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Abstract: Many studies highlighted the importance of mathematical justification in problem-
solving. This paper describes students' mathematical justifications for solving derivative prob-
lems collaboratively, especially before and after the use of technology was allowed. We asked 
two undergraduate students who were preservice mathematics teachers in a paired problem-
solving to see how they solved a derivative problem. To better understand the role of technology, 
we asked them to solve the problem without technology in the first session and with technology in 
the second. The pair progressed from the perceptual level of justification to the symbolic exam-
ple with generalization level as the technology entered the discussions. The pair used technology 
to validate claims and exploring conjectures, yet it did not directly contribute to how they revised 
inaccurate claims or offered better justifications. Further studies could utilize a task that explic-
itly includes instructions on technology to promote mathematical justifications during CPS.  
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INTRODUCTION 

Mathematical justification, an activity to provide arguments to support or refute a mathematical 
claim, was shown to be essential in promoting good reasoning skills in problem-solving (Brodie, 
2010; Cirillo et al., 2016). By providing justification for a claim, students try to find reasons for 
their claims and do not merely accept the ideas they receive. Several studies stated that mathe-
matical justification determines the success of problem solving, especially in the collaborative 
ones (Chiu, 2008; Díez-Palomar et al., 2021). Chiu (Chiu, 2008) analyzed group problem solving 
of high school students and investigated the factors that most influence the success of a group in 
reaching a solution. This research found that justification had the greatest effect. Additionally, 
another study by Díez-Palomar et al. (2021) found that student interactions dominated by math-
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ematical justification were closely related to whether or not a group's answer was correct in solv-
ing problems because students checked the validity of the claim and used it as the basis for their 
answer. Thus, the group's success in solving problems cannot be avoided from the existence of 
mathematical justification which provides space for students involved in problem solving to 
question why the steps they take can be done and are valid to reach the answer. By justifying 
claims, students would try to think why their claims are valid using their prior mathematical 
knowledge and persuade others to accept them (de Villiers, 1990; M. E. Staples et al., 2012).  

Some challenges were faced in the mathematics classroom despite the importance of mathemati-
cal justifications in problem solving. From studies involving teachers, it was found that encour-
aging students to justify was difficult for teachers (Brodie, 2010; Martino & Maher, 1999). It was 
because students were not familiar with questioning their own claims or to criticize if an argu-
ment was mathematically acceptable without teachers’ questioning to provoke them. In addition, 
students tended not to make or ask for justification for the claims or steps they took during the 
collaborative problem-solving process (Hamidy & Suryaningtyas, 2016; Nafi’an, 2020; Styl-
ianou & Blanton, 2002). Students did not try to convince others or explain why the answer was 
correct but tended to only go through the process of solving problems by focusing on getting an 
answer rather than to convince or validate it.  

Many studies suggested using technology to support students' problem-solving, especially dy-
namic software (NCTM, 2020). The use of such technology helps students to interact with math-
ematical objects and explore them concerning the problems they face. Recent studies have also 
demonstrated that the use of technology such as digital learning models effectively supports stu-
dents in solving problems aligned with the curriculum (Effendi et al., 2024), while Dynamic Ge-
ometry Environments (DGE) assist students in abstracting mathematical ideas through visual and 
interactive exploration (Dintarini et al., 2024). Regarding mathematical justification, technology 
allows students to examine the data provided, create a temporary claim, and justify it under sev-
eral possibilities (Erbas et al., 2020) or even an infinite range of possibilities (Noss et al., 2009).  

In collaborative problem-solving, technologies can help promote collaboration by giving more 
opportunities for practical mathematics activities, like manipulating values or objects, bridging 
into a more abstract and complex phase (Geiger et al., 2010; Jacinto & Carreira, 2021; Olive et 
al., 2010). However, technology's benefits do not automatically happen once it is introduced or 
used. Despite being shown to help students develop mathematical thinking even for complex 
mathematics (Erbas et al., 2020), we still need careful analysis of what students can achieve 
through technology (Sinclair et al., 2009) and whether students' justification of claims happened, 
even without the use of technology (Hollebrands et al., 2010). Furthermore, studies exploring 
technology with the focus of collaborative context was still limited (Bray & Tangney, 2017). 
Therefore, we believe it is crucial to analyze the role of technology through the lens of mathe-
matical justification. In this paper, we explored students' mathematical justifications while solv-
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ing derivative problems collaboratively without and with access to technology. Further, we 
looked upon the quality of mathematical justifications and how they progressed before and after 
the use of technology. By addressing this issue, how students should be supported in mathemati-
cally justifying claims during their problem-solving process can be learned, especially when they 
use technology during the process.  

 

LITERATURE REVIEW 

Mathematical Justifications 

There are two primary concerns in understanding mathematical justification. First, mathematical 
justification can be seen as arguing against or proving a claim or as the result of that process. 
This interpretation is consistent with the assertion made by Staples et al. (Staples et al., 2012) 
that mathematical justification is an activity or argument that uses statements or accepted math-
ematical reasoning to demonstrate or disprove a claim's truth. Similarly, Yackel and Cobb 
(Yackel & Cobb, 1996) defined mathematical justification as a disagreement or agreement re-
garding an acceptable mathematical explanation for a proposed mathematical approach. Second, 
the "acceptance" of the participants in the activity is required for mathematical justification. The 
foundation of this acceptance is that these individuals agree that a particular mathematical asser-
tion or response is reasonable (K N Bieda et al., 2022). Therefore, the social context in which 
mathematical activities are carried out is also considered in mathematical justification (Simon & 
Blume, 1996; Staples & Conner, 2022; Thanheiser & Sugimoto, 2022). 

