

Pontifícia Universidade Católica do Paraná Concurso Público da Companhia Paranaense de Energia - COPEL

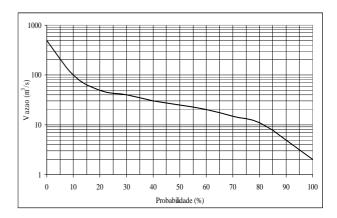
24 de Janeiro de 2010

CARGO Nº 35

ENGENHEIRO CIVIL PLENO

Atuação: Engenharia de Recursos Hídricos

_ N.º DO	CARTÃO	NO	ME (LETRA	DE FORMA))				
		ASS	SINATURA						
INFORI	MAÇÕES	/ INSTRUÇ	ÕES:						
	·				números 1 a		•	ova razão i	nela qual os
	2. A compreensão e a interpretação das questões constituem parte integrante da prova, razão pela qual os fiscais não poderão interferir.						pola qual oo		
- F - F - L	Preencher p Preencher to Jsar caneta Para qualqu	ara cada quotalmente o esferográficer outra forr	ca, escrita n ma de preer	as uma responder corresponder c	posta indente, conf azul ou preta a leitora anula STA É PI JÍDO, NE	a ará a questã ERSON	o ALIZAD		S .
		Dur	ação to	tal da pr	ova: 4 h	oras e 3	0 minuto	S	×
note o	seu gaba	rito.							
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
31.	32.	33.	34.	35.	36.	37.	38.	39.	40.



CONHECIMENTOS ESPECÍFICOS

- Em relação às sentenças a seguir é possível afirmar que:
 - I. A representação adequada do comportamento de um processo hidrológico ou de um sistema por um modelo com o menor número possível de parâmetros é entendida como princípio da parcimônia.
 - II. O risco de ocorrência de uma determinada variável aleatória é a chance, aceita pelo projetista, de que a variável seja maior que um determinado valor.
 - III. A incerteza de uma amostra pode decorre da representatividade da amostra ou dos erros de coleta e processamento dos dados de variável aleatória.
 - A) Todas são corretas.
 - B) Apenas I é correta.
 - C) Apenas II é correta.
 - D) Todas são incorretas.
 - E) I e II são corretas.
- 2. A bacia hidrográfica do rio A recebe precipitações médias anuais de 2.000 mm. Sabe-se que a vazão medida do rio após período de 18 anos é de 45 m³/s. Considerando a área de bacia de 2.000 km², é possível afirmar que:
 - A) A evapotranspiração média anual e o coeficiente de escoamento de longo prazo da bacia são de aproximadamente 1.900 mm/ano e 0,70, respectivamente.
 - B) A evapotranspiração média anual e o coeficiente de escoamento de longo prazo da bacia são de aproximadamente 1290 mm/ano e 0,35, respectivamente.
 - C) A evapotranspiração média anual e o coeficiente de escoamento de longo prazo da bacia são de aproximadamente 1.290 mm/ano e 0,70, respectivamente.
 - D) A evapotranspiração média anual da bacia é de aproximadamente 130 mm/ano.
 - E) O coeficiente de escoamento de longo prazo da bacia é de 0,1.

- 3. Para modelagem e previsão de vazões de cheia em tempo real, é possível afirmar que:
 - I. Previsões em curto prazo, com base exclusivamente em postos fluviométricos de montante da secção de interesse, dispensam características do rio ou da área controlada.
 - II. Previsões de enchentes podem ser realizadas com base na previsão de precipitação com auxílio de sistemas de sensoriamento remoto.
 - III. É possível utilizar modelos compostos que consistem em modelos precipitação-vazão associados aos dados de vazões de montante da secção controlada.
 - A) Apenas I é correta.
 - B) Todas são corretas.
 - C) Il e III são corretas.
 - D) Todas são incorretas.
 - E) le Il são corretas.
- Em relação às medidas de controle de inundações, é possível afirmar que:
 - Diques, cortes de meandros e reservatórios de cheias são medidas estruturais de controle de inundações.
 - II. Medidas estruturais de controle de inundações são intervenções de engenharia implantadas exclusivamente na calha do rio, na secção de extravasamento.
 - III. Medidas estruturais intensivas agem diretamente, acelerando ou retardando o escoamento.
 - IV. A manutenção de baixos coeficientes de infiltração na bacia é uma medida não estrutural para controle de inundações, baseada no uso do solo e da cobertura vegetal.
 - A) I, II e IV são corretas.
 - B) I e III são corretas.
 - C) II e IV são corretas.
 - D) Todas são corretas.
 - E) Il e III são corretas.
- 5. Em relação à curva de permanência de vazões abaixo representada, determine a energia assegurada para uma altura de queda de 100 metros e eficiência total de conversão de energia de 70%.

