

Educational Secure Data Service

Runbook

ii Runbook inBloom

Document History

Version Date Revised by Description

inBloom Runbook iii

Table of Contents

1 Preparing for a Deployment of the Educational Secure Data Services 1

1.1 Introduction .. 1

1.1.1 Scope ... 2

1.1.2 Audience .. 2

1.1.3 Dependencies, Assumptions & Constraints .. 2

1.2 SDS Architecture ... 3

1.2.1 Hardware .. 4

1.2.2 Software ... 5

1.3 Platform Sizing... 6

2 Deploying Components ... 7

2.1 Cryptographic Keys ... 7

2.2 Configuration Files ... 8

2.3 Operating System .. 8

2.4 Application Servers .. 8

2.4.1 Tomcat ... 9

2.4.1.1 Requirements .. 9

2.4.1.2 Configuration ... 9

2.4.2 Rails ... 9

2.4.3 Bulk Extract Server ..10

2.4.3.1 Setting Up Bulk Extract Files ..10

2.4.3.2 Adding & Updating sli.properties Entries for Bulk Extract11

2.4.3.3 Configuring MongoDB for Bulk Extract ..12

2.4.3.4 Scheduling Bulk Extractions ...13

2.4.3.5 Extracting Tenant Data Without the API ..13

2.4.3.6 Updating the Tomcat Configuration for Bulk Extract Encryption13

2.4.3.7 Removing Certificates from the ESDS Truststore14

2.4.3.8 Cleaning Up Bulk Extract Files..14

2.4.3.9 Troubleshooting Errors in the Bulk Extract Cleanup Script17

2.4.3.10 Required Maintenance Tasks for Bulk Extract Service17

iv Runbook inBloom

2.5 Ops Tools ...18

2.6 MongoDB..19

2.6.1 Cluster Setup ...19

2.6.2 Databases ...19

2.6.2.1 System Database ...19

2.6.2.2 Ingestion Batch Job Database ..19

2.6.2.3 Tenant Databases ..20

2.6.3 Configuration ...20

2.7 ActiveMQ ..20

2.7.1 Requirements ..20

2.7.2 Installation ...21

2.7.2.1 Setting ActiveMQ Redundancy ...22

2.7.2.2 Configuring Ingestion to Utilize ActiveMQ Redundancy23

2.8 RESTful API ...24

2.8.1 Requirements ..24

2.8.2 Configuration ...24

2.8.3 Installation ...29

2.9 GlusterFS ...31

2.9.1 Configuration ...31

2.9.2 Installation ...31

2.9.2.1 Attaching GlusterFS to the Ingestion and Landing Zone Servers33

2.9.2.2 Setting up the Landing Zone Servers ..33

2.9.3 Troubleshooting ...35

2.10 Ingestion ...36

2.10.1 Requirements ..36

2.10.2 Configuration ...36

2.10.3 Installation ...38

2.10.4 Troubleshooting ...39

2.11 Landing Zone ..39

2.11.1 Requirements ..39

2.11.2 Configuration ...39

2.11.3 Installation ...40

2.11.4 Troubleshooting ...41

inBloom Runbook v

2.12 LDAP ..41

2.13 SimpleIDP ...42

2.13.1 Requirements ..42

2.13.2 Configuration ...42

2.13.3 Installation ...45

2.13.4 Troubleshooting ...45

2.14 Admin Tool ...46

2.14.1 Requirements ..46

2.14.2 Configuration ...46

2.14.3 Installation ...47

2.14.4 Troubleshooting ...47

2.15 Dashboard ..48

2.15.1 Requirements ..48

2.15.2 Configuration ...48

2.15.3 Installation ...48

2.15.4 Troubleshooting ...48

2.16 Data Browser ..49

2.16.1 Requirements ..49

2.16.2 Configuration ...49

2.16.3 Installation ...50

3 Appendix ..51

3.1 Sandbox ...51

3.1.1 Requirements ..51

3.1.2 Installation ...51

vi Runbook inBloom

This page intentionally left blank.

inBloom Runbook 1

1 Preparing for a Deployment of the Educational Secure
Data Services

1.1 Introduction

Educational Secure Data Services (ESDS) is a multi-tenant, transaction-based database.

The ESDS is run either as Software as a Service (SaaS) where ESDS manages the

operation or as an Operator model, where a provider opts to maintain their own instance

of the software.

An ESDS managed deployment offers a secure, cloud-hosted data store designed for states

and school districts. An Operator instance is responsible for maintaining the service with the

same expectations for performance, security, and availability as ESDS has for a managed

instance. Operators are encouraged to align with an established level of technical and

business standards to offer stakeholders a secure and optimal experience and are expected

not to change the provided ESDS APIs so that applications can use them no matter which

instance of the service their customers opt to use.

Whether a SaaS or an Operator model, the ESDS securely maintains data about state and

district’s organizational structure, schools, and employees, as well as information on student

enrollment, biographical and achievement data. In implementing ESDS solution, states and

districts load data to the SDS data store through either bulk ingestion or the API.

The goal of ESDS is to provide a level of data interoperability that allows states, districts,

schools and teachers to tailor resources and learning applications to their local and

individual needs securely by providing an API. The Secure Data Service API makes the

process of sharing individual learning tools and strategies easier and more efficient.

Overcoming these data interoperability barriers is the ultimate objective of ESDS and are

core to enabling the products and strategies that drive personalized learning in the

classroom.

This Runbook provides requirements, recommendations and procedures for installing,

configuring, running, and troubleshooting the ESDS. Additionally, this Runbook should be

used to understand the practices and procedures for the efficient use of ESDS.

2 Runbook inBloom

1.1.1 Scope

The ESDS Runbook provides all processes and tasks required to install, configure, run

and troubleshoot the ESDS system. This guide covers the instructions and supporting

information you need to deploy an ESDS production environment.

1.1.2 Audience

This guide is intended for system operators and system administrators responsible for

specific tasks related to the deployment of the ESDS, third party components and

applications.

1.1.3 Dependencies, Assumptions & Constraints

This section provides the known dependencies, assumptions and constraints of deploying

the ESDS. A successful deployment is dependent on the positive installation of third

party components, SDS core components and applications.

It is assumed that the knowledge and skill-levels required by an IT Administrator or

Operator in order to successfully deploy the ESDS include 3 to 5 years of Linux

experience as well as familiarity with load balancing and distributed file systems.

Successful implementation of the ESDS is constrained by the regional or local education

agency fully identifying all requirements for installation. This input is dependent on the

participation of individuals from the stakeholder groups who are empowered to identify

and agree on these requirements.

It is assumed that the target audience of this guide has experience in the following areas:

• Installing and configuring enterprise software.

• Working on a UNIX command line.

• Installing or managing software and services on a Linux system.

inBloom Runbook 3

1.2 SDS Architecture

This section defines the ESDS architecture and the hardware and software required for

an SDS deployment.

ESDS technology is logically divided into a series of subsystems that serve specific

purposes in the infrastructure. The diagram below provides a look at the subsystems,

their components, and how information flows between the subsystems and components.

Major components shown:

• Applications - All web-based ESDS applications as well as any third-party web or
mobile applications that an education organization adds to its ESDS
implementation. A user’s defined role determines the access level to applications.

• Application Programming Interface - Applications that use the API to interact with
the ESDS. It consists of one or more nodes hosting the ESDS RESTful API.

• Identity Services – Identity management solution for ESDS. SimpleIDP is the
identity provider for ESDS administrator accounts. SimpleIDP is backed by
openLDAP for account storage.

4 Runbook inBloom

• Data Store – ESDS database that consist of educational data from the state and
local education agencies plus other data necessary for ESDS operation. This also
includes the Bulk Extract service which can be deployed to provide daily extracts to
authorized applications in the event that the API is not suitable.

• Ingestion – Infrastructure required to add large amounts of data in bulk to the
ESDS. This includes an SFTP server to allow ingestion users to connect and upload
files.

The ESDS architecture is a scalable deployment of Linux servers. These servers fulfill the
roles of API nodes, ingestion processors, application hosts, data store nodes, and
background service hosts. Each part of the system can be horizontally scaled to support
the high-levels of concurrency and large data sets that the SDS manages.

Two of the most critical aspects for a system administrator to consider are security and

scalability. By segmenting the infrastructure tiers you are able to provide greater security.

In addition, a multi-tiered environment allows for ease of scalability.

The following guidelines provide hardware and software requirements to execute a full

scale deployment of ESDS that will support multiple customers at scale.

1.2.1 Hardware

Hardware needs will vary depending on the volume of data and number of students your

program aims to support. Maintaining an efficient system will require the use of numerous

physical or virtual servers of a caliber that would meet typical business operations for

handling large datasets and frequent, concurrent connections by external parties via the

internet. Operators are expected to have N+1 redundancy in an active-active

configuration for all servers, as well as appropriate firewall, intrusion detection, and load

balancing technologies.

An Operator can expect to provide hardware to enable and maintain the following

software components of the ESDS service offering:

Database Servers

MongoDB

LDAP

Application Servers

API

Data Browser

Dashboard

Admin

SimpleIDP

inBloom Runbook 5

Data Ingestion

Landing zone

Ingestion

Bulk Extract

ActiveMQ

GlusterFS

1.2.2 Software

ESDS utilizes a variety of open source software in the creation of the SDS. Best practices

should be followed with the installation and configuration of these software components.