Mathematical justification is both a social and a cognitive activity. In completing mathematical 
justification, other than involving discernment in contending to help (or disprove) a case, one ex-
pects work to persuade parties beyond himself who engage with that action (Roy et al., 2014; 
Sowder & Harel, 1998). There are times when mathematical justification is not always logically 
complete because of the involvement of the community where the activity is carried out and so-
cial considerations (Jaffe, 1997; Kilpatrick et al., 2001). For instance, in a study by Sowder and 
Harel (Sowder & Harel, 1998), students were asked to determine whether a rhombus would re-
sult from connecting the midpoints of the sides of an isosceles trapezoid. By drawing an isosce-
les trapezoid, marking the midpoints of the sides, and demonstrating that the points were con-
nected to form a rhombus, most students justified their answer to this question. Participants in 
this study were attracted to persuade other participants of his mathematical cases despite the fact 
that what they were doing was inaccurate. 

According to Walton (Walton, 2001), the level of confidence or the degree to which the argu-
ment is convincing (plausibility) determines which type of argument constitutes reasonable 
mathematical justification. In another way, the students' mathematical justifications can be of 
varying quality, and the most convincing justification is the one with the highest plausibility lev-
el. Several studies have identified levels of mathematical justification in this regard. Simon and 
Blume (Simon & Blume, 1996) classified students' mathematical justification as level 0 (without 
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justification), level 1 (appeal to external authority), level 2 (empirical demonstration), level 3 
(deductive justification expressed through examples), and level 4 (deductive justification inde-
pendent of example). Vale et al. (Vale et al., 2017) found similar levels, while Sowder and Harel 
(Sowder & Harel, 1998) and Carpenter et al. (Carpenter et al., 2005) regarded them as types ra-
ther than levels but explained that one type provided a better justification than the others.  

To assist us in describing the variety of mathematical justifications while solving a problem in 
this study, we used five levels of mathematical justification adapted from Vale et al. (Vale et al., 
2017) (a brief description can be found in Table 1). Students at level 0 simply accepted a particu-
lar claim without attempting to justify its truth. At level 1, students say a claim is valid because it 
comes from someone other than themselves, like a teacher or a textbook. At this level, students 
assume that if a mathematical claim comes from a more "authoritative" source, it will be valid. 
For instance, a student uses a particular strategy because his teacher previously suggested it. At 
level 2, students provide justification based on empirical or perceptual examples. Students 
demonstrate how what they see supports a claim and demonstrate it to others. Students, for in-
stance, back up the claim that a quadrilateral picture is a model of a square because the sides are 
the same length. He may persuade others by estimating the lengths of the sides, which are simi-
lar, using some estimating instruments. This student justifies by citing what he experiences and 
sees when interacting with the quadrilateral illustration. 

Students begin using symbolically expressed examples at level 3, but these examples have not 
been generalized. Sowder and Harel (Sowder & Harel, 1998) gave an illustration of justification 
at this level when participants were inquired as to whether 𝑛ଶ − 79𝑛 + 1601 is prime for any val-
ue of 𝑛. In this model, a participant supported the case by giving instances of the qualities 𝑛ଶ −
79𝑛 + 1601 for a few values of 𝑛 and presumed that the computation generally gave indivisible 
numbers without considering all potential values of 𝑛. At this level, the participant affirmed his 
cases to others by utilizing examples, and because he didn't utilize generalization, he didn't see 
that for 𝑛 = 80, 𝑛ଶ − 79𝑛 + 1601 is undoubtedly not a prime number. At level 4, students use def-
initions, theorems, or mathematical logic rules to justify their claims or make generalizations that 
do not rely on examples. Vale et al. (Vale et al., 2017) stated that students found this level to be 
the most challenging because they did not believe this justification was necessary for other stu-
dents to accept their claims. 

 

Justification 
Code 

Description 

T Trigger of a situation for justification 

C A claim made in the situation for justification 

L0 No justification (Not justifying or accepting a claim without explaining why a claim is rea-
sonable). 

L1 Appeal to authority (Stating the truth of claims using other people's authority or other 
sources such as teachers, books, or friends). 
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L2 Empirical or perceptual demonstration (Stating the truth of claims based on the demonstra-
tion of perceptual examples, e.g., objects, pictures, or gestures). 

L3 Symbolic example without generalization (Stating the truth of a claim by using some sym-
bolic examples without generalizing those examples) 

L4 Symbolic example with generalization (Stating the truth of a claim by using definitions, 
theorems, or rules of mathematical logic or generalizations that do not depend on a partic-
ular example) 

Table 1: Coding scheme 

 

Collaborative Problem Solving (CPS) 

In this section, we try to elaborate on literatures in understanding students’ collaborative problem 
solving. Some literature defined CPS as the ability a person has to solve problems together, 
while some other literature defined it as an activity to solve problems together. PISA 2015 de-
fined CPS as an individual capacity in which two or more individuals are involved in a process 
to solve a problem. PISA defined CPS by stating that CPS capabilities should include the sharing 
of knowledge, skills, and efforts among individuals to achieve solutions. CPS competency is as-
sessed using a 4 x 3 matrix (OECD, 2017). In the matrix, rows represent individual problem 
solving skills (exploring and understanding, representing and formulating, planning and imple-
menting, monitoring and reflecting). Columns represent collaboration skills (building and main-
taining shared understanding, taking appropriate action to solve problems, and building and 
maintaining team organization). Unlike PISA, ATC21S (Assessment for Teaching in the 21st 
Century) defined CPS more generally as "approaching problems responsively by working to-
gether and exchanging ideas" (Griffin & Care, 2015). In this sense, ATC21S sees CPS as a col-
lective problem-solving activity and the competence to approach that problem in a group.  