- A) 2,1 GW
- B) 1,4 MW
- C) 210 MW
- D) 2,1 MW
- E) 140 MW
- 6. A tabela a seguir apresenta as vazões máximas de um rio registradas em nove anos, de 1975 a 1984, em ordem decrescente de vazões. Com base nos valores registrados, determine a vazão máxima para um tempo de recorrência de cinco anos.

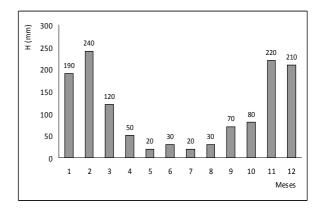
Ano	Probabilidade (%)	Vazão Máxima (m³/s)	
1980	10	250,9	
1976	20	225,3	
1978	30	220,2	
1981	40	205,0	
1982	50	175,3	
1979	60	145,6	
1977	70	130,7	
1983	80	120,2	
1975	85	55,0	
1984	95	45,9	

- A) $120,2 \text{ m}^3/\text{s}$
- B) $120,0 \text{ m}^3/\text{s}$
- C) $250.9 \text{ m}^3/\text{s}$
- D) $45.9 \text{ m}^3/\text{s}$
- E) 225,3 m³/s
- 7. Uma bacia recebe chuvas anuais com distribuição normal. A análise de 30 anos de chuva revelou que a precipitação média anual é de 2.300 mm e que o desvio padrão é de 350 mm. Com base nos dados supracitados, é possível afirmar que:
 - A) É de 95% a chance de um ano qualquer apresentar precipitações inferiores a 3.000 mm e superiores a 1.600 mm.
 - B) É de 90% a chance de um ano qualquer apresentar precipitações inferiores a 2.300 mm.
 - C) Em 100 anos haverá 5 anos de precipitação superior a 2.300 mm.
 - D) Em 10 anos haverá 5 anos de precipitação superior a 2.300 mm.
 - E) Chuvas inferiores a 2.300 mm ocorrem a cada 10 anos.
- 8. Alguns princípios da pluviometria são apresentados a seguir:
 - I. A boca do pluviômetro deve ficar na horizontal; na prática pode-se estimar o erro produzido por cada grau de inclinação do pluviômetro sobre a horizontal, desde que não exceda 10º. Esse erro

- é positivo quando a inclinação do plano de abertura está dirigida para o vento e negativo caso contrário.
- II. A ação do vento é uma das causas de erros na medição de precipitações. O aumento da velocidade do ar e a formação de turbilhões na vizinhança imediata do aparelho têm por consequência um desvio local das partículas de chuva, o que ocasiona um erro por defeito na altura das precipitações medidas.
- III. O erro de medição nos pluviômetros é diretamente proporcional à velocidade do vento.
- IV. Pode-se sugerir que a altura de precipitação medida é maior quanto maior for a área de recepção do pluviômetro.

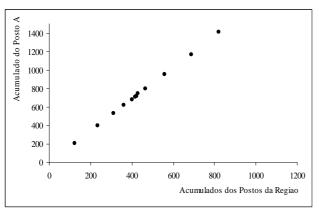
Com relação às afirmações acima, pode-se concluir que:

- A) Apenas I e II são corretas.
- B) Apenas I e III são corretas.
- C) Apenas II é correta.
- D) Todas são corretas.
- E) Apenas IV é incorreta.
- Observe as sentenças a seguir e assinale a alternativa CORRETA:
 - Chuvas frontais apresentam elevado tempo de duração e intensidade pluviométrica. Produzem problemas de inundação em pequenas bacias hidrográficas.
 - II. Chuvas convectivas apresentam elevado tempo de duração e intensidade pluviométrica. São formadas geralmente nos oceanos e produzem problemas de inundação em microbacias.
 - III. Chuvas convectivas apresentam baixo tempo de duração e elevada intensidade pluviométrica. Podem causar problemas de inundações em microbacias, geralmente em áreas urbanas.
 - IV. Chuvas orográficas são formadas nos oceanos e apresentam, geralmente, alta intensidade pluviométrica e elevado tempo de duração. Sua formação tem relação direta com a topografia.
 - A) I, II e IV são falsas.
 - B) Apenas I é verdadeira.
 - C) Apenas I e II são verdadeiras.
 - D) Apenas II é verdadeira.
 - E) Todas são falsas.
- 10. Determine a precipitação efetiva para uma precipitação de 5,0 mm utilizando o método do Soil Conservation Service para uma bacia com capacidade de retenção no solo (S) de 50 mm, equivalente a solos arenosos profundos, e com umidade antecedente em ponto de murcha.

