 1993.

[39] S. Russell and E. Wefald. Principles of metareasonihg.Proceedings of the First International
Conference on Principles of Knowledge Representation aaséhing pages 400-411, 1989.

[40] T. Sandholm and R. Crites. Multiagent reinforcemerariéng in the iterated prisoner’s dilemma,
Biosystems JournaB7:147-166, 1995.

[41] M. Schut and M. Wooldridge. The control of reasoning @saurce-bounded agent&nowledge
Engineering Reviewl 6(3):215-240, 2001.

[42] S. Sen, M. Sekaran, and J. Hale. Learning to coordingtewt sharing information. Ifroceedings
of the Twelfth National Conference on Artificial Intelligenpages 426—431, Seattle, WA, 1994.

[43] H. Simon. From substantive to procedural rationalityn Method and Appraisal in Economics (S. J.
Latsis, Ed.) Cambridge University Press, pages 129-148.19

[44] H. Simon and J. Kadane. Optimal problem solving seadlhor-none solutions. Artificial Intelli-
gence, 6:235-247,1974.

[45] H. Simon. Models of Bounded Rationality, Volume The MIT Press, Cambridge, Massachusetts,
1982.

[46] S. Singh, M. Kearns, D. Litman, and M. Walker. Empirieahluation of a reinforcement learning spo-
ken dialogue system. IRroceedings of the Seventeenth National Conference diichattintelligence
pages 645-651, 2000.

[47] T. Sugawara and V. Lesser. On-line learning of coonitimaplans. InProceedings of the 12th Inter-
national Workshop on Distributed Artificial Intelligenceages 335—345,371-377, 1993.

[48] R. Sutton and A. BartoReinforcement LearningMIT Press, 1998.

[49] R. Sutton. Temporal Credit Assignment in Reinforcement LearniRfpD thesis, University of Mas-
sachusetts Amherst, 1984.

[50] R. Sutton. Learning to predict by the method of tempditierences.Machine Learning 3(1):9-44,
1988.

[51] R. Sutton, D. Precup, and S. Singh. Between MDPs and-b#dits: A framework for temporal
abstraction in reinforcement learningttificial Intelligence 112(1-2):181-211, 1999.

[52] M. Tan. Multi-agent reinforcement learning: Indepentvs. cooperative agents. Rioceedings of
the Tenth International Conference on Machine Learppapges 330-337, 1993.

[53] R. Vincent, B. Horling, and V. Lesser. An agent infrastiure to build and evaluate multi-agent sys-
tems: The java agent framework and multi-agent system siimulinLecture Notes in Artificial Intel-
ligence: Infrastructure for Agents, Multi-Agent Systemrsd Scalable Multi-Agent Systemgolume
1887. Wagner and Rana (eds.), Springer,, January 2001.

48

[54] T. Wagner, A. Garvey, and V. Lesser. Criteria-Directdduristic Task Scheduling.International
Journal of Approximate Reasoning, Special Issue on Scimggul9(1-2):91-118, 1998. A version
also available as UMASS CS TR-97-59.

[55] C. Watkins.Learning from Delayed Reward®hD thesis, Cambridge, England, 1989.

[56] S.D. Whitehead and D. H. Ballard. Learning to perceind act by trial and erroMachine Learning
7(1):45-83, 1991.

[57] X. Zhang and V. Lesser. Multi-linked negotiation in ritdgent system.Proceedings of the First
International Joint Conference on Autonomous Agents AnliAMient Systems (AAMAS 200gages
1207-1214, 2002.

[58] S. Zilberstein and A. Mouaddib. Reactive control of dymic progressive processing. IFCAI, pages
1268-1273, 1999.

[59] S. Zilberstein and S. J. Russell. Efficient resourcara®d reasoning in AT-RALPH. In James
Hendler, editorProceedings of the First International Conference of Adidi Intelligence Planning
Systems (AIPS 92)ages 260-268, College Park, Maryland, USA, 1992. Morgaufikiann.

[60] S. Zilberstein and S. J. Russell. Optimal compositibmeal-time systems.Artificial Intelligence
82(1-2):181-213, 1996.

[61] M. Zinkevich. Online convex programming and genemdimnfinitesimal gradient ascemhternational
Conference in Machine Learnin§29-936, 2003.

49