Other sources, which focused on collaborative problem solving in mathematics, positioned CPS 
as a situation in which a process that students undertook was investigated. The theoretical review 
of those studies that discussed CPS limits it as a joint problem-solving activity. However, the 
quality of certain activities was identified using some indicators similar to ATC21S and PISA. 
For example, a study by Mercier et al. (2017) incorporated the theory of perspective taking by 
group members to identify successful CPS interactions in the mathematics classroom. Another 
example was the study by Taylor and McDonald (2007), which identified students' problem-
solving skills in groups using a framework by Polya similar to PISA. Rather than viewing CPS 
as an overall competency, these studies considered CPS as the activity in which the focus of the 
study occurred or was investigated. Participants in such studies were asked to solve math prob-
lems or perform certain math tasks in groups. Participants' interactions or performance were rec-
orded and analyzed during the ongoing problem-solving process. 

In the studies, a CPS was an environment or situation in which participants solve a problem or 
task together, and the task or problem was designed for the aim of the study. Similarly, in this 
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paper, the researcher did not aim to analyze CPS as an individual ability, but as a situation or 
process in which mathematical justification was observed. 

 

Theoretical Framework 

In this section, we will discuss theories on mathematical justifications, collaborative problem 
solving, and technology, as well as how they were related to each other. Mathematical justifica-
tion in Collaborative Problem Solving can be understood through the lens of social constructiv-
ism as proposed by Piaget (1970) and Vygotsky (1930). Both scholars emphasize that learning is 
an active process of knowledge construction, although they differ in their perspectives on the 
role of social interaction in individual cognitive development. Piaget (Piaget, 1970) asserts that 
learning is primarily an individual process driven by cognitive conflict and self-discovery, even 
though such conflict can arise from social interaction. In a collaborative setting, students encoun-
ter diverse perspectives that create disequilibrium (cognitive imbalance), prompting them to con-
struct new understandings through reasoning and justification. According to Piaget, peer interac-
tion facilitates deeper cognitive engagement as students work through contradictions and reestab-
lish equilibrium. 

On the other hand, social constructivism, as formulated by Lev Vygotsky in 1978, emphasizes 
the role of social interaction in individual cognitive development. Language and culture serve as 
fundamental frameworks through which individuals acquire knowledge. According to Vygotsky, 
language and culture play crucial roles in shaping intellectual development. Learning concepts 
are transmitted through language, interpreted, and understood through experiences and interac-
tions within a cultural environment. Social constructivism acknowledges the social aspects of 
learning, emphasizing conversation, interaction with others, and the application of knowledge as 
essential elements for achieving learning goals (Rytilä, 2021). 

In contrast to Piaget’s constructivism, which views knowledge as something that students con-
struct independently based on their experiences, Vygotsky’s social constructivism posits that 
knowledge is developed through collaboration—whether with peers, teachers, or more knowl-
edgeable individuals. Social constructivism is a variant of cognitive constructivism that high-
lights the collaborative nature of learning under the guidance of a facilitator or in cooperation 
with other students. Justification emerges as students engage within the Zone of Proximal Devel-
opment (ZPD)—the space between what they can achieve independently and what they can 
achieve with the support of a more knowledgeable other. Language and discussion play a crucial 
role in this process, as students use verbal justification to negotiate and internalize mathematical 
concepts. Vygotsky (Lev Vygotsky, 1930) introduced the concept of internalization, referring to 
the process by which individuals assimilate knowledge, skills, values, or ways of thinking from 
their social environment (through interaction with others) into their own cognitive system. 
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In CPS, these two perspectives complement each other. Piaget’s theory explains how students re-
fine their justifications through cognitive conflict, while Vygotsky’s theory highlights how scaf-
folding and peer discussions can enhance the development of higher-level justifications. This 
study builds on these frameworks by analyzing how students construct and refine their mathe-
matical justifications in a collaborative setting, both with and without the use of technology.  

When students are involved in CPS, they will interact with students in their group. In this pro-
cess, students will think about solving the problem while comparing it with what their friends 
think. During discussions in the CPS stages, students' statements may be questioned or asked for 
reasons. This question initiates what is called a situation for justification (Cobb, Wood, et al., 
1992). The person who questions or asked for reasons acts as a trigger for the justification. As a 
response to this, students will come up with mathematical justifications that they think of in or-
der to convince other students that their claims are correct. 