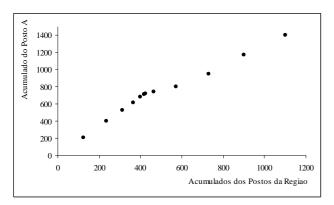

A equação é dada por que

$$Pe = \frac{(P-0.2\times S)^2}{(P+0.8\times S)}$$
 , em

Pe é a precipitação efetiva, em mm, e P é a precipitação acumulada, em mm.


- A) 0.55 mm
- B) 5,5 mm
- C) 55 mm
- D) Não há escoamento superficial.
- E) A precipitação efetiva é igual à precipitação total.
- 11. Observe as assertivas e assinale a alternativa CORRETA:
 - A precipitação média sobre uma bacia hidrográfica pode ser obtida por meio da média aritmética entre as precipitações das estações relevantes.
 - Isoietas são curvas de mesma precipitação para um determinado período ou evento préestabelecido.
 - III. A estimativa adequada da precipitação média de uma região baseia-se na escolha das estações pluviométricas com base no critério das distâncias entre elas, independente das variáveis topográfica e climática.
- IV. Em áreas onde a orografia é fator relevante para a ocorrência da precipitação, o método de Thiessen pode apresentar erros de precipitação média na região.
 - A) Apenas III é falsa.
 - B) Apenas I é verdadeira.
 - C) Apenas I e II são verdadeiras.
 - D) I, II e III são verdadeiras.
 - E) Todas são verdadeiras.
- 12. Com relação às sentenças a seguir é possível afirmar que:
 - Secções de rios mais estáveis apresentam maior confiabilidade na medição de vazões.
 - II. Estrangulações da calha do rio, da jusante, da secção de controle ou da medição de vazão são irrelevantes para a verificação de dados fluviométricos.
 - III. Bacias com baixos tempos de concentração podem apresentar mais erros de registros fluviométricos.
 - IV. A curva de descarga de um rio pode variar ao longo do tempo devido à erosão da calha do rio na secção de medição.

- A) Todas são corretas.
- B) Apenas I e II são corretas.
- C) Todas são incorretas.
- D) Apenas II e III são corretas.
- E) I, III e IV são corretas.
- 13. Dispõe-se de uma longa e confiável série de dados anuais pluviométricos e fluviométricos de uma bacia hidrográfica. Através do balanço hídrico na bacia em questão, é possível:



- A) Estimar a evapotranspiração real anual média da bacia
- B) Fazer prognóstico das vazões para períodos não muito distantes do período registrado.
- Fazer prognóstico das precipitações para períodos não muito distantes do período registrado.
- D) Estimar a evapotranspiração potencial anual média da bacia.
- E) Estimar o coeficiente deflúvio médio da bacia hidrográfica no período de registro.
- 14. O hietograma mostrado a seguir representa a precipitação média mensal ao longo de ano de 2005 em uma área de drenagem de 10 ha. Pode-se afirmar que:
 - A) A maior precipitação efetiva ocorreu no mês 2.
 - B) A maior precipitação total ocorreu no mês 12.
 - C) A precipitação média mensal em 2005 foi de 200 mm.
 - D) O volume precipitado na bacia no mês 3 de 2005 foi de 12.10³ m³.
 - E) Nos meses 2 e 11 ocorreram as maiores precipitações efetivas.
- 15. O diagrama de dupla massa apresentado a seguir representa a precipitação acumulada do posto pluviométrico A em relação à média dos postos pluviométricos da região. Com base nos Diagramas 1 e 2 abaixo representados, pode-se afirmar que:

