Lecture 10

LCD 306: Semantics & Pragmatics

C.N. Serrano Madsen II Queens College CUNY

Tuesday 17 March 2015

Outline

- 1 Administrativa
 - Group Project
- 2 Propositional Interaction
 - Conjunction
 - Disjunction
 - Conditional
 - Biconditional

- 1 Administrativa
 - Group Project
- Propositional Interaction
 - Conjunction
 - Disjunction
 - Conditional
 - Biconditional

- 1 Administrativa
 - Group Project
- Propositional Interaction
 - Conjunction
 - Disjunction
 - Conditional
 - Biconditional

Group Project

- You are just replicating, which has an extremely important and often overlooked role in science
- The proposal should be pitched for a non-linguist
- The descriptions of the methodology should be clear enough that anyone could use your description and do exactly what you did

- Administrativa
 - Group Project
- 2 Propositional Interaction
 - Conjunction
 - Disjunction
 - Conditional
 - Biconditional

Logical Connectives

- And: \land $[[\phi \land \psi]] = 1$ iff $[[\phi]] = [[\psi]] = 1$
- Or: ∨
- $lacksquare[[\phiee\psi]]=1$ iff $[[\phi]]=1$ or $[[\psi]]=1$
- Exclusive Or:

 The state of t
- Entailment, Material Implication: \rightarrow
- ${f lue{-}}$ $[[\phi
 ightarrow\psi]]=1$ iff $[[\phi]]=0$ or $[[\psi]]=1$
- $lue{}$ Mutual entailment, biconditional: \leftrightarrow
- Brackets: ()

- Administrativa
 - Group Project
- 2 Propositional Interaction
 - Conjunction
 - Disjunction
 - Conditional
 - Biconditional

Conjunction

- A conjunction of two propositional expressions is True iff the two propositional expressions are individually True

- For the statements:
 - r: "It is raining outside"
 - *c*: "It is cold"
 - $r \wedge c$: "It is raining outside and it is cold"

r	С	$r \wedge c$
1	1	1
1	0	0
0	1	0
0	0	0

- Administrativa
 - Group Project
- 2 Propositional Interaction
 - Conjunction
 - Disjunction
 - Conditional
 - Biconditional

Disjunction

- A disjunction of two propositional expressions is True iff at least one of the two expressions is individually True
- $\ \ \, \boxed{ [[\phi \lor \psi]] = 1 \text{ iff } [[\phi]] = 1 \text{ or } [[\psi]] = 1 }$

- For the statements:
 - r: "It is raining outside"
 - *c*: "It is cold"
 - $r \lor c$: "It is raining outside or it is cold"

r	С	$r \lor c$
1	1	1
1	0	1
0	1	1
0	0	0

Assignment No. 7

Exercise 2.23

Draw a truth table for the statements:

- 1 'John is home and Mary is happy'
- 2 'John is home or Mary is happy'

- For the statements:
 - r: "It is raining outside"
 - *c*: "It is cold"
 - $r \oplus c$: "Either it is raining outside or it is cold"

С	$r \oplus c$
1	0
0	1
1	1
0	0
	0 1

- Administrativa
 - Group Project
- 2 Propositional Interaction
 - Conjunction
 - Disjunction
 - Conditional
 - Biconditional

Conditional

- A 'conditional' consisting of two propositional expressions is True iff the antecedent expression is False or the consequent expression is True
- $lacksquare [[\phi
 ightarrow \psi]] = 1 ext{ iff } [[\phi]] = 0 ext{ or } [[\psi]] = 1$

└ Conditional

- For the statements:
 - k: "Karen went to the party"
 - g: "Gita went to the party"
 - $k \rightarrow g$: "If Karen went to the party, then Gita went to the party"

k	g	k o g
1	1	1
1	0	0
0	1	1
0	0	1

- Administrativa
 - Group Project
- 2 Propositional Interaction
 - Conjunction
 - Disjunction
 - Conditional
 - Biconditional

Conditional

- A 'biconditional' consisting of two propositional expressions is True iff the antecedent expression and the consequent expression are both True

Biconditional

- For the statements:
 - s: "Sarah went to the party"
 - d: "Dani went to the party"
 - **•** $k \leftrightarrow d$: "Sarah went to the party if and only if Dani went to the party"

S	d	$s \leftrightarrow d$
1	1	1
1	0	0
0	1	0
0	0	1