

Regenerating Confidence A NEW PATHWAY FORWARD

FEBRUARY 2018

Regenerating Confidence | A New Pathway Forward

A STREAMLINED STRUCTURE

- Reduced expense burn
- Prioritized programs and resources
- Renewed direction and streamlined organization
- The right teams at that right time

NEW! FINANCING AND MARKET EXPANSION: CHINESE SUBSIDIARY

- Long-term investment horizon with resources
- Establishing a presence in the largest market for esophageal cancer
- · Working together, leveraging resources

SCIENTIFICALLY SOUND AND NOVEL TECHNOLOGY

- Expanded SAB guiding development priorities
- Growing body of data on consistent regeneration
- Novel and new category: bioengineered organ implants with removable scaffold
- · New data on mechanisms of action

THE RIGHT INDICATIONS FOR THE RIGHT CLINICAL AND BUSINESS REASONS

- Learning from experience
- Pediatric Esophageal Atresia (US/China)
- Esophageal Cancer (US/China)
- INDs targeted for filing in 2019

2018 Roadmap | Pragmatic Progress

Q1 | 18

First things first; re-start operations; secure final reports on all animal studies; IND gap analysis

Expand SAB; actively use the SAB to guide development (piglet studies at CCMC in collaboration with Dr. Finck

Q2 | 18

Continue to validate the science through publications and 3rd party review

Review status of SBIR Grant: non-dilutive financing (extend financial runway) Q3 | 18

Broaden operations with China subsidiary; identify Chinese KOLs and investigators; update IP

Gain pediatric rare disease designation for atresia indication

Q4 | 18

Complete piglet studies at CCMC; continue to engage with FDA on requirements

Update clinical protocols: primary and secondary endpoints; inclusion and exclusion criteria

A Novel Approach | Regenerating Possibilities

Cellspan implant is inserted after esophageal resection

Rapid healing response and initial regeneration over the Cellspan Implant

Scaffold is removed at 21 days

DAY 21

DAY 361

Partnering for Progress | Biostage & Connecticut Children's Medical Center

Connecticut
Children's
Medical Center
is serving as a
pivotal site to
advance the
Biostage
pediatric
esophageal
atresia program

Active collaboration with Connecticut Children's Medical Center

Lead by Christine Finck, MD Scientific Advisory Board Member

EVP and Surgeon-in-Chief Connecticut Children's Medical Canter

Associate Professor of Pediatrics and Surgery UCONN Health

Pediatric Esophageal Atresia | Life-Threatening and Urgent Need

Approximately
1 in 2,500 infants
in the US is born
with esophageal
atresia

Biostage currently has orphan designation in EA

With long-gap esophageal atresia, on average, infants spend 120 days in the ICU with a cost of \$576k per patient

Infant is born with a gap between the upper and lower esophagus

Esophageal atresia requires immediate surgical intervention

In some cases, the gap is too lengthy to bring the two ends together; this condition is know as long-gap esophageal atresia (LGEA)

With long-gap esophageal atresia there is no consensus on how to correct the defect

Regenerating Confidence | A New Pathway Forward

DRIVEN BY THE
PATIENTS WHO DESERVE
A BETTER STANDARD
OF CARE AND THE
OPPORTUNITY TO
ACHIEVE BIOSTAGE'S
FULL POTENTIAL