DIAGRAMA 1

DIAGRAMA 2

- O posto A pode apresentar regime pluviométrico distinto dos outros postos, segundo o Diagrama
- B) Os dados do Diagrama 2 podem ser utilizados para avaliações hidrológicas.
- C) Há inconsistência dos dados do posto A, segundo o Diagrama 1.
- D) Os erros do posto A são necessáriamente decorrentes de erros de transcrição, segundo Diagrama 2.
- E) O Diagrama 1 apresenta erros decorrentes de mudanças nas condições de observação.
- 16. Para uma bacia hidrográfica cujo tempo de concentração é de 40 minutos e área de 1,5 km², estime a vazão de projeto adotando o método racional. Considere coeficiente de deflúvio de 0,50 e Tr de 10 anos. Utilize a equação de chuvas intensas

da região:
$$i = \frac{500 \times Tr}{(t+10)}$$

- A) 20 L/s
- B) $20.8 \text{ m}^3/\text{s}$
- C) 75 m³/s
- D) 75 L/s
- E) $12 \text{ m}^3/\text{s}$

- 17. Isócronas, no entendimento hidrológico, representam:
 - A) Linhas de mesmo tempo de concentração.
 - B) Linhas de mesma vazão média.
 - C) Linhas de mesmo tempo de duração da precipitação.
 - D) Linhas de mesma intensidade pluviométrica.
 - E) Linhas de mesma precipitação.
- 18. Qual é a vazão de saída de uma bacia completamente impermeável, com área de 7,2 km², sob uma chuva constante de 20 mm.hora-1 com duração superior ao tempo de concentração?
 - A) $72 \text{ m}^3/\text{s}$
 - B) $36 \text{ m}^3/\text{s}$
 - C) 34 m³/s
 - D) $4.0 \text{ m}^3/\text{s}$
 - E) $40 \text{ m}^3/\text{s}$
- O hidrograma unitário baseia-se em alguns princípios. Marque abaixo a opção que NÃO representa um princípio CORRETO:
 - A) O pico do hidrograma será sempre o mesmo, independente da precipitação efetiva.
 - B) Para chuvas efetivas de intensidade constante e mesma duração, os tempos de escoamento superficial direto são iguais.
 - C) Chuvas efetivas de mesma duração irão produzir em tempos correspondentes volumes de escoamento superficial proporcionais às ordenadas do hidrograma.
 - D) A duração do escoamento superficial de uma determinada chuva efetiva independe de precipitações anteriores.
 - E) O volume de escoamento superficial direto equivale a uma unidade.
- 20. Determine as coordenadas de um hidrograma unitário com base em duas precipitações efetivas de 10 e 15 mm/h, distanciadas em 60 minutos, e na série de vazões apresentada na tabela abaixo:

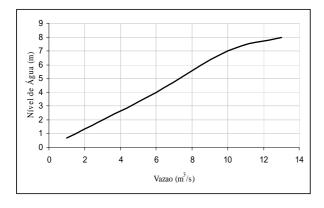
Tempo	Precipitação Efetiva	Vazão
(h)	(mm)	(mm/h)
1	10	2,0
2	15	9,0
3	-	11,0
4	-	3,0

- A) 0,2; 0,2; 0,2
- B) 0,2; 0,6; 0,2
- C) 0,6; 0,2; 0,2
- D) 0,6; 0,6; 0,6
- E) 0,2; 0,2; 0,6

- 21. São possíveis consequências da urbanização no ciclo hidrológico, **EXCETO**:
 - A) Aumento do tempo de concentração na bacia.
 - B) Redução de Q_{7, 10}.
 - C) Aumento das vazões máximas devido ao aumento da capacidade de escoamento através de condutos e canais e à impermeabilização das superfícies.
 - D) Assoreamento de corpos de água.
 - E) Redução do tempo de recorrência para vazões máximas.
- 22. São conceitos corretos, **EXCETO**:
 - A) A chuva efetiva corresponde à parcela da precipitação que gera escoamento superficial.
 - B) O polutograma representa a variação das vazões máximas ao longo do tempo.
 - C) O hietograma representa a variação da precipitação em relação ao tempo.
 - O tempo de pico é o intervalo de tempo entre o centro de massa da precipitação e o pico de vazões do hidrograma.
 - E) O tempo de retardo corresponde ao intervalo de tempo entre o centro de massa da precipitação e o centro de massa do hidrograma.
- 23. A curva-chave de um rio é dada pela equação $Q = a \times (h h_0)^b$, em que Q e h representam vazão e altura da régua fluviométrica, em metros e segundos. Sabe-se que o nível mínimo de medição (h₀) é de 10 cm e que os parâmetros a e b são respectivamente 3,5 e 2,0. Determine a vazão para uma altura de 40 cm da régua.
 - A) $0.12 \text{ m}^3/\text{s}$
 - B) $12 \text{ m}^3/\text{s}$
 - C) $3.150 \text{ m}^3/\text{s}$
 - D) 3.150 L/s
 - E) 140 L/s
- 24. A precipitação total anual em uma bacia é, em média, de 2.000 mm e a vazão média no exutório de 1,5 m³/s. A evaporação em espelhos de água em bacias próximas e de climas semelhantes é de 1.000 mm/ano. Se 10% da bacia hidrográfica for alagada, qual deverá ser a vazão média aproximada no exutório? A área da bacia é de 30 km².
 - A) 10 L/s
 - B) 20 L/s
 - C) 55 L/s
 - D) 550 L/s
 - E) 5 L/s