Any specific configuration necessary to stand up the SDS will be noted in the software

specific sections of this document.

An Operator can expect to install the following software to enable and maintain the ESDS

service offering:

MongoDB - Document database used to store education data and system

configuration

ActiveMQ - Messaging system for asynchronous processing

GlusterFS - Distributed file system for batch-processing XML ingestion files

OpenLDAP - Directory server for configuration of system-wide tools and

administrators

Tomcat - Java application server for API and other applications

Nginx – Web Server used with Ruby on Rails applications

Ubuntu 12.04 – Operating system that has been tested with the SDS

6 Runbook inBloom

1.3 Platform Sizing

The table below provides a summary of platform sizing details by server use case.

Server Role
Minimal Servers
(no redundancy) Recommend Size

Portal 1 Small

Portal MySQL 1 Small

API 1 Small

Dashboard 1 Small

Databrowser 1 Small

Admin 1 Small

SIDP 1 Small

MongoDB Config Servers 3 Medium

MongoDB Servers
(1 shard) 3 Extra Large

Ingestion 1 Large

Ingestion ActiveMQ 1 Small

GlusterFS 1 Medium

Bulk Extract 1 Large

LDAP 1 Small

Landing Zone 1 Small

Search-Indexer 1 Small

ElasticSearch 1 Medium

Instance Sizing Cores
Memory
(Approximate)

Small 2 8GB

Medium 4 32GB

Large 8 64GB

Extra Large 32 248GB

inBloom Runbook 7

2 Deploying Components

2.1 Cryptographic Keys

This section describes how to generate the cryptographic keys used to encrypt data in

two locations:

• PII in the data store

• Sensitive information within the config files

Important! The JCE Unlimited strength policy must be installed on the JVM or you may

get the following exception when encrypting or decrypting the password:

java.security.InvalidKeyException: Illegal key size or default parameters

To install the JCE Unlimited Strength download the appropriate file below and follow the

included readme file for setup instructions.

Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 6

Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 7 Download

There are two different encryption keys:

• A 256bit AES secret key used by the API and Ingestion servers to encrypt data in

the SDS and used by SimpleIDP and Bulk Extract for read operations. This key

must be the same across all services and servers that require reading or writing

directly from MongoDB.

• A private key is used by the SimpleIDP to sign SAML assertions. An x509

certificate generated using this private key is then utilized by the API to verify the

integrity of the SAML assertions from the SimpleIDP.

There are two types of Java keystores that contain this information.

• A keystore used to store the AES secret key and the SimpleIDP's private key.

• A truststore used to store a trusted x509 certificate that is utilized by the API to

verify the integrity of SAML messages sent from an IDP (such as the SimpleIDP)

along with the client certificates to support bulk extract operations.

http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html

8 Runbook inBloom

2.2 Configuration Files

The configuration files in the table below are used to configure the various components of

the platform.

Important! These configuration files must be maintained so that all app servers that

depend on these config file are running the same version.

Configuration File Component

sli.properties SimpleIDP, API, Ingestion, Dashboard, BulkExtract

config.yml Admin

config.yml DataBrowser

2.3 Operating System

It is strongly recommended that you deploy the ESDS on Ubuntu 12.04 LTS as this is the

operating system that has been tested against the SDS. It is recommended that this

operating system also have the appropriate security hardening established to reduce the

risk of compromise.

2.4 Application Servers

The SDS platform requires two types of application servers on which the various

components are then deployed.:

• Tomcat with Java 7

• Nginx with Ruby 2.0.0

The following sections cover the procedures for deploying these servers as well as any

specific configuration required for the components to function properly.

inBloom Runbook 9

2.4.1 Tomcat

2.4.1.1 Requirements

The requirements include the following:

Both JDK 7 and Tomcat 7 have been tested with the ESDS.

Important! Ensure that the Tomcat installation does not run as root.

2.4.1.2 Configuration

Confirm the following configuration parameters are set:

sli.trust.certificates=$TOMCAT_HOME/

2.4.2 Rails

Note: It is recommended that you install Ruby 2.0.0 via RVM as this provides several

benefits such as making future upgrades easier to install as well as ensuring stability of

the system by leaving Ruby in place.

1. Install Ruby 2.0.0.

2. Install Phusion Passenger gem.

3. Install Nginx and compile in Phusion passenger support.

Important! It is highly recommended that you ensure the Tomcat installation does not

run as root.

No application specific configuration is required.

10 Runbook inBloom

2.4.3 Bulk Extract Server

2.4.3.1 Setting Up Bulk Extract Files

Use the following steps to install and configure the bulk extract service:

Note: Based on your ESDS setup, be sure that the bulk extract service (installed here)

has permission to both read and write to the new destination directory and that the REST

API service has permission to read the directory.

1. Create the directory to serve as the destination for extracted data. Default

configuration sets this to be /bulkextract/extracts, which is in the GlusterFS

volume created at /bulkextract:

mkdir /bulkextract/extracts

2. Create the install target for the bulk extract files /opt/bulkextract:

mkdir /bulkextract/extracts

3. Retrieve bulk-extract-scripts.tgz from the files provided by ESDS and copy them to

the new bulk extract server.

4. On the bulk extract server, extract bulk_extract.tar.gz to the newly-created

/opt/bulkextract directory.

5. Confirm that the following contents now reside in /opt/bulkextract/:

• Three directories: config, scripts, and target

• Inside the target directory, a file named bulk_extract.tgz that contains the

compiled binary objects used to run the bulk extract

• Inside the scripts directory, two files named local_bulk_extract.sh and

schedule_bulk_extracts.sh; local_bulk_extract.sh is used by scheduled

extraction jobs created with schedule_bulk_extracts.sh.

6. Update sli.properties to include the entries.

7. Using your preferred text editor, edit schedule_bulk_extracts.sh so that it has the

appropriate tenant names to include for bulk extraction.

These must line up with one or more of the tenant names that ESDS

administrators add to the system. Each represents a level of the education

organization hierarchy served by this ESDS deployment. These are created

during tenant on-boarding activities, usually following the initial ESDS deployment.

8. Review the default bulk extract properties in local_bulk_extract.sh, as shown

below. If necessary, override these properties by creating a separate configuration

file in /etc/sysconfig/ named bulk-extract:

DEFAULT_CHECK_SLI_CONF="$ROOT/../config/properties/sli.properties"

DEFAULT_CHECK_KEYSTORE="$ROOT/../data-access/dal/keyStore/dal-

keystore.jks"

DEFAULT_BULK_EXTRACTOR_JAR="$ROOT/target/bulk-extract-1.0-

SNAPSHOT.jar"

DEFAULT_TENANT="Midgar"

inBloom Runbook 11

DEFAULT_MAX_MEMORY="1024m"

DEFAULT_MIN_MEMORY="1024m"

JAVA_OPT="-Dfile.encoding=UTF-8"

CHECK_SLI_CONF=0

CHECK_KEYSTORE=0

CHECK_SEARCH_INDEXER_TAR=0

RUN_EXTRACT=1

RUN_HELP=0

SLI_CONF="sli.conf"

SLI_ENCRYPTION_KEYSTORE="sli.encryption.keyStore"

BULK_EXTRACTER_LOG="bulk-extracter.log"

2.4.3.2 Adding & Updating sli.properties Entries for Bulk Extract

This section defines the sli.properties entries associated with the bulk extract service.

Add or update these values as necessary for your ESDS deployment:

Property and Default Value Description and Alternate Values

sli.bulk.extract.output.directory=/bulkextract/extracts The output directory for bulk extract operations.

Both the bulk extract service and the REST

API service must have permission to read from

this directory. This directory must be expressed

as an absolute path.

sli.bulk.extract.log.path = /var/log/tomcat The directory for log files for the bulk extract

service. This directory must be expressed as

an absolute path.

sli.bulk.extract.log.level = INFO The log level for the bulk extract service.

12 Runbook inBloom

Property and Default Value Description and Alternate Values

Refer to the Tomcat documentation for a list of

log level values that could be used here.

sli.be.mongo.failOnPrimary=true The value is Boolean.

By default, bulk extract operations read from

secondary MongoDB servers.

Use this property to customize that behavior.

When the property is set to true (default), any

attempt by the bulk extract operation to read

from a primary MongoDB server will fail.

sli.be.mongo.tagSet= The value is a list of MongoDB replica set tag

sets. By default, this value is not set. If this

value is not set, the bulk extract operation

reads from any available secondary MongoDB

server. If it is set, bulk extract reads from a

secondary server respective of the tags

provided. Otherwise, it fails.

Refer to Configuring MongoDB for Bulk Extract

for more information about how to use this

property.

sli.security.truststore.path = /tmp/trustey.jks The path to the truststore used for two-way

TLS communicatation.

sli.security.truststore.password = password The password for the truststore.

2.4.3.3 Configuring MongoDB for Bulk Extract

By default, bulk extract operations read only from secondary MongoDB servers

(sli.be.mongo.failOnPrimary=true) and from any of the available secondary servers

(sli.be.mongo.tagSet is unset).