When the mathematical justification put forward by the student is agreed upon by the group, a 
co-constructed justification is formed (Mueller, 2009; Yackel, 2004). This agreement or ac-
ceptance might be indicated by an explicit statement or implicitly through the use of the justified 
claim as a new data in the next discussion (Cobb et al., 2010). A similar concept was stated by 
Tatsis and Koleza (2008) and Yackel and Cobb (Yackel & Cobb, 1996) as mathematical justifi-
cation norms. Norm, in this study, was defined as a regularity in collective activities in the class-
room. Mathematical justification norms can be understood as regularities in collective activity 
when a mathematical method or claim needs to be supported by a reason (McClain & Cobb, 
2001). In other words, mathematical justification in a CPS situation can be seen as a mathemati-
cal justification that is built together by a group or as a regularity of mathematical justification 
activity being observed when a group solves a problem. Mathematical justifications that are con-
structed together or mathematical justification norms determine whether the ongoing CPS pro-
cess can continue to the next stage or needs to return to the previous stage (McClain & Cobb, 
2001; Partanen & Kaasila, 2015; Roy et al., 2014; Tatsis, 2007). 

The involvement of technology while students are justifying claims during CPS might bring dif-
ferent issues. Some studies revealed that technology improved the problem solving process. For 
instance, a study by Nguyen et al. (Nguyen et al., 2023) analyzed the use of GeoGebra in learn-
ing and solve problems on geometry. They found that utilizing GeoGebra helped students in 
problem solving, especially in questioning the process and actively participating in the exchange 
of ideas, activities supporting mathematical justifications. Another study by Olive et al. (Olive et 
al., 2010) highlighted the role of technology in being an ‘external authority” that empowers stu-
dents to more or new mathematical practices. For instance, they mentioned the way technology 
could provide visualization of an abstract concept that made this concept more approachable to 
students. This visualization allows students to a new mathematical practice to manipulate a sup-
posedly abstract concept using their visual perceptions. In problem solving, such activity could 
help students to justify a claim using their visual perceptions and reason its relation to the intend-
ed problem. Technology also helps students in verifying claims (Erbas et al., 2020). Erbas et al. 
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explored students’ strategies in solving problems using the Geometer’s Sketchpad. They found 
that the software allowed students to model the problem and manipulate the involved variables 
interactively to explore it. The manipulations allow students to verify the validity of claims and 
to construct a valid argument under a plausible justification.  

Despite all the possible benefits brought by technology in helping students to justify claims, the 
use of technology also brought concerns. For instance, in a study by Hollebrands et al. (Hol-
lebrands et al., 2010), students were found to rarely provide justifications while working on a 
problem using  technology compared to when they did not use it. One of the possible reasons 
was that students considered the technology itself as a form of justification, which was actually 
not intended from the use of technology in helping students to reason and verify claims. This is-
sue is related to the fact that technology could be treated as an ‘external authority’, a source of 
valid claim without the need to question it. As explained in the previous section, a justification 
based on an external authority is considered a low level of justification, as it does not involve 
students’ own reasoning in judging the validity of a claim. Tall (1989) stated that students might 
lose some autonomy if they did not follow their reasoning and allow themselves to be led by 
technology.  

In this paper, we explore how a pair of students mathematically justify claims during CPS with 
and without access to technology. To investigate this, we focused on identifying the quality of 
mathematical justification (as presented in Table 1) while they solved a problem in the absence 
and presence of technology. To allow for better analysis of the role of technology, we also ex-
plore the feature of technology they used and how it was related to their mathematical justifica-
tion and problem solving process. 

 

METHODS 

This study was part of a larger project on mathematical justification by college students while 
solving derivative problems collaboratively. We asked two mathematics education majors who 
were also preservice teachers to solve a derivative problem (Figure 1) in pair to see how they 
solved it. The task was designed following Chua's description of an elaboration task (Chua, 
2017) as one of the task types promoting mathematical justification. Content-wise, the task was 
modified from Stewart (Stewart, 2010) by adding more information on the points presented in 
the graph. Four experts validated the task and went through phases of revisions. The validation 
process was to assess whether the task (1) encouraged students to elaborate their thinking upon 
the answer, (2) instructed students to solve the problem collaboratively, and (3) allowed various 
justifications along the process of finding the answer. In addition to validating the third point, the 
validation document included a scheme of possible mathematical justifications made by students. 

The highlight of the task is the need to use derivatives to find the slope of the tangent lines. Fur-
ther, students must elaborate their steps by utilizing the graph presented in the task without dis-
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regarding its algebraic validity related to the solutions. For example, students may infer that 
point 𝑃 is closer to point 𝐴 than to point 𝐵 based on the picture. However, this cannot be justified 
by the picture alone. They were expected to leave this as an assumption rather than valid infor-
mation. The task also required students to utilize the fact that points 𝐴, 𝐵, and 𝐶 are equidistant, 
which might be altered if students relied heavily on the perception of the distance given by the 
graph. The expected final answer is 𝑃 ቀିଵ

ଶ
√3,

ଵ

ସ
ቁ and 𝑄 ቀଵ

ଶ
√3,

ଵ

ସ
ቁ to make 𝐴𝐵𝐶 an equilateral trian-

gle. 

 

Given a parabola 𝑦 = 1 − 𝑥ଶ as shown below. 

 

Lines 𝑝 and 𝑞 are the tangents of the parabola at 𝑃 and 𝑄. Tangent lines 𝑝 and 𝑞 intersect 𝑥-axis at 𝐵 and 𝐶, 
respectively. Find points 𝑃 and 𝑄 on the parabola so that triangle 𝐴𝐵𝐶 formed by the 𝑥-axis, 𝑝, and 𝑞 is 
equilateral. Elaborate on your steps (Note: the slope of 𝑝 and 𝑞 is the derivative of the parabola function at 𝑃 and 
𝑄, respectively). 