- 25. Em relação às características de aquíferos, é possível afirmar:
 - A) Poços instalados em aquíferos confinados em zonas topográficas inferiores à linha piezométrica são considerados poços jorrantes.
 - B) A superfície livre de um aquífero freático apresenta pressão superior à pressão atmosférica local.
 - C) Aquíferos lenticulares apresentam grande disponibilidade de água e, na sua superfície, há pressão superior à atmosférica local.
 - D) O nível piezométrico em um ponto de um aquífero artesiano é o mesmo do limite físico superior do aquífero.
 - E) Aquitardes são aquíferos com grande disponibilidade de água e representam soluções interessantes para instalação de poços de extração de água.
- 26. Em relação ao escoamento em meios porosos, é **CORRETO** afirmar que:
 - A) A condutividade hidráulica saturada de um meio poroso depende exclusivamente das características do meio poroso.
 - B) A lei de Darcy é válida para escoamentos turbulentos em que as forças viscosas do fluido são irrelevantes em relação às forças inerciais.
 - C) Valores de condutividade hidráulica saturada são superiores em solos argilosos em relação a solos arenosos.
 - D) A velocidade de Darcy depende exclusivamente do gradiente hidráulico analisado.
 - E) A velocidade de Darcy depende das características do fluido que escoa no meio poroso e das próprias características do meio poroso, como a porosidade total.
- 27. O modelo de Muskingun, elaborado em 1939 por McCarthy e aplicado ao rio Muskingun, é um modelo concentrado e pode ser expresso pela equação:

$$K \Biggl \lceil \Bigl(1-X\,\Bigr) \frac{dQ}{dt} + X\, \frac{dI}{dt} \Biggr \Biggr \rceil = I - Q \quad \text{ em que I e Q são,}$$


respectivamente, as vazões de entrada e saída no trecho considerado; K é um parâmetro que representa o tempo médio de deslocamento da onda entre montante e jusante no trecho; X é um parâmetro que representa o peso da integração da vazão no espaço; e t é o tempo.

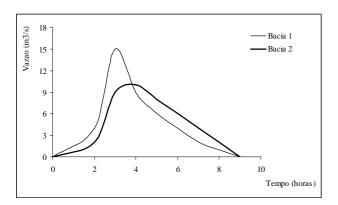
Em relação ao modelo, pode-se AFIRMAR que:

- A) É concentrado espacialmente e pode ser aplicado em simulações de escoamento unidimensionais.
- B) É distribuído espacialmente e pode ser aplicado a escoamentos bidimensionais.
- C) É adequado para simulações com reservatórios em cascatas.
- D) É linear, desde que K e X sejam dependentes das vazões.
- E) É distribuído espacialmente.
- 28. É **CORRETO** afirmar em relação à resposta de uma bacia hidrográfica:
 - A) Quanto menor o tempo de concentração, menor será a vazão de pico.
 - B) O tempo de pico será inferior após a construção de um reservatório que antes à construção.
 - C) Quanto menor o tempo de recorrência da precipitação, maior será a vazão correspondente.
 - D) O tempo de pico e a vazão de pico dependem das características do solo e da cobertura vegetal.
 - E) Quanto maior a declividade da bacia, menor é o volume de cheia e maior o tempo de pico.
- 29. A série histórica de vazões máximas anuais na secção transversal do rio A é apresentada a seguir. Determine o tempo de recorrência para uma cota superior ou igual a 8,0 metros. A curva-chave também é fornecida a seguir.