To control which secondary MongoDB servers should serve bulk extract operations,

additional configuration is needed in MongoDB. Specifically, MongoDB replica sets must

use tag sets as described in the following MongoDB documentation:

http://docs.mongodb.org/v2.2/applications/replication/

With tag sets configured in MongoDB, set the sli.be.mongo.tagSet property to target

specific secondary MongoDB servers to fulfill bulk extract operations. The following is an

example configuration showing two tag sets:

sli.be.mongo.tagSet = [{ "env": "prod", "geo": "east", "use" : "InUse" },

http://docs.mongodb.org/v2.2/applications/replication/

inBloom Runbook 13

{ "env": "test", "geo": "west", "use": "InUse" }]

2.4.3.4 Scheduling Bulk Extractions

To schedule bulk extractions, run the schedule_bulk_extracts.sh script using the following

syntax:

./schedule_bulk_extracts.sh /opt/bulkextract/scripts /opt/bulkextract/config

This script places entries in the crontab for the user who runs the script. When a

scheduled extract is complete, look for the results in the target directory for extraction,

configured in sli.properties using sli.bulk.extract.output.directory.

2.4.3.5 Extracting Tenant Data Without the API

Though the bulk extract feature is primarily exposed using the REST API, you can extract

the data for a tenant without the API (manually) using the local_bulk_extract.sh script.

The following example depicts calling the script as a command line with the tenant name,

the location of the sli.properties configuration file, the DAL encryption keystone, and the

bulk_extract.tar.gz file package.

Replace "<TenantName>" with the name of the target tenant.

./local_bulk_extract.sh -t<TenantName> -Dsli.conf=/opt/tomcat/conf/sli.properties

-Dsli.encryption.keyStore=/opt/tomcat/encryption/DALKeyStore.jks -

f/opt/bulkextract/bulk_extract.tar.gz

2.4.3.6 Updating the Tomcat Configuration for Bulk Extract Encryption

When applications call a bulk extract endpoint, a client certificate is requested during the

Transport Layer Security (TLS) handshake. The provided certificate is compared against

the stored certificate for that application. This serves as a surrogate shared secret.

The TLS connection for bulk extract endpoints must propagate all the way to

the API/bulk extract node and must not terminate at the load balancer/nginx.

Changes should be made to the Tomcat configuration to request, but not require, the

client certificate during the handshake. Below is a sample configuration showing the

change that needs to be made. The important parameter in this example is

clientAuth="want".

14 Runbook inBloom

<Connector port="8443" clientAuth="want" sslProtocol="TLS"

 keystoreFile="/etc/mykeystore.jks" keystorePass="password"

 truststoreFile="/etc/mytruststore.jks" truststore Pass="password"/>

2.4.3.7 Removing Certificates from the ESDS Truststore

When an application developer no longer needs to apply bulk extract for their tenant, the

developer's bulk extract application certificate must be removed from the ESDS truststore

to disable bulk extract operations for that app. The following example can be used to

remove the certificate from the truststore:

keytool -delete -keystore truststore.jks -alias <clientID>

The server's truststore for this example is 'truststore.jks'. The alias for the certificate to be

removed must be the clientID of the Bulk Extract application for which bulk extract is to be

disabled. The server must be restarted after the certificate is removed from the truststore.

2.4.3.8 Cleaning Up Bulk Extract Files

ESDS provides a bulk extract cleanup script to clean up bulk extract files and their

associated database metadata over time.

The system running the bulk extract cleanup script must be running Ruby version 2.0.0.

Set up the script using the following steps:

1. Select or create a directory on the bulk extract server from which you want to run

the bulk extract cleanup script. This is the install directory for the script.

2. Find bulk_extract_cleanup.tar in the files provided from ESDS, and copy the

archive to the install directory.

3. At a command prompt to the bulk extract server, change to the directory where

you copied the archive and extract it using the tar command:

tar xf bulk_extract_cleanup.tar

4. For operator users that need to use this script, confirm that all extracted contents

are readable and that the main script, cleanup_bulk_extract.rb, is executable.

5. Change to the scripts directory, and run bundle install to install the required ruby

gems:

> cd scripts

> bundle install

6. Using your preferred text editor, edit the configuration file,

bulk_extract_cleanup.yml, with local environment information for the script. The

inBloom Runbook 15

default contents are shown below. Most default values are sufficient on various

platforms. One possible exception is log_file_pathname for which the operator can

choose another location.

Bulk extract cleanup logging parameters.

log_file_pathname: logs/cleanup_bulk_extract.log

log_file_rotation: daily

log_level: INFO

Bulk extract cleanup variables.

sli_database_name: sli

bulk_extract_host: localhost

bulk_extract_port: 27017

remove_db_record_retries: 3

remove_db_record_retry_interval_secs: 10

7. Run the script, cleanup_bulk_extract.rb, from a command prompt on the bulk

extract server. The parameters you can use are:

• tenant - The unique name for a specific tenant

• date - A timestamp expressed in UTC or ISO8601 format

• edOrg - The state unique ID value in the tenant database for a specific

educational organization (its stateOrganizationId value)

• file - The absolute path to a specific bulk extract file on the local filesystem

The table below defines the script options and how to use them for specific cleanup

actions.

Command Description

cleanup_bulk_extract.rb -h | -help Print the help page for this script.

cleanup_bulk_extract.rb -t[tenant] Remove all bulk extract files and their

database metadata for this tenant (tenant).

cleanup_bulk_extract.rb -t[tenant] -d[date] Remove all bulk extract files and their

database metadata extracted up to this date

(date) for this tenant (tenant).

cleanup_bulk_extract.rb -t[tenant] -e[edOrg] Remove all bulk extract files and their

database metadata for this educational

organization (edOrg) belonging to this

tenant (tenant).

16 Runbook inBloom

Command Description

cleanup_bulk_extract.rb -t[tenant] -e[edOrg] -d[date] Remove all bulk extract files and their

database metadata extracted up to this date

(date) for this educational organization

(edOrg) belonging to this tenant (tenant).

cleanup_bulk_extract.rb -t[tenant] -f[file] Remove this specific bulk extract file (file)

and its database metadata for this tenant

(tenant).

Note: Use double quotes around any parameter containing whitespace.

For example: -e "Sunset Central High School"

The following occurs when the script calls to clean up bulk extract files

1. On-screen output indicates that the script is logging results to the configured log

file. The log file reflects separate entries for each script execution, and it includes

the exact command executed.

2. If the command syntax is correct, the script validates the provided parameter

values (tenant, edOrg, date, filename). If any parameter value is invalid, the script

exits with an error message.

3. If the parameters are valid, the script prompts for you to confirm the cleanup

action, displaying the parameter values provided. If the user answers 'y' or 'yes',

the script will perform the cleanup action. If the user provides any other response,

the script exits with no action taken.

4. During the cleanup action, the script performs the following for each bulk extract

file targeted for removal:

• The corresponding record in the bulk extract database collection is removed.

• The bulk extract file is deleted.

• The actions taken are logged to the cleanup script log file.

5. When the script finishes processing, it displays a summary on screen indicating

the number of files processed and removed, along with any failed processes.

inBloom Runbook 17

2.4.3.9 Troubleshooting Errors in the Bulk Extract Cleanup Script

This section provides a summary of the errors that could occur when using the bulk

extract cleanup script and how the script behaves when it encounters the error:

Error Behavior

Errors in command syntax Script exits with error

Invalid parameters when

calling the script

Script exits with error

The target file to be deleted

does not exist

Script reports a warning and continues

Database connection lost

while processing -

Script attempts to reconnect and displays retry

attempts.

If unsuccessful, outputs a summary of cleanup to

the point of failure and exits.

2.4.3.10 Required Maintenance Tasks for Bulk Extract Service

 he tasks are required as part of maintaining both the bulk extract service and the ESDS

infrastructure that uses it.

2.4.3.10.1 Required Actions During REST API Updates

When deploying updates that include a new version of the ESDS REST API, deployment

tasks must include the following steps. These steps ensure that the bulk extract file

contents reflect the new version of the API.

1. As part of stopping services prior to the REST API update, stop the cron process

for scheduled bulk extract operations and be sure that no extracts are currently

running.

2. Remove all previously extracted files from the bulk extract target directory. This is

the directory identified in sli.properties for sli.bulk.extract.output.directory.

3. Remove all records in the bulkExtractFiles collection in the sli database.

4. If necessary, run an extract operation immediately following the API update to

replace the files that were removed.

5. Resume the scheduled bulk extract operations in cron.

18 Runbook inBloom

2.4.3.10.2 Required Database Updates After Deleting Files

Besides deleting files on a regular basis with the cleanup script, there may be other

reasons that bulk extract files are deleted from the filesystem. When files have been

deleted without the cleanup script, additional action is required to update a database

record so that the API no longer references the deleted files. Use the following steps

when deleting bulk extract files directly without the script:

1. Before deleting a bulk extract file, record its absolute path as it exists in the

server's filesystem, such as:

/bulk/extract/extract/02f7abaa9764db2fa3c1ad852247cd4ff06b2c0a/19cca2

8d-7357-4044-8df9-caad4b1c8ee4-Midgar-2013-05-06T12-41-59.tar

2. Access the command line of the MongoDB server that is responsible for the

bulkExtractFiles collection in the "sli" database, and run MongoDB to launch the

MongoDB Shell console.