Figure 1: The task given in this study 

 

The task was distributed to the pair (pseudonyms: Alan and Sarah) for two hours through an 
online meeting platform. They had been informed that the task was related to the derivative of 
functions. Both students had average mathematics ability and had been exposed to some mathe-
matics-related technology (e.g., GeoGebra or Desmos) in college. To better understand the role 
of technology, we asked them to solve the problem without technology in the first session and 
with technology in the second. One student writes their work digitally in the session while shar-
ing the screen with another student. In the second session, students might choose any technology 
they wanted and were not forced to stick to a particular technology. This strategy was offered 
because we wanted to reduce the factor of students’ skills in utilizing a particular technology. 

Students were encouraged to discuss and question their pair whenever needed. The researcher 
acted as an observer during the session, yet students were prompted to continue the discussions 
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when they were silent for more than a minute. The session was recorded, and students' written 
works were collected. Semi-structured interviews were conducted to understand some critical ep-
isodes in the problem-solving process. The data sources include recordings of meetings, students' 
written work, and field notes. The analysis was conducted by first identifying a situation for jus-
tification, i.e., a situation where a claim was questioned and requested validation (Cobb, Yackel, 
et al., 1992). In each situation, we looked upon who made a mathematical claim and who trig-
gered the justification of it. To further understand the quality of justification, the level of justifi-
cation that appeared was also coded based on the coding scheme in Table 1. 

 

RESULTS 

We present the findings by revolving around describing three situations of justification during 
the CPS, i.e., situations 1 and 2 in the first session (without access to technology) and situation 3 
in the second session (with access to technology). We reported students' mathematical justifica-
tion levels in each session in a particular situation. The situations presented here did not happen 
in one period. Yet, we tried to collect related discussion episodes and elaborate on them, focus-
ing on the progression of mathematical justification upon the corresponding claim. The pair ini-
tially decided that Sarah would share her screen and writings during the discussion. 

Situation 1: a claim that 𝑥ଵ = 𝑦ଵ 

At the initial stage of understanding the problem, the pair started to determine the coordinates of 
points that might be helpful to solve the problem. By analyzing 𝑦 = 1 − 𝑥ଶ, they found that the 
parabola intersects the 𝑥-axis at 𝐷(−1,0) and 𝐸(1,0) and intersects 𝑦-axis at 𝐹(0,1). Sarah then 
continued by stating that the distances from 𝐷, 𝐸,and 𝐹 to the origin were equal and put marks on 
the graph (see Figure 2). After considering the fact that △ 𝐴𝐵𝐶 was an equilateral triangle, Sarah 
inferred that if  𝐶 was (𝑥ଵ, 0) then 𝐵 was (−𝑥ଵ, 0). This claim was agreed upon by Alan, and he 
added that 𝐴 would be (0, 𝑦ଵ). The situation for justification appeared when Sarah claimed that 
𝑥ଵ = 𝑦ଵ and Alan questioned it as follows (the corresponding code was put inside "[ ]"). 

Sarah  : Look, △ 𝐴𝐵𝐶 is equilateral, right? So, this (puts a mark on 𝐸𝐶) would be the 
same length as this (puts a mark on 𝐵𝐷). 

Alan : I think so. 
Sarah : It means they will be the same with this (puts a mark on 𝐴𝐹), too. [C]  
Alan : How do you know? [T] 
Sarah : See here (pointing 𝑂𝐷), here (pointing 𝑂𝐹), and here (pointing 𝑂𝐸) are the 

same, right? So, this (pointing 𝐵𝐷), this (pointing 𝐴𝐹), and this (pointing 𝐸𝐹) 
are the same, too. [L2] 

Alan : What theory says so? [T] (pause) So, you think △DEF is also equilateral?  



                             MATHEMATICS TEACHING RESEARCH JOURNAL      188     
                             SUMMER 2025 
                             Vol 17 no 3 
 
 

 
This content is covered by a Creative Commons license, Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 

4.0). This license allows re-users to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial 
purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must 

license the modified material under identical terms. 

 

Sarah : I think so. I know it doesn't look like it (is equilateral), but, you know, the 
picture usually is not real. I mean, they should be the same lengths because 
the triangles are equilateral. Wait. So, 𝑥ଵ = 𝑦ଵ here, right? [L2] 

Alan : I don't know. (pause) So, we still cannot determine the coordinates of the 
points (𝑃 and 𝑄), right? 

Sarah : Yes, I think so. 

 

Figure 2: Pair Work in Situation 1 

In this situation, Sarah used the fact that △ 𝐴𝐵𝐶 is equilateral and justified that 𝐴𝐹 = 𝐵𝐷 = 𝐸𝐶 by 
saying that△DEF  is also equilateral. Alan triggered the situation of justification by questioning 
this claim. Sarah at first relied on her claim on the data that △ 𝐴𝐵𝐶 is equilateral, then she pic-
tured  △DEF to be similar to △ 𝐴𝐵𝐶 and that led to her claim of 𝑥ଵ = 𝑦ଵ. Although she explicitly 
stated that "picture usually is not real", she came up with " △DEF similar to △ 𝐴𝐵𝐶" based on 
how  △DEF 'looked' similar to △ 𝐴𝐵𝐶 in the graph, not based on properties of similar triangles. 
Sarah used the empirical or perceptual demonstration to justify her claim (level 2), while Alan 
seemed unconvinced and requested a higher level of justification using theorems. However, the 
pair could not come up with a better justification and tentatively accepted this inaccurate claim. 
In summary, the claim that 𝑥ଵ = 𝑦ଵ was mainly justified by the perceived similarity of △DEF and 
△ 𝐴𝐵𝐶. 