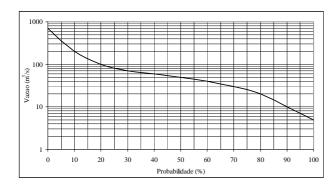
Tempo (ano)	Vazões (m³/s)
1990	5,0
1991	12,0
1992	4,3
1993	10,0
1994	5,0
1995	7,0
1996	6,0
1997	4,9
1998	10,0
1999	7,0

- A) 6 anos.
- B) 10 anos.
- C) 4 anos.
- D) 1 ano.
- E) 3 anos.
- Em relação às sentenças a seguir, marque a alternativa INCORRETA:
 - A) O ponto de saturação é a quantidade máxima de vapor de água que pode estar contido num volume de ar a uma dada temperatura.
 - B) A pressão de saturação de vapor é a pressão parcial exercida pelo vapor de água quando o ar se encontra no ponto de saturação.
 - C) A umidade relativa é a relação percentual entre as quantidade real de vapor de água presente e a quantidade necessária para a saturação do ar nestas mesmas condições de temperatura e pressão.
 - D) A pressão de saturação de vapor é inversamente proporcional à temperatura do ar.
 - E) Água precipitável ou precipitação potencial é a quantidade de chuva que resultaria se todo o vapor de água presente em uma coluna atmosférica fosse precipitado.
- 31. Em relação às características fisiográficas de bacias hidrográficas, é **INCORRETO** afirmar que:
 - A) A declividade média da bacia tem relação importante com processos hidrológicos, como infiltração e escoamento superficial.
 - B) O índice de compacidade representa a ordem de cada canal na bacia.
 - C) A erosão e a pedologia local têm relação direta com a densidade de drenagem de uma bacia.
 - D) O fator de forma pode explicar a tendência de inundação de uma bacia.
 - E) Fatores de forma próximos a unidade indicam tendência da bacia à inundação.
- 32. Deseja-se implantar no rio A um reservatório para recreação e lazer da população. A área inundada será de aproximadamente 3 ha e a área de drenagem da bacia é de 4 km². A área impermeável da bacia é equivalente a 25% da área total. Determine a vazão de projeto no vertedouro da barragem, sabendo que a intensidade pluviométrica para um tempo de recorrência de 50 anos é de 108 mm/h.
 - A) $30 \text{ m}^3/\text{s}$
 - B) $22,5 \text{ m}^3/\text{s}$
 - C) $108 \text{ m}^3/\text{s}$
 - D) 30 L/s
 - E) 120 m³/s

33. Uma ponte ferroviária foi construída com vão livre total de 4,0 m, considerando 0,3 m de bordo livre. Sabe-se que a vazão no canal para uma profundidade de 3,7 m é de 22 m³/s. A intensidade pluviométrica (I) da região em função do tempo de recorrência e para o tempo de concentração da bacia é apresentada a seguir. O coeficiente de deflúvio da bacia é de 0,40 e a área de drenagem de 2,0 km². Com base nesses dados, assinale a alternativa CORRETA.


Tr (ano)	I (mm/h)
10	60
20	77
50	110
100	146

- A) Tr superior a 100 anos.
- B) Tr superior a 50 anos.
- C) Tr igual a 35 anos.
- D) Tr igual a 13 anos.
- E) Tr superior a 20 anos.
- 34. Sobre hidrogramas, aponte a alternativa INCORRETA.
 - A) Um hidrograma unitário é a resposta da bacia a uma precipitação de volume unitário e duração □t.
 - B) O hidrograma de Snyder baseia-se em dados históricos de medição de vazão na secção de interesse.
 - C) Hidrogramas unitários sintéticos são utilizados em bacias onde não há disponibilidade de dados históricos de vazão.
 - D) A intensidade de precipitação é considerada constante na bacia para o hidrograma triangular do Soil Conservation Service.
 - E) Características fisiográficas são essenciais na síntese de hidrogramas sintéticos.
- 35. A capacidade de infiltração no solo pode ser estimada com base no método da Curva Número do Soil Conservation Service. Em relação ao método, pode-se afirmar que:
 - A) Baseia-se em três graus de umidade antecedente do solo: ponto de murcha, capacidade de campo e umidade de saturação.
 - B) Baseia-se em grupos de solos hidrológicos, sendo que solos do grupo A produzem mais escoamento superficial e solos do grupo D apresentam maior taxa de infiltração.
 - Solos do Grupo A s\(\tilde{a}\) o tipicamente profundos e apresentam, geralmente, valores elevados de porosidade total.