3. Remove the corresponding record for the target file from the bulkExtractFiles

collection using the absolute path you just recorded. For example:

db.bulkExtractFiles.remove({"body.path" : \

"/bulk/extract/extract/02f7abaa9764db2fa3c1ad852247cd4ff06b2c0a/19cca

28d-7357-4044-8df9-caad4b1c8ee4-Midgar-2013-05-06T12-41-59.tar"})

4. Remove the file from the bulk extract server.

2.5 Ops Tools

The opstools package provides various utilities and scripts that are helpful to an operator.
This package contains notable directories and files. Documentation for each item listed

below resides in the script itself. Call the script with no parameters or open it in a text

editor to access the associated documentation.

genAppKeys.rb – This Ruby script generates a set of client_id and client_secret keys

which can be used when bootstrapping various applications within the platform.

Migration – This directory contains the required migration scripts for upgrading an SDS

installation from one version to another. These scripts are required to be run when

upgrading the platform from one version to another. Further details are provided in the

appropriate documentation with the release.

Ingestion_trigger – This script is used as part of the proftpd solution to trigger ingestion

after a file has been uploaded. This script can also be called manually to trigger ingestion.

inBloom Runbook 19

2.6 MongoDB

An ESDS technology deployment consists of multiple MongoDB databases that live on a

single MongoDB cluster. It includes a system database, an ingestion batch job database

and a tenant database The ingestion and API servers automatically populate the

ingestion batchjob and sli databases. However, you must apply the indexes ahead of time

to ensure proper creation. The tenant database makes use of MongoDB sharding, a

mechanism that increases the scalability of the MongoDB database and distributes the

data across multiple shards.

2.6.1 Cluster Setup

The MongoDB cluster should consist of three config servers and at least one replica set

consisting of three servers. Refer to the MongoDB documentation for more information on

setting up and managing a MongoDB cluster.

2.6.2 Databases

The following sections describe the three types of required databases for an ESDS

deployment: the system database, the ingestion batch job database and the tenant

databases.

2.6.2.1 System Database

The system database for the ESDS is called sli. It requires setting up indexes by running

the MongoDB script sli_indexes.js against the sli database. This script is provided by

ESDS and can be found in the indexes package. To create the database and apply the

appropriate indexes run the following command:

mongo sli < sli_indexes.js

2.6.2.2 Ingestion Batch Job Database

The ingestion batch job database is called ingestion_batch_job. It requires setting up

indexes by running the MongoDB script ingestion_batch_job.js against the

ingestion_batch_job database. This script is provided by ESDS and can be found in the

indexes package. To create the database and apply the appropriate indexes run the

following command.

mongo ingestion_batch_job < ingestion_batch_job_indexes.js

20 Runbook inBloom

2.6.2.3 Tenant Databases

The ESDS tenant databases make use of sharding. This sharding is configured

automatically by the ingestion process when the tenant ingests data for the first time. You

are not required to create or manage the tenant database in any way.

2.6.3 Configuration

Running the following command allows you to view the current state of the MongoDB

balancer:

sh.getBalancerState()

If the current state is true then you should disable it by running the following command:

sh.setBalancerState(false).

You can then run the sh.getBalancerState() command to verify that it has been disabled.

Important! This process disables the MongoDB balancer, which should remain in a

disabled state. In the event that you wish to add an additional shard or remove one, you

must stop the bulk ingestion process before re-enabling the balancer in order to facilitate

chunk migration. Once this process is complete, the balancer should be disabled again

and bulk ingestion re-enabled.

2.7 ActiveMQ

Apache ActiveMQ (Apache 2.0 licensed) is an open source message broker that fully

implements the Java Message Service 1.1 (JMS). It provides enterprise features like

clustering, multiple message stores, and the ability to use any database as a JMS

persistence provider besides VM, cache, and journal persistence.

ActiveMQ is used by the ingestion service as part of the ingestion process.

2.7.1 Requirements

ActiveMQ requires the following:

• Oracle Java JDK

• Apache AcitveMQ 5.6.0

http://docs.mongodb.org/manual/reference/method/sh.getBalancerState/#sh.getBalancerState

inBloom Runbook 21

2.7.2 Installation

1. Install the Apache ActiveMQ software and create an activemq user:

wget http://www.eng.lsu.edu/mirrors/apache/activemq/apache -

activemq/5.6.0/apache-activemq-5.6.0-bin.tar.gz

useradd activemq -d /opt/activemq

2. Expand tar file to /opt, set permissions for activemq user and symlink activemq:

tar -xzf apache-activemq-5.6.0-bin.tar.gz -C /opt/

chown -R activemq: /opt/apache-activemq-5.6.0

cd /opt && ln -s apache-activemq-5.6.0 activemq

3. Edit and copy the provided init script:

cp /opt/activemq/bin/linux-x86-64/activemq /etc/init.d/

4. Edit the following fields to point to the ActiveMQ home directory locations and

enable running as the activemq user:

vi /etc/init.d/activemq

ACTIVEMQ_HOME="/opt/activemq"

WRAPPER_CMD="/opt/activemq/bin/linux-x86-64/wrapper"

WRAPPER_CONF="/opt/activemq/bin/linux-x86-64/wrapper.conf"

RUN_AS_USER=activemq

PIDDIR="/tmp"

5. Edit wrapper.conf to include the current ActiveMQ home directory locations:

vi /opt/activemq/bin/linux-x86-64/wrapper.conf

set.default.ACTIVEMQ_HOME=/opt/activemq/

set.default.ACTIVEMQ_BASE=/opt/activemq

6. Enable ActiveMQ to start at startup:

chkconfig --add activemq

22 Runbook inBloom

7. Set memoryLimit (under destinationPolicy) for queue to 750mb.

8. Set memoryLimit (under destinationPolicy) for topic to 750mb.

9. Set memoryUsage (under systemUsage) for broker to 1gb.

10. Set producerFlowControl (under destinationPolicy) for topic to false.

11. Set producerFlowControl (under destinationPolicy) for queue to false.

12. Enable ActiveMQ broker for stomp protocol. This is used by the SARJE Oplog

Agent and the ProFTPD+publish_file_uploaded.rb script configured in ???

13. Add the following inside of <transportConnectors> in activemq.xml:

<transportConnector name="stomp" uri="stomp://0.0.0.0:61613"/>

14. Ensure that the port configured for stomp (e.g. 61613) is opened to the landing

zone servers that will be running ProFTPD.

15. Start ActiveMQ.

service activemq start

2.7.2.1 Setting ActiveMQ Redundancy

When setting ActiveMQ redundancy, the JMS transports for connecting to ActiveMQ

support the use of the Failover Transport mechanism on the JMS URI. Information on the

failover transport URI for ActiveMQ can be found at:

http://activemq.apache.org/failover-transport-reference.html

Information on configuring ActiveMQ for a distributed cluster can be found at:

http://activemq.apache.org/networks-of-brokers.html

http://activemq.apache.org/failover-transport-reference.html
http://activemq.apache.org/networks-of-brokers.html

inBloom Runbook 23

2.7.2.2 Configuring Ingestion to Utilize ActiveMQ Redundancy

Since ActiveMQ is a JMS message queuing provider and ingestion makes use of the

JMS interface, a failover transport definition may be used to failover to an alternative

ActiveMQ instance.

To use a redundant ActiveMQ message queueing system, update the sli.properties

configuration file to represent the four example configuration entries listed below.

In the example below, sli.ingestion.queue.workItem.secondaryhost and

sli.ingestion.queue.workItem.secondaryport variables represent the secondary server,

and the sli.ingestion.queue.options and sli.ingestion.queue.brokerUrl options inform the

client to use the secondaryhost and secondaryport options.

sli.ingestion.queue.workItem.secondaryhost= <Add host name here>

sli.ingestion.queue.workItem.secondaryport= <Add port here>

sli.ingestion.queue.options=

randomize=false&jms.prefetchPolicy.queuePrefetch=0&wireFormat.maxInact

ivityDurationInitalDelay=60000&keepAlive=true&trackMessages=true

sli.ingestion.queue.brokerUrl=

failover:(tcp://${sli.ingestion.queue.workItem.host}:${sli.ingestion.queue.w

orkItem.port}?keepAlive=true,tcp://${sli.ingestion .queue.workItem.secondar

yhost}:${sli.ingestion.queue.workItem.secondaryport}?keepAlive=true)?${sli.

ingestion.queue.options}

24 Runbook inBloom

2.8 RESTful API

The RESTful API provides the interface between MongoDB and the applications that

need to read or write data. Applications like the Dashboard and Data Browser interact

with the SDS through the RESTful API.

2.8.1 Requirements

The following components are required for RESTful API to function properly and should

be configured and operational before you attempt to deploy this service.

• MongoDB

• ActiveMQ

• sli.properties file (For more information, refer to the Configuration section.)

• Keystore and truststore (For more information, refer to the Cryptographic Keys

section.)

2.8.2 Configuration

Deploying the REST API requires a large number of properties to be configured in the

sli.properties file:

• Bootstrap properties – A Java properties file containing all the configurable

parameters for bootstrap applications. It defines values such as the client id,

secret, and application URL.