 

Situation 2: claims around the slope of tangent lines 

Another situation of justification emerged during the pair’s discussion about the slope of tangent 
lines. The pair immediately realized they could find the slope of the tangent lines from the pa-
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rabola function. They further wrote 𝑦 = 1 − 𝑥ଶ and discussed to find 𝑚 = 𝑦ᇱ = −2𝑥 using the de-
rivative rule. After finding the derivative, the pair could not relate it to the two tangent lines hav-
ing different slopes. This confusion led to a situation of justification where the pair tried to find 
other information to validate the slope. The following discussions accompanied their work in 
Figure 3. 

Alan : One tangent line should have a negative slope, and another is positive. But it 
is the same, −2𝑥. Maybe we should try another way. 

Sarah  : Okay, but I think it should be about derivative.  
Alan : What about stating 𝐴, 𝐵, 𝐶 in terms of coordinate? I mean, using the facts 

(that 𝐴𝐹 = 𝐵𝐷 = 𝐸𝐶). 
Sarah : What do you mean? 
Alan : I mean, let's say that distance from 𝐵 to 𝐶 is 𝑎, and the other two are 𝑎, too, 

right? 
Sarah : Yes 
Alan : So, 𝐴 is (0,1 + 𝑎) [C] 
Sarah : Okay, wait (made a new page and copied the graph from the problem, wrote 

the coordinates for 𝐷, 𝐸, and 𝐹). So, you say? 
Alan : 𝐴 is (0,1 + 𝑎), then 𝐶 is … [L0] 
Sarah : 𝐶 is (1 + 𝑎, 0) (wrote the coordinate of C), right? 
Alan : Yes 
Sarah : 𝐵 is (−1 + 𝑎)? [T] 
Alan : No, it should be minus. (−1 − 𝑎), it goes to the left, right? It becomes less. 

[L2] 
Sarah : Oh, right. (wrote the coordinates of 𝐵). 
Alan : I think we can calculate the slope from the points, right? 

Sarah : Oh, okay. Point 𝐴 to 𝐶 first, ya. So, 𝑚 =
ଵା௔ି଴

଴ି(ଵା௔)
= −1 [C] 

Alan : But, is it true? [T] 
Sarah : I don't know. Maybe if we see the line from 𝐹 to 𝐸 (further labelled as 𝑞), it 

looks parallel to the tangent. [L2] Parallel means equal slope, right?  
Alan : Hmm, I think so. 
 



                             MATHEMATICS TEACHING RESEARCH JOURNAL      190     
                             SUMMER 2025 
                             Vol 17 no 3 
 
 

 
This content is covered by a Creative Commons license, Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 

4.0). This license allows re-users to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial 
purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must 

license the modified material under identical terms. 

 

 

Figure 3: Pair Work in Situation 2 

 

The important justifications leading to the claim in Situation 2 were on the coordinates of 𝐴, 𝐵, 
and 𝐶 and the parallelism of line 𝑞 and the tangent. Both justifications used perceptual demon-
stration (level 2), which was then triggered for better justification by Alan. The trigger resulted 
in the acceptance of the claim without any refined justification. 

From the discussion in situations 1 and 2, it could be seen that the pair justified claims mainly 
using empirical or perceptual demonstration (e.g., "if it goes left, it becomes less" and "it looked 
parallel to the tangent"). The first claims on 𝐴, 𝐵, and 𝐶 coordinates were continued from Situa-
tion 1, where they inferred that the length of 𝐴𝐹 equals 𝐵𝐷 and 𝐸𝐶. The pair accepted the justifi-
cation based on perceptual and empirical demonstration as they identified the coordinates of 𝐴, 𝐵, 
and 𝐶 under a similar justification in situation 1. This accepted claim led to another claim of 
𝑚௤ = −1, which they accepted based on a perceptual demonstration that the line looked parallel 
to the line 𝑞 passing through 𝐸 and 𝐹. 

Along the discussion in two situations, we see how Alan's request for better justification in Situa-
tion 1 was slowly compromised once the pair implicitly accepted the claim based on empirical or 
perceptual demonstration. Alan and Sarah each gave a trigger for justification of a particular 
claim. Yet, it was shown that Sarah's empirical or perceptual demonstration level of justification 
was neither refuted nor revised during the discussion. The inaccurate claim accepted by the pair 
in situation 1 became the underlying "agreement" in understanding new data brought into the 
discussion and further into accepting new claims.  

The pair then continued the process by discussing that due to 𝑚 = −2𝑥, 𝑚௤ = −1 and the fact 
that 𝑞 and the tangent line have equal slope, they inferred that 𝑥 as the abscissa for the coordinate 
of 𝑄 is ଵ

ଶ
 and that of 𝑃 is ିଵ

ଶ
 . They did not finish until they got the complete coordinates of 𝑃 and 
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𝑄 due to the lack of time for the first session. The discussion was continued by allowing them to 
access technology in the second session. 