- Umidades antecedentes próximas ao ponto de murcha geram menor capacidade de infiltração no solo.
- E) A cobertura vegetal é irrelevante na estimativa da capacidade de infiltração.
- 36. Determine a vazão de pico do hidrograma triangular sintético do *Soil Conservation Service* para uma precipitação efetiva de 10 mm e duração de 1,0 hora. A área da bacia é de 1,0 km² e o tempo de ascensão do hidrograma é de 40 minutos. A razão entre o tempo de pico e o final do hidrograma e o pico e início do hidrograma é de 1,67.
 - A) 31,2 L/s
 - B) 520 L/s
 - C) 5,2 L/s
 - D) 13 L/s
 - E) 3.120 L/s
- 37. Aponte a alternativa INCORRETA em relação à capacidade de reservatórios:
 - A) O nível mínimo operacional corresponde à cota mínima para operação do reservatório. Limita o volume útil e o volume morto do reservatório.
 - B) O volume útil corresponde ao volume compreendido entre os níveis de água mínimo e máximo operacional.
 - C) O volume útil depende da demanda de água e é diretamente proporcional à demanda.
 - O volume morto corresponde à parte inativa, como, por exemplo, a reservada para depósito de sedimentos.
 - E) O nível de água denominado máximo maximorum corresponde ao nível máximo de sedimentos no reservatório.
- 38. Aponte a alternativa **INCORRETA** em relação à determinação de volumes de reservatórios com o uso do diagrama de Rippl.
 - A) Desconsidera a sazonalidade das vazões.
 - B) É um modelo determinístico baseado na série histórica de vazões do rio.
 - Perdas por evaporação são desconsideradas e, portanto, esse modelo não deve ser utilizado em bacias no semiárido.
 - D) Permite apenas uma regra de regularização.
 - E) Não associa riscos a um determinado volume.

39. Uma mesma precipitação que ocorreu em duas bacias hidrográficas de mesma área de drenagem resultou nos hidrogramas representados a seguir. Aponte a alternativa CORRETA que apresente possíveis causas da diferença de comportamento da vazão ao longo do tempo.

- A) A Bacia 1 pode apresentar declividade média superior à Bacia 2.
- B) Ocorrência de todos ou alguns elementos supracitados.
- C) A Bacia 2 pode apresentar de forma predominante solos hidrológicos do grupo A, com maior permeabilidade e profundidade do que a Bacia 1, com solos hidrológicos predominantemente do tipo B.
- D) A Bacia 2 pode apresentar maior área florestada e natural que a Bacia 1, que apresenta grandes manchas urbanas e áreas impermeáveis.
- E) A Bacia 1 pode apresentar formato mais semelhante à circunferência (coeficiente de Gravelius próximo à unidade) que a Bacia 2.
- 40. Uma usina hidrelétrica foi dimensionada para gerar energia com uma vazão igual a Q₉₅, apresentada na curva de permanência a seguir. Sabe-se que o órgão ambiental requer uma vazão à jusante da usina não inferior a 3,0 m³/s. Quais as consequências na geração de energia, caso o critério ambiental seja respeitado?

- A) A usina operará em 90% do tempo.
- B) A usina operará em 95% do tempo.
- C) A geração de energia será interrompida em pelo menos 90% do tempo.
- D) Não ocorrerão interrupções de operação.
- E) A usina operará em 80% do tempo.

REDAÇÃO

Os fragmentos abaixo fazem parte da entrevista concedida ao jornal *Valor Econômico* (ed. 02/10/09) pelo economista Sérgio Besserman Viana, expresidente do IBGE (durante o governo Fernando Henrique Cardoso), que assina o capítulo "A sustentabilidade do Brasil" do livro *Brasil pós-crise – Agenda para a Próxima Década*, organizado pelos economistas Fabio Giambiagi e Octavio de Barros.

Valor Econômico: Qual o risco, na economia, de um atraso do acordo climático mundial? O que acontece se não for assinado em Copenhague?

Sérgio Besserman Vianna: O fracasso de uma negociação de acordo contra a mudança climática vai fazer com que os custos para combater o aquecimento global poucos anos à frente sejam muito mais elevados do que se iniciarmos hoje a transição. Ao mesmo tempo existirão também custos de fragmentação política e riscos de protecionismo.