• Application templates – JSON files containing application values that either should

not need to be modified, or cannot easily be represented in a properties file.

• ESDS developer account - An account with the name slcdeveloper and

application developer role. Refer to the sections SimpleIDP and LDAP for more

information on creating users.

• Bootstrap properties location - The bootstrap properties are referenced through

the bootstrap.app.conf property. This property should be added to the canonical

config (sli.properties). If the value is blank or if the file it points to does not exist on

the file system, bootstrapping of applications will be skipped when the API is

loaded.

• Bootstrap properties keys - The bootstrap properties contain the following keys:

o bootstrap.app.keys - comma-separated list of app keys that will be used

elsewhere in the properties file to reference specific applications. For

example, the key for the admin tools application could be "admin".

o bootstrap.app.<key>.template - location within the API of the JSON template

file for the application with the given key. The templates are resolved relative

to the directory containing the bootstrap properties file.

o bootstrap.app.<key>.guid - (optional) use this property to set a predefined

value for the application's Mongo ID. This should not be needed in a

Production environment.

inBloom Runbook 25

• Any arbitrary property can exist, and templates can reference it using the ${...}

notation, as seen in the following sample template.

Sample admin.json:

{

 "name": "${bootstrap.app.admin.name}",

 "description":"${bootstrap.app.admin.description}",

 ...

}

The API application will look for its configuration in $TOMCAT_HOME/conf/sli.properties

and will look for the following properties to be set (example values shown):

used to specify the location of performance log (only used in API)

api.perf.log.path = target/apilogs/logs

Security (only used in API)

sli.security.noSession.landing.url =

http://local.example.com:8080/api/oauth/authorize?response_type=code

Security SAML (only used in API)

sli.security.sp.issuerName = http://local.example.com:8080

sli.security.idp.url:

https://shibboleth.slidev.org/idp/profile/SAML2/SOAP/ArtifactResolution

Security grace period for viewing sections and enrollments (only use in

API)

This property must be set to 0 in a live Production environment

sli.security.gracePeriod = 2000

Maximum number of returns for a response (only used in API)

sli.security.in_clause_size = 100000

26 Runbook inBloom

Trusted Certificate Authority Store (used in common)

sli.trust.certificates = ../common/common-util/trust/trustedCertificates

Support Email (only used in API)

sli.support.email = sli@example.com

Session lengths in milliseconds (5 minutes - only in API)

sli.session.length = 300000

Session hard logout (8 hours - only in API)

sli.session.hardLogout = 28800000

Mongo settings

sli.mongodb.database = sli

sli.mongodb.host = localhost:27017

sli.mongodb.keyencoding: \%:\%25,\\.:\%2E

Encryption settings. Should be the same across all API and Ingestion

nodes

sli.encryption.keyStore = /path/to/api -keystore.jks

sli.encryption.keyStorePass = storepass

sli.encryption.dalKeyAlias = dalkey

sli.encryption.dalKeyPass = dalpass

sli.encryption.dalInitializationVector = 32RandomHexCharacters

Landing Zone SFTP server

sli.landingZone.server = rclz.example.com

Used to bootstrap the admin realm

bootstrap.admin.realm.name = ESDS

inBloom Runbook 27

bootstrap.admin.realm.tenantId = SLI

bootstrap.admin.realm.idpId = https://idp.example.com:443/sp

bootstrap.admin.realm.redirectEndpoint =

https://idp.example.com:443/sp/SSORedirect/metaAlias/idp

#Used to bootstrap the application developer realm

bootstrap.developer.realm.name = ESDS App Developers

bootstrap.developer.realm.uniqueId = DeveloperIDP

bootstrap.developer.realm.idpId = <sandbox

bootstrap.admin.realm.idpId>&developer=true

bootstrap.developer.realm.redirectEndpoint = <sandbox

bootstrap.admin.realm.redirectEndpoint>&developer=true

API kesytore settings

sli.api.keyStore: /path/to/api-keystore.jks

sli.api.keystore.password: encryptedStorepass

sli.api.digital.signature.keyAlias: entryAlias

sli.api.digital.signature.keyPass: encryptedEntrypass

sli.api.client.certificate.keyAlias: entryAlias

sli.api.client.certificate.keyPass: encryptedEntrypass

sli.api.encryption.certificate.keyAlias: encryptionAlias

sli.api.encryption.certif icate.keyPass: encryptionPass

Sandbox settings

sli.autoRegisterApps = false

sli.simple-idp.sandboxImpersonationEnabled = false

#Search engine cluster URL

sli.search.url = http://<Internal ElasticSearch Load Balancer>:9200

28 Runbook inBloom

#Search engine cluster username (user)

sli.search.username = 17BF72EAF6893034F8FB4AE35BF3A567

#Search engine cluster password (searchme)

sli.search.password = 4284B82ACF30963CA2315839AC939C62

#Search engine query limits (only used in API)

sli.search.maxUnfilteredResults = 15000

sli.search.maxFilteredResults = 250

sli.search.maxFilteredResultsOverride = 5000

#This setting should always be set to false in a production environment. It is

intended to only be used in conjunction with localized development testing.

sli.search.embedded = false

#set to true when username and password are encrypted

sli.search.encryption = true

These settings are required, however they should remain the defaults

listed below.

sli.mongodb.connections = 30

sli.perf.mongodb.database = apiPerf

sli.perf.mongodb.host = localhost

sli.perf.mongodb.port =27017

sli.api.performance.tracking = false

You may use the encryption tool to generate encrypted values. To create the encrypted

values using the encryption tool, run the following command:

java -jar encryption-tool-1.0-SNAPSHOT.jar <keystore_location>

<keystore_password> <key_alias> <key_password> <value to encrypt>

inBloom Runbook 29

API uses the following properties from sli.properties for the parameters

above:

keystore_location : sli.encryption.keyStore

keystore_password : sli.encryption.keyStorePass

key_alias : sli.encryption.ldapKeyAlias

key_password : sli.encryption.ldapKeyPass

This example assumes that the encryption tool jar is in current working directory.

The Grace Period prevents data from becoming unavailable by extending

its contextual date range by the number of days specified. It is important

to set sli.security.gracePeriod to 0 (zero) before allowing public access to

a Production environment. To leave the Grace Period set to a value

greater than 0 (zero) in a live Production environment could expose data

to users who would not normally have permission to view it.

2.8.3 Installation

Use the following procedure to install the REST API service:

1. Create a bootstrap.properties file on the machine that will run the API.

2. Place the template files in the same directory as the bootstrap.properties.

Reference versions of the template files for each application are located in the

sli/config/applications/ directory.

3. Add the following properties to the file:

bootstrap.app.keys=admin,portal,dashboard,databrowser

bootstrap.app.vendor = ESDS

Admin-specific properties

bootstrap.app.admin.template = ./admin.json

bootstrap.app.admin.name=Admin Apps

bootstrap.app.admin.description = The ESDS Administration Application

allows you to change a variety of system settings.

bootstrap.app.admin.url = <app url, e.g. https://admin.localhost>

bootstrap.app.admin.client_id = <random 10 -character string>

bootstrap.app.admin.client_secret = <random 48 -character string>

30 Runbook inBloom

bootstrap.app.admin.version = 0.0

Portal-specific properties

bootstrap.app.portal.template = ./portal.json

bootstrap.app.portal.name=Portal

bootstrap.app.portal.description = The ESDS Portal application is the

primary access portal.

bootstrap.app.portal.url = <portal url, e.g.

https://portal.localhost/portal/login/c>

bootstrap.app.portal.client_id = <random 10 -character string>

bootstrap.app.portal.client_secret = <random 48 -character string>

bootstrap.app.portal.version = 0.0

bootstrap.app.databrowser.template: applications/databro wser.json

bootstrap.app.databrowser.name: ESDS Data Browser

bootstrap.app.databrowser.description: The ESDS Data Browser allows

developers and administrators to access all available information in the

ESDS Data Store.

bootstrap.app.databrowser.version: 0.0

bootstrap.app.dashboard.name: ESDS Dashboards

bootstrap.app.dashboard.description: The ESDS Dashboards allow you to see

information about students in lists and profiles.

bootstrap.app.dashboard.template: applications/dashboard.json

bootstrap.app.dashboard.version: A.0

4. Generate a sample client_id using mkpasswd -s 0 -l 10, and a sample

client_secret can using mkpasswd -s 0 -l 48.

5. Add the bootstrap.app.conf property to the sli.properties to point to the

bootstrap.properties, (For example: bootstrap.app.conf =

/home/user/bootstrap.properties)

6. Start the API server.

7. Verify bootstrapping was successful by querying the application collection in

MongoDB as shown below:

> db.application.find().pretty()

Optionally, you may add other applications to the API bootstrapping as follows:

a. Add your application name to the bootstrap.app.keys property.

inBloom Runbook 31

b. Copy the bootstrap.app.dashboard.* properties, paste the properties and

replace "dashboard" using the unique name for your application. Putting

the properties in the bootstrap.properties file for specific environments

allows using the same template then adjusting the client_id, client_secret

and callback url for each different environment.

c. Adjust the value of the properties in the bootstrap.properties file to reflect

your application.

d. Copy the dashboard.json application template file, rename and adjust the

attributes as required.