 

Situation 3: claims around the coordinate of 𝑃 

We discussed students’ work in the second session, focusing on Situation 3, containing claims 
around the coordinate of 𝑃. At the beginning of the second session, we prompted the pair to ac-
cess any technology they wanted to solve the problem. They were told they could do different 
strategies or start from any step at the first session. The pair decided to use Desmos to verify the 
abscissa of 𝑃 that they found in the first session (Figure 4). Alan decided to share his screen. 
Alan first input the function 𝑓(𝑥) = 1 − 𝑥ଶ. This input created the graph of 𝑓(𝑥) in the screen. As 
they understood that the slope of the tangent is the derivative of the function, they decided to use 
the Desmos feature (i.e., Calculus: Tangent Line) to find the slope (shown in Figure 4 as the red 
line 𝑔(𝑥)). Alan initated to create a slider labelled as 𝑎 to act as the dynamic value of 𝑥. He then 
dragged the slider 𝑎 to change the values of  𝑃(𝑎, 𝑓(𝑎)). The following excerpt revealed the dis-
cussions using Desmos that their previous claim of the coordinate of 𝑃 was not accurate. 

Alan : We can drag this (the slider in Desmos) to change the intersection point. 
Sarah  : Oh, okay 
Alan : Let's try a half. Or a negative half? 
Sarah : Okay 
Alan : Here it is. This is the answer (Desmos window shown in Figure 4). So 𝑃 is 

ቀ
ିଵ

ଶ
,
ଷ

ସ
ቁ and 𝑄is ቀଵ

ଶ
,
ଷ

ସ
ቁ because it is just positive here. 

Sarah : Okay, the lengths are the same, ya. 
Alan : Yes. Here (pointing to the 𝑥 and 𝑦 intersects of the tangent), we get the same 

lengths. Mm, it is around 1 ଵ

ସ
 both, right? 

Sarah : Wait, no, Alan. It is not equilateral. You see, the one below (segment BC) 
will be twice. [T] 

Alan : Oh, right.  
Sarah : … and we think about the sides, right? Not the height. 
Alan : Oh. 



                             MATHEMATICS TEACHING RESEARCH JOURNAL      192     
                             SUMMER 2025 
                             Vol 17 no 3 
 
 

 
This content is covered by a Creative Commons license, Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 

4.0). This license allows re-users to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial 
purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must 

license the modified material under identical terms. 

 

 

Figure 4: Initial Desmos Entry 

 

While utilizing the slider, the pair initially slide it to a value of 0.5. This input was intended to 
check their previous answer of the value of 𝑥. After the graph by Desmos was shown, the pair 
realized that the coordinates obtained in the previous situation were incorrect. Alan then suggest-
ed to change the value of 𝑎 by sliding the slider (Figure 5). They gradually changed it into small-
er values, such as 0.7 and -1. After the repeated trials, the pair did not seem to find the value they 
wanted to create the equilateral triangle 𝐴𝐵𝐶 by utilizing the slider alone.  

  
Note: in these screens, they did not hide 𝑔(𝑥),so it was shown as the black line. 

Figure 5: Some trials using the slider 

 

Their repeated trials in using the slider led to different ways to analyze the data given by the 
problem. Sarah inferred that it might be useful to draw triangle 𝐴𝐵𝑂 as part of the equilateral tri-
angle 𝐴𝐵𝐶 (Figure 6, left). By considering the angles of the triangle, they explored where 𝑃 
should be located using Desmos (Figure 6, right). They concluded that 𝑃 should be somewhere 
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close to (−0.86,0.26) and thus 𝑄 would be around (0.86,0.26), which is very close to the actual 
correct answer. The following excerpt shows how they justified this answer. 

Sarah  : I think it is true. See that the equilateral triangle (pointing to the triangle 
drawing) should have angles like that, right? And the graph (in Desmos) is 
just the same. [L3]  

Alan : Yeah. I think it would be true if we calculate the sides using trigonometry 
[L4]. 

Sarah : I think so. It (the graph) didn't look like the question, though. 
Alan : Yes, it is steeper. I think I can picture the equilateral triangle in my mind 

(when I see the graph), now [L2] 

We saw that the justifications in situation three were refined, following the fact that their answer 
from the previous situations was inaccurate. The slider feature was shown to be helpful in help-
ing them testing several values of 𝑥 to satisfy the objective of the problem, despite not providing 
them with the answer. The pair's effort to use a drawing of an equilateral triangle as an example 
(level 3) to justify the equilateral triangle in the graph was shown to lead them in the right direc-
tion. The use of example was triggered by the verification made in the previous Desmos entry, 
showing that reliance on perceptual demonstration was insufficient. The pair, initiated by Alan, 
even offered a higher level of justification to use trigonometry (level 4) to justify the sides of the 
triangle and further validate the coordinates of 𝑃 and 𝑄, which unfortunately they did not do. 
They also realized that they could not base their discussion on the graph provided by the problem 
alone because it did not visualize the correct answer. In this situation, the justification of percep-
tual or empirical demonstration accompanied another justification after the pair realized its inad-
equacy. 

 

 

Figure 6: Triangle drawing and Final Desmos Entry 
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DISCUSSIONS AND CONCLUSIONS 

The quality of mathematical justifications brought by the pair could be seen from the three situa-
tions of justification found in the study. We noticed various mathematical justifications during 
the first and second sessions. In the first session, we observed that claims were questioned, and 
perceptual or empirical demonstration type of justification was mostly offered, similar to find-
ings by other researchers (Chazan, 1993; Sowder & Harel, 1998). We considered their reliance of 
perceptual or empirical demonstration was not due to the absence of trigger, a question or request 
of better justification, but due to the inability to fulfil such trigger. For instance, when Alan re-
quested justification based on theories in situation 1, the pair failed to entertain such request for a 
higher level of justification. It led the pair to accept the claim tentatively and continue imple-
menting strategies on inaccurate claims.  