Valor: Está no livro: a superação das energias sujas tem o potencial de se constituir no próximo grande boom de inovações e isto pode ser um impulso para a saída da crise. A China parece estar perseguindo esta trilha, mas também não quer abrir mão do carvão. Como fica?

Besserman: São cenários em aberto a depender do acordo global que pode acontecer agora em Copenhague ou não. Ali, depurando tudo, vamos estar precificando o custo de emitir gases-estufa. O tamanho da meta necessária para tentar atingir o objetivo fixado de não aquecer o planeta mais de 2 C sinaliza uma grande transição tecnológica, que diz respeito, num primeiro momento, à eficiência energética em geral, e um forte impulso às fontes renováveis de energia. Mas este é apenas o início. Porque em seguida vêm todas as mudanças decorrentes das alterações de preços relativos que tende a se acentuar porque as metas para 2050 são ainda mais radicais que as previstas para 2020. Vem uma grande transição pela frente, isto é certo, e quem acompanhar esta transição tecnológica vai se inserir competitivamente neste novo mundo. Quem não acompanhar, e se agarrar às formas do passado sem visualizar esta transição radical e profunda, corre o risco de ficar descompassado.

Valor: Como fica o Brasil na descarbonização de sua economia?

Besserman: É uma imensa oportunidade. Temos grandes vantagens comparativas neste mundo de baixo teor de carbono, como a nossa matriz energética, que já é mais limpa, ou políticas benéficas em si, como a redução do desmatamento da Amazônia. Temos que fazer modificações na logística, como no nosso setor de transportes. Estas vantagens comparativas podem se tornar vantagens competitivas.

Valor: Os senhores dizem que o Brasil está fazendo "diversos equívocos" no campo da energia. Falam das políticas que subsidiam o uso do carvão e das térmicas a óleo, mas também mencionam as hidrelétricas. Como assim?

Besserman: No caso das hidrelétricas é um não aproveitamen-to inteligente das possibilidades de integração com outras fontes renováveis, do potencial das pequenas hidrelétricas e de uma melhoria no padrão de gestão e transparência no caso das hidrelétricas maiores. No caso da energia em geral, é preciso ter claro que o futuro são as fontes renováveis e não emissoras de gases-estufa. O pré-sal é uma benção, uma riqueza, mas é o passado.

Valor: O passado?

Besserman: Sim, porque estamos nos preparando para o fim da civilização dos combustíveis fósseis.

Valor: Como fica esta "benção"?

Besserman: O uso inteligente do pré-sal é utilizar estes recursos para potencializar a transição para outra matriz energética, aproveitando as vantagens comparativas do Brasil em biomassa, solar, eólica, pequenas hidrelétricas. Sim, este é o futuro. Usar o recurso do pré-sal para ir a este futuro é maravilha. Mas apostar no mundo dos combustíveis fósseis e ficar estacionado nele seria um equívoco. Para mim, o risco é o país, em vez de mobilizar seus recursos para a transição tecnológica, acabar utilizando-os de forma a ficar ancorado no mundo do passado. Planejamento e política industrial mirando a transição tecnológica da matriz energética é muito importante. Neste novo mundo há riquezas equivalentes a muitos pré-sais.

PROPOSTA DE REDAÇÃO

Escreva uma carta, entre 15 e 20 linhas, para ser <u>enviada à seção de cartas do jornal Valor Econômico</u>, **comentando** (concordando e/ou discordando) **as opiniões** do economista Sérgio Besserman Viana. Considere que os leitores da sua carta **NÃO** leram (nem total nem parcialmente) a entrevista; portanto, você deve fazer referência a ela. **(Sua Carta <u>NÃO</u> deve ser assinada.)**

SOBRE A REDAÇÃO

- 1. Estruture o texto da sua redação com um mínimo de 15 e um máximo de 20 linhas.
- 2. Faça o rascunho no espaço reservado.
- 3. Transcreva o texto do rascunho para a FOLHA DE REDAÇÃO que lhe foi entregue em separado.
- 4. Não há necessidade de colocar título.
- 5. Não coloque o seu nome, nem a sua assinatura na FOLHA DE REDAÇÃO, nem faça marcas nela. A FOLHA DE REDAÇÃO já se encontra devidamente identificada.

REDAÇÃO – Rascunho