8. (Optional) Delete the bootstrap.properties file to avoid having plain-text copies of

the client id and secret on the filesystem.

2.9 GlusterFS

GlusterFS is a distributed filesystem that allows for a storage pool to be mirrored across

multiple servers. This pool can be mounted on multiple servers without complication. The

SDS system uses GlusterFS between the landing zone servers and the ingestion servers.

2.9.1 Configuration

A single volume named ingestion must be created. It is recommended that this volume be

4x the size of the largest decompressed ingestion job that you would upload.

Important! It is highly recommended that you restrict the hosts that can access the

volume using GlusterFS built in the ip restriction policies. The only hosts that should have

access to the volume are ingestion and landing zone servers.

2.9.2 Installation

GlusterFS is a distributed filesystem which allows a user to take various storage "bricks"

and assemble them into one larger storage pool of storage. GlusterFS should be

deployed across at least two storage bricks.

The procedure below assumes that on each server, a volume named /gluster has been

mounted and represents the local disk storage. It also assumes that you are using

GlusterFS specifically for the landing zones service.

1. Install the GlusterFS packages:

rpm -ihv http://download.gluster.org/pub/gluster/glusterfs/LATEST/RHEL/ \

glusterfs-core-3.2.6-1.x86_64.rpm

http://download.gluster.org/pub/gluster/\

glusterfs/LATEST/RHEL/glusterfs-fuse-3.2.6-1.x86_64.rpm \

32 Runbook inBloom

http://download.gluster.org/pub/gluster/glusterfs/LATEST/RHEL/ \

glusterfs-geo-replication-3.2.6-1.x86_64.rpm

2. Setup the services to start on boot:

chkconfig glusterfsd on

chkconfig glusterd on

3. Join the servers together using the Gluster peer probe. This needs to be

performed for every server after the first one. If you are deploying Gluster across

four nodes, you would need to execute the command initially and then three times

for the three additional servers.

 [root@gluster01 ~]# gluster peer probe gluster02

Probe successful

4. Confirm that a peer exists using gluster peer status .

5. Create your GlusterFS volume:

gluster volume create ingestion replica 2 transport tcp \

gluster01:/gluster gluster02:/gluster

6. Set IP level permissions for Gluster volume access:

gluster volume set ingestion auth.allow 10.10.10.11, \

10.10.10.12,10.10.11.11,10.10.11.12

7. View the volume settings via the gluster volume info command.

8. Start the GlusterFS volume.

 [root@gluster01 ~]# gluster volume start ingestion

Starting volume ingestion has been successful

inBloom Runbook 33

2.9.2.1 Attaching GlusterFS to the Ingestion and Landing Zone Servers

Use the following procedure to attach the GlusterFS volume (created in the installation

procedure above) to the ingestion and landing zone servers:

1. Install the packages needed for attaching the volume:

yum -y install opensm fuse fuse-libs libibverbs

2. Install GlusterFS Packages:

rpm -ihv http://download.gluster.org/pub/gluster/glusterfs/LATEST/RHEL/ \

glusterfs-core-3.2.6-1.x86_64.rpm

http://download.gluster.org/pub/gluster/\

glusterfs/LATEST/RHEL/glusterfs-fuse-3.2.6-1.x86_64.rpm \

http://download.gluster.org/pub/gluster/glusterfs/LATEST/RHEL/ \

glusterfs-geo-replication-3.2.6-1.x86_64.rpm

3. Make a directory to mount the folder, such as /ingestion:

mkdir /ingestion

4. Add an entry in /etc/fstab as follows:

echo "gluster01:/ingestion /ingestion glusterfs

defaults,_netdev,transport=tcp,\

log-level=WARNING,log-file=/var/log/gluster.log 0 0" >> /etc/fstab

5. Use the mount command to mount your new volume:

mount -a

2.9.2.2 Setting up the Landing Zone Servers

Use the following procedure to complete setting up the landing zone service following the

successful completion of the GlusterFS setup and attachment.

The scripts provided via the links below should be deployed to the landing zone servers:

opstools/ingestion_trigger/publish_file_uploaded.rb

opstools/ingestion_trigger/ftpwrapper.sh

file:///C:/Users/Laura%20Heintz/Desktop/Runbook/opstools/ingestion_trigger/publish_file_uploaded.rb
file:///C:/Users/Laura%20Heintz/Desktop/Runbook/opstools/ingestion_trigger/ftpwrapper.sh

34 Runbook inBloom

To deploy, copy the scripts to /opt/sli/bin/.

The ActiveMQ Stomp rubygem must be installed for this script to function:

https://rubygems.org/gems/stomp gem install stomp

1. Install the LDAP packages required to complete this process:

yum install -y pam_ldap nss-pam-ldapd

2. Create or modify the /etc/ldap.conf to match your environment. (Depending on

the Linux OS version, this may be /etc/pam_ldap.conf.) This should be

configured to point to the same environment and organizational unit structure as

the admin application and the SimpleIDP. Specifically, users and group

memberships will need to be accessed by the landing zone server.

3. Edit the /etc/proftpd.conf file to match your environment and security

requirements. At a minimum:

a. Enable SFTP

b. Ensure that the DefaultRoot for users is set to "~".

c. Add the mod_exec configuration for the ingestion trigger.

Depending on the authentication configuration, you will likely have ProFTPD

point to its own PAM configuration via the AuthPAMConfig option.

4. The following configuration will trigger ingestion upon file upload completion and

should be added to the /etc/proftpd.conf file:

Note: You must replace the #ACTIVEMQSERVENAME# placeholder with the top

level domain of the ActiveMQ server.

LoadModule mod_exec.c

<IfModule mod_exec.c>

 ExecEngine on

 ExecLog /var/log/proftpd/mod_exec.log

 ExecOnCommand STOR /opt/sli/bin/ftpwrapper.sh %U %m %f

#ACTIVEMQSERVENAME#

</IfModule>

Note: ESDS requires mod_exec and mod_rewrite. These modules have been

validated and included in the proftpd packages provided by Red Hat and Ubuntu.

5. Add the following configuration to the /etc/proftpd.conf file. This adds a timestamp

component to uploaded .zip files.

LoadModule mod_rewrite.c

<IfModule mod_rewrite.c>

https://rubygems.org/gems/stomp%20gem%20install%20stomp

inBloom Runbook 35

 RewriteEngine on

 RewriteCondition %m STOR

 RewriteRule ^(.*?)\.(zip)$ $1.%t.$2

</IfModule>

6. The following configuration controls the file types that can be uploaded and should

be added to the /etc/proftpd.conf file:

PathAllowFilter \.(zip)

Note: Do not use multiple PathAllowFilter directives; proftpd only reads the first

one.

7. In the PAM configuration stack used by ProFTPD, perform group membership

validation to ensure that the user is a member of the "ingestion_user" group. This

can be performed via the pam_lsitfile.so module:

auth required pam_listfile.so onerr=fail item=group sense=allow \

file=/etc/proftpd_allowed_group

8. Ensure the /etc/proftpd_allowed_group file scontain "ingestion_user", which

matches the group name in LDAP.

9. Depending on your ProFTPD configuration, you will need to add /sbin/nologin to

your /etc/shells file. Users created in the LDAP Directory get a default loginShell of

/sbin/nologin. This is especially important when operating in Sandbox mode,

where developer accounts have the intended ability to log in directly for test data

ingestion.

At this point, if all is working correctly, a user should be able to log in to the SFTP server

via the LDAP server.

Note: ProFTPD will not allow a user to log in that has a nonexistent home directory. You

may want to create a temporary test user that is rooted at an upper level folder such as

/ingestion for initial testing purposes only.

2.9.3 Troubleshooting

When attempting to mount the volume on a client, most connectivity issues will be firewall

related. If you receive any errors relating to the status of the volume that do not seem

connectivity related, try unmounting the volume on all hosts, stop/start the volume, and

then attempt to remount.

36 Runbook inBloom

2.10 Ingestion

The Ingestion process provides a tenant the ability to perform bulk ingestion into the

SDS. Generally, the ingestion process allows a zip file to be uploaded that contains xml

files along with a control file. More details on how to perform ingestion can be found in the

Ingestion Guide. This section focuses on the setup of the Ingestion process. Ingestion

and landing zone share a common GlusterFS filesystem. It is very important to have the

GlusterFS system in place before launching landing zone and ingestion services.

2.10.1 Requirements

Ingestion requires the following components:

• GlusterFS

• ActiveMQ

• LDAP

• MongoDB

• Tomcat Application Server

2.10.2 Configuration

The main configuration file for ingestion is the sli.properties file, which is kept in

$TOMCAT_HOME/conf/sli.properties.