In the second session, we observed that the pair used the technology to verify their solution ra-
ther than to start working on it from the beginning. Once they realized that their previous solu-
tion could not be justified, they started to work on the initial information of the problem, such as 
the function of the parabola and its tangents. It was also observed that triggers for mathematical 
justification appeared more in the first session when the pair did not have access to technology. It 
raised more questions about whether the pair treated the technology itself as a trigger or justifica-
tion (Hollebrands et al., 2010) so that the claims shown being valid by technology did not need 
further justification. 

The pair used the technology to validate claims, yet it was shown that it did not directly help 
them improve the claims or give better justification. We believed that the offer for justification in 
situation 3 (when Alan wanted to use trigonometry to verify the solution) could indicate that 
technology promoted students to give better justification only when they understood how they 
came up with their claims and how their previous justification might not be enough. Neverthe-
less, the findings reiterated the fact that the use of technology could improve the problem solving 
process (Berrin et al., 2024; Nguyen et al., 2023) and accommodate students' collaboration, espe-
cially in testing their ideas (Olive et al., 2010), illustrating multiple cases to verify claims (Erbas 
et al., 2020) and being more responsible for their thinking (Buteau & Muller, 2006).  

Another notable finding was the different use of graph or picture as justification between the first 
and second sessions. In situation 3, the pair seemed convinced by the graph they constructed on 
Desmos and used it as a joint justification with the triangle they made. Going back to situation 1, 
similar confidence did not appear on the use of a similar graph, as shown by a request for better 
justification. Considering this fact, we inferred what students meant by “picture” when they stat-
ed  “the picture usually is not real” was not a picture constructed by a technological tool. Pictures 
or graphs resulting from a technological tool somehow gave them more plausibility. This finding 
was similarly highlighted by Zhen et al. (2016) who found that students might be unconvinced by 
merely a graphical perception, but they somehow believed arguments coming from a graph satis-
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fying a certain property (e.g., when it was constructed by technology). Teaching practices could 
benefit from this finding. Teachers might use technology as a tool to challenge students’ beliefs 
on the truth of a claim, for example, by comparing a hand-drawn geometrical figure with the one 
being constructed by technology. Questions such as, “why do you think this picture seems more 
convincing than the one you draw in the paper?” or “Can you convince me that the technology is 
showing the correct picture?” could intrigue students into thinking about the reason behind their 
belief and at the same time allow them to critically examine outputs of technology they used. 

The study allowed us to answer some questions on students' mathematical justification. The task 
administration to the pair without the lecturer's presence avoided the question of who would take 
justification as valid besides the students since the community involved was only them (Karu-
nakaran & Levin, 2022). However, it also raised a question, as in a natural classroom setting, it 
was not typical to have lecturers uninvolved in any of their students' problem-solving processes. 
The nature of the task that could be solved without access to technology brought two concerns. 
First, it allows for comparing students' justification with and without technology in students' typ-
ical context, i.e., choosing their own preference, which should be taken into account if we want 
to explore the use of technology (Sanchez, 2020). Second, it probably diverges our observation 
of whether the pair's mathematical justifications were due to the task or the presence of technolo-
gy itself. Students' prior exposure to the technology might contribute to how far they have solved 
the problem and justified the solution. It also might bring different data into the table if they de-
cided to use a different software with different features. We also considered the possibility of 
even further justifications using the technology, which the pair could not make, probably due to 
their skill in utilizing it.  

We acknowledge that the difficulty level of the task was not explicitly considered in our study, 
and this may have influenced the students' reliance on technology during the second session. Our 
focus was primarily on ensuring that students encountered no issues with the use of technology 
and that the task was capable of eliciting diverse mathematical justifications. However, we rec-
ognize that this could be a limitation of our research, in line with the findings of Fatmanissa et al. 
(2024), which indicate that the observed collaboration and justifications were influenced by an 
appropriate level of task difficulty. Therefore, we suggest that future research should consider 
designing tasks that strike a balance between difficulty and accessibility, ensuring that technolo-
gy functions as a supportive tool for enhancing conceptual understanding rather than replacing 
students' critical thinking processes. 

A study that utilizes a task that explicitly includes instructions on technology to promote mathe-
matical justifications during CPS could be conducted in the future. Such instructions might guide 
students transitioning from an empirical to a more deductive justifications, for example by asking 
students to add supporting arguments other than relying solely on the graph to their claim of the 
similarity of △DEF and △ 𝐴𝐵𝐶. Such actions, called elaborating by Zazkis et al. (2016), encour-
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age students to not take empirical justification for granted, add supporting data, and construct 
more formal arguments.  

This study was small in size to allow for an in-depth analysis of students’ mathematical justifica-
tions, yet it is worthwhile to be developed further. An experimental study with a larger sample 
comparing students’ mathematical justifications with and without access to technology could re-
fine the findings of this study. The diversification of participants’ mathematical or technological 
skill levels could also improve our understanding upon this issue. Another limitation in this study 
is the limited range of software tools examined due to our approach of allowing students to use a 
familiar software i.e., Desmos. However, this focus restricted our ability to compare the effec-
tiveness of different software platforms in supporting mathematical justification. Future research 
could investigate how different software platforms might influence students problem-solving ap-
proaches and results. 
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