1. Modify the contents to suit your own environment:

sli.tenant.ingestionServers = SET_LIST_OF_INGESTION_SERVERS

sli.tenant.landingZoneMountPoint = /ingestion/lz

sli.ingestion.batchjob.mongodb.database = ingestion_batch_job

sli.ingestion.batchjob.mongodb.host = SET_INGESTIONMONGO_HOST

sli.ingestion.batchjob.mongodb.port = 27017

sli.ingestion.errors.tracking = true

sli.ingestion.warnings.tracking = true

sli.ingestion.securityEvent.capSize =

sli.ingestion.healthcheck.user = admin

sli.ingestion.healthcheck.pass = admin

landingzone.inbounddir = /ingestion/lz/

sli.ingestion.topic.command = activemq:topic:ingestion.command

sli.ingestion.exception.message.log = true

inBloom Runbook 37

sli.ingestion.log.level = info

sli.ingestion.queue.workItem.host = SET_ACTIVEMQ_HOST

sli.ingestion.queue.workItem.port = 61616

sli.ingestion.queue.workItem.secondaryhost =

sli.ingestion.queue.workItem.secondaryport =

sli.ingestion.queue.options =

keepAlive=true&jms.prefetchPolicy.queuePrefetch=0&wireFormat.maxInacti

vityDurationInitalDelay=60000&trackMessages=true

sli.ingestion.queue.brokerUrl =

tcp://${sli.ingestion.queue.workItem.host}:${sli.ingestion.queue.workItem.p

ort}?${sli.ingestion.queue.options}

sli.ingestion.queue.maxConnections = 25

sli.ingestion.queue.maximumActive = 500

sli.ingestion.queue.workItem.queueURI = seda:IngestionWorkItem

sli.ingestion.queue.workItem.concurrentConsumers = 4

sli.ingestion.queue.pit.uriOptions = &transferExcha nge=true

sli.ingestion.queue.parser.queueURI: activemq:queue:IngestionParser

sli.ingestion.queue.parser.concurrentConsumers: 8

sli.ingestion.queue.parser.uriOptions:

sli.ingestion.parser.batch.size = 1000

sli.ingestion.purge.batch.size = 30000

sli.ingestion.nodeType = standalone

sli.ingestion.tenant.loadDefaultTenants = true

sli.ingestion.tenant.tenantPollingRepeatInterval = 5s

sli.ingestion.referenceSchema.referenceCheckEnabled = false

sli.ingestion.errorsCountPerInterchange = 10000

sli.ingestion.warningsCountPerInterchange = 10000

sli.ingestion.totalRetries = 5

sli.ingestion.dataset.sample =

{"small":["SmallSampleDataSet.zip"],"medium":["MediumSampleDataSet.zip"

]}

38 Runbook inBloom

sli.mongodb.connections = 30

sli.stagingmongodb.connections = 20

sli.ingestion.batchjobmongodb.connections = 20

sli.mongodb.keyencoding: \%:\%25,\\.:\%2E

sli.ingestion.queue.landingZone.queueURI:

activemq:queue:ingestion.landingZone

2. Update the API configuration in the sli.properties file to include the following

ingestion parameters. These settings are used when a landing zone is created.

The ingestion service must be configured to have -Xmx40G available.

sli.tenant.ingestionServers = server1,server2,server3,server4

sli.tenant.landingZoneMountPoint = /ingestion/lz

3. Edit the catalina.sh or the setenv.sh scripts located in $TOMCAT_HOME to apply

certain environment variables that ingestion uses on start up. Add the following

into the JAVA_OPTS string:

-Xms40G -Xmx40G -XX:+UseParallelGC -XX:PermSize=512m -

XX:MaxPermSize=512m

It should look like this:

JAVA_OPTS="-Xms40G -Xmx40G -XX:+UseParallelGC -XX:PermSize=512m

-XX:MaxPermSize=512m -Dsli.env=rc

-Dsli.encryption.keyStore=/opt/tomcat/encryption/ciKeyStore.jks

-Dsli.encryption.properties=/

opt/tomcat/encryption/ciEncryption.properties

-Dsli.trust.certificates=/opt/tomcat/trust/ trustedCertificates -

Dsli.conf=/opt/tomcat/apache-tomcat-7.0.27/conf/sli.properties

-Dlogging.path=/ var/log/tomcat/ -Dapi.perf.log.path=/var/log/tomcat/"

2.10.3 Installation

Place the ingestion.war file in $TOMCAT_HOME/webapps/.

Note: All ESDS Java web applications should be deployed to the context specified by

the .war filename. They should not be deployed to the root context in Tomcat.

inBloom Runbook 39

2.10.4 Troubleshooting

If on startup you receive an error in ingestion.log relating to indexes, refer to the

MongoDB section and apply the ingestion_batch_job and sli database indexes.

2.11 Landing Zone

The landing zone is a location that a user can log into, place files for the ingestion service

to process, and begin populating the database with an educational organization and

tenant information. The SDS utilizes ProFTPD to provide these services.

2.11.1 Requirements

Landing zone requires the following components:

• GlusterFS

• ActiveMQ

• Ingestion

• LDAP

2.11.2 Configuration

For standard best practices and setup, refer to the ProFTPD documentation. The

following ProFTPD modifications are required for SDS deployment.

1. ProFTPD must be configured to use LDAP for authentication. It is recommended

executing this function this via pam-ldap.

2. Jail users into their home directory.

3. Configure mod_exec with the following paramaters:

LoadModule mod_exec.c

 <IfModule mod_exec.c>

  ExecEngine on

 ExecLog /var/log/proftpd/mod_exec.log

 ExecOnCommand STOR /opt/sli/bin/ftpwrapper.sh %U

%m %f #ACTIVEMQSERVENAME#

 </IfModule>

mod_rewrite should be configured with the following parameters:

LoadModule mod_rewrite.c

40 Runbook inBloom

 <IfModule mod_rewrite.c>

 RewriteEngine on

  RewriteCondition %m STOR

  RewriteRule ^(.*?)\.(zip)$ $1.%t.$2

 </IfModule>

4. Restrict the types of files that to be uploaded to the following:

PathAllowFilter \.(zip)

Ensure the filename ends with .zip. This does not prevent a user from uploading

another file type ending as .zip. In the event that this occurs, ingestion will return

an error as it attemptsto unzip the file.

5. In the PAM configuration stack used by ProFTPD, perform group membership

validation to ensure that the user is a member of the "ingestion_user" group. This

can be performed via the pam_lsitfile.so mod- ule.

auth required pam_listfile.so onerr=fail item=group sense=allow \ file=/etc/

 proftpd_allowed_group

The /etc/proftpd_allowed_group file should contain "ingestion_user", which

matches the group name in LDAP.

6. Depending on your ProFTPD configuration, you will need to add /sbin/nologin to

your /etc/shells file. Users created in the LDAP Directory get a default

loginShell of /sbin/nologin. This is especially important when operating in

Sandbox mode, where developer accounts have the intended ability to log in di-

rectly for test data ingestion.

2.11.3 Installation

Install and configure ProFTPD using standard best practices and the required

configuration paramaters as discussed in the sections above.

1. Create a directory located at /opt/sli/bin/

2. Place the following two files in this directory:

opstools/ingestion_trigger/publish_file_uploaded.rb

opstools/ingestion_trigger/ftpwrapper.sh

inBloom Runbook 41

3. Install the stomp gem:

gem install stomp

2.11.4 Troubleshooting

Troubleshooting the landing zone will primarily be an exercise in ensuring that the

following statements are true.

• A shared filesystem (GlusterFS) is mounted and is allowing the same folder path

to be visible between the servers.

• A landing zone user can be authenticated via the Admin application's LDAP

server, can log in via the ProFTPD daemon operating in SFTP mode, and can

access a home directory that resides on the shared filesystem.

• Application and User operating umasks, as well as group memberships are

established so that a file written to the landing zone server can be read and

written to by the user running the ingestion service.

2.12 LDAP

SimpleIDP uses OpenLDAP for storage of administrative accounts. Only accounts such

as SEA Administrators, LEA Administrators, Operators, and Ingestion Users are stored in

LDAP. Tenant-specific accounts for teachers and staff would reside in that tenants IDP.

Password Policy is managed by the policy overlay.

An installation of at least two OpenLDAP servers is recommended with N-Way Multi-

Master Replication.

OpenLDAP installation documentation can be found at:

http://www.openldap.org/doc/admin24/install.html

OpenLDAP documentation on replication can be found at:

http://www.openldap.org/doc/admin24/replication.html

OpenLDAP documentation on password policy controls can be found in the OpenLDAP

Administration Guide. The specific information can be found here:

http://www.openldap.org/doc/admin24/overlays.html#Password Policies

 OpenLDAP documentation on SSL setup can be found at:

http://www.openldap.org/doc/admin24/tls.html

Important! A non-manager account MUST be utilized for all interaction between the

software and the LDAP directory because the OpenLDAP Manager account does not

have the "ppolicy" overlay applied to its interactions. Therefore. a generic account object

http://www.openldap.org/doc/admin24/install.html
http://www.openldap.org/doc/admin24/replication.html
http://www.openldap.org/doc/admin24/overlays.html%23Password%20Policies
http://www.openldap.org/doc/admin24/tls.html

42 Runbook inBloom

must be created and granted elevated privileges through the Access/olcAccess method.

This allows the non-manager account to Read/Write across the Organizational Unit that

the software is configured to utilize.

The default OpenLDAP query size limit (olcSizeLimit) of 500 must be relaxed. The

suggested value for this option is "unlimited". Two functions of the system (ESDS

Operator's account management tool and the developer account registration) may be

impacted if the number of ESDS Hosted Users (including Operators, SEA Administrators,

LEA Administrators, Ingestion Users, and Application Developers) exceeds this value:.

2.13 SimpleIDP

SimpleIDP is an identity provider that speaks the Security Assertion Markup Language

(SAML). SimpleIDP handles admin account authentication using LDAP for account

storage. Prior to deployment, you should be aware of the following points about

SimpleIDP:

• SimpleIDP provides Web authentication for ESDS operators and other

administrators when they use SDS administrative applications.

• All back-end authentication and authorization membership storage for SimpleIDP

must be supplied by OpenLDAP.

2.13.1 Requirements

The following components are required for SimpleIDP

• Tomcat

• MongoDB

• OpenLDAP

• API

• sli.properties file (For more information, refer to the Configuration section.)

• Keystore and truststore (For more information, refer to Cryptographic Keys

section.)

2.13.2 Configuration

The SimpleIDP is configured using the common sli.properties file. The following table

defines the configuration properties that are used.

SimpleIDP Configuration Properties

inBloom Runbook 43

Property Description & Example

sli.simple-idp.issuer-base Corresponds to the idp.id in the API. This is the identifier of the

SimpleIDP (as a SAML identity provider) that the API (as a SAML

service provider) needs to trust.

Example: https://idp-server.example.com/simple-idp

sli.simple-idp.cot Defines the Service Providers this SimpleIDP will trust. The value is a

comma separated list of key=value pairs where the key is the issuer

and value is the redirect endpoint URI. If this simple idp instance is

running in Sandbox mode, it needs to add Production API service.

Example:

https://api.example.com=http://api.example.com/api/rest/saml/sso/post

sli.simple-

idp.userSearchAttribute

LDAP attribute used to uniquely search for and authenticate users.

Example: uid

sli.simple-

idp.userObjectClass

LDAP class used to uniquely search for and authenticate users.

Example: inetOrgPerson

sli.simple-

idp.groupSearchAttribute

LDAP attribute used to uniquely search for a user's group membership.

Example: memberUid

sli.simple-

idp.groupObjectClass

LDAP class used to uniquely search for a user's group membership

Example: posixGroup

sli.simple-

idp.sandboxImpersonatio

nEnabled

Used when switching to Sandbox mode as described in the Appendix.

Should always be false in Production mode.

Example: false

sli.simple-

idp.sandbox.users

SmallDatasetUsers,Small Sample

Dataset,MediumDatasetUsers,Medium Sample Dataset

sli.simple-idp.ldap.urls A list of LDAP URLs for the available LDAP servers that can be used

to authenticate against.

Example:

ldaps://ldap01.example.com:636,ldaps://ldap02.example.com:636

sli.simple-idp.ldap.base Base DN for the LDAP server which defines where the SimpleIDP will

be looking for the various structures that it requires.

Example: dc=domain,dc=tld

log.path Location where log files are written.

44 Runbook inBloom

Property Description & Example

Example: /var/log/tomcat

sli.mongodb.host Server hosting the mongo db instance and port used to connect to the

host used to persist security events.

Example: localhost:27017

sli.mongodb.database Database where security events are persisted.

Example: sli

sli.mongodb.keyencoding Tells the MongoDB layer to replace the given patterns found in keys

with the replace string.

Example: sli.mongodb.keyencoding: \%:\%25,\\.:\%2E

sli.api.ldap.user User account in the LDAP directory that has sufficient privileges to

create and modify accounts.

Example: cn=Admin_User,dc=domain,dc=tld

sli.api.ldap.pass Password for the LDAP user indicated above that has permission to

create and modify LDAP users.

Example: 76F2FD74E0CEF4808FFD476EC604CFB4

Refer to the Cryptographic Keys section for details.

sli.encryption.ldapKeyAlia

s

 The alias used in the keystore to retrieve the key used for encryption

and decryption.

Example: This value should match what was configured in the keystore.

Refer to the Cryptographic Keys section for details.

sli.encryption.ldapKeyPas

s

The corresponding password of the alias.

Example: This value should match what was configured in the keystore.

Refer to the Cryptographic Keys section for details.

Note: The SimpleIDP can service multiple LDAP structures at the same level of

ou=SLIAdmin, and provide authentication for additional unique organizational units as

needed for testing. This can be helpful if you want to run a test tenant in production The

IDP URL used to leverage this is:

https://<IDP FQDN>/simple-idp?realm=<unique LDAP organizational unit common

name>

For example: https://<IDP FQDN>/simple-idp?realm=SLIAdmin.

For more information, refer to Creating and Managing Realms in the Administration

Guide.

inBloom Runbook 45

2.13.3 Installation

Use the following procedure to install the SimpleIDP service for the SDS:

1. Ensure that an sli.properties file is in the location matching the location defined as

sli.conf within your Tomcat installation.

2. Copy the simple-idp.war file that is provided into the Tomcat webapps folder.

Important! All ESDS java web applications should be deployed to the context

specified by the .war filename. They should not be deployed to the root context in

Tomcat.

The SimpleIDP service should auto-deploy and be available within a few minutes.

2.13.4 Troubleshooting

If you have issues during SimpleIDP deployment, check the following troubleshooting

points:

• Ensure that the .war file is readable by the Tomcat user, and that the Tomcat user

is able to extract the .war file, creating a folder matching the first part of the name

of the war file.

• Review the Tomcat catalina.out file to determine if the SimpleIDP application is

failing to start.

• If the SimpleIDP successfully starts, but fails to recognize users by prompting

them with appropriate login window when the users are re-directed to it, then a

misconfiguration of the trust variable is likely. Review your configuration and

ensure that your API name matches the name that is configured within the circle

of trust.

46 Runbook inBloom

2.14 Admin Tool

The Admin Tool provides a number of management functions. This tool provides

functions such as admin account management, tenant creation, and tenant management.

2.14.1 Requirements

The components required for the Admin tool are:

• Rails

• API

• SimpleIDP

2.14.2 Configuration

To configure the Admin tool, you must perform the following steps:

Encryption Keys

1. Generate a key file with the script generateRailsKey.rb.

2. Generate encrypted LDAP password by using the keyfile generated in the

previous step.

3. Generate encrypted SMTP password by using the keyfile generated in step 1.

4. Set the key file read permissions to the rails apps only.

5. Add the properties generated by the script to the relevant profile in

$RAILS_HOME/config/config.yml:

a. encryption_keyfile

b. encryption_iv

Application Configuration

1. Update ldap_pass in $RAILS_HOME/config/config.yml.

2. Update the email_password field in $RAILS_HOME/config/config.yml.

3. Next, you will need to have a configuration file that represents your environment

placed on top of $RAILS_HOME/config/config.yml.

Note: Pre-deployment verification is always recommended.

4. Ensure that your configuration matches that of the API configuration file, which

should be bootstrapped into the Mongo database upon API startup if no previous

application entries are found in the database. Once the API has been started, and

the application entry has been created in the Mongo database, you are ready to

proceed.

5. Access the server webroot with a web browser. You will be re-directed to the API,

which will re-direct you to the configured IDP. If validated correctly, you will then

be redirected back to the API, and then back to the admin web application.

inBloom Runbook 47

2.14.3 Installation

Follow the steps below to install the Admin Tool:

1. Extract the Admin software package to $RAILS_HOME.

tar xvzf -C $RAILS_HOME admin-package.tgz

Change your current directory to $RAILS_HOME.

1. Execute the following commands to install all of the prerequisite Ruby Gems and

compile the assets:

bundle install --deployment

bundle exec rake assets:precompile

2. Modify the $RAILS_HOME/config/deploy/team.rb file to define the name of the

environment. This will allow multiple configurations to be placed in the config.yml

file, although only one configuration can be used at a time.

server "admin.example.com", :app, :web, :db, :primary => true

set :rails_env, "production"

2.14.4 Troubleshooting

If you encounter any internal server errors look at the production.log file in the admin-rails

directory.

48 Runbook inBloom

2.15 Dashboard

The Dashboard is a proof-of-concept application that leverages the rich ESDS RESTful

API to demonstrate educator access to a broad range of student information. The

Dashboard is implemented as a Java web application.

2.15.1 Requirements

The components required for Dashboard are:

• TomCat

• API

2.15.2 Configuration

Dashboard configuration is driven by the sli.properties configuration. Tomcat finds the

sli.properties configuration file through the sli.conf environment variable.

2.15.3 Installation

To install the Dashboard, place the dashboard.war file into the

$TOMCAT_HOME/webapps folder. If Tomcat is configured for hot deployment, replacing

this file will update the application. If so, Tomcat should be restarted periodically or post-

deployment.

Note: All ESDS java web applications should be deployed to the context specified by the

.war filename. They should not be deployed to the root context in Tomcat.

2.15.4 Troubleshooting

There are two variables in the sli.properties file that are used by Dashboard for logging

purposes:

• log.path is used to specify where the Dashboard log file (dashboard.log) resides.

• log.level is used to set the log level of slf4j logger used by the Dashboard.

The Dashboard creates a dashboard.log file in the location defined by log.path and that

file's contents can be reviewed to identify problems. Ensure the Dashboard application is

able to access the API.

inBloom Runbook 49

2.16 Data Browser

The Data Browser is a web application that allows the end user to traverse data that is

available through the RESTful API. The Data Browser is a read-only application, meaning

that it cannot be used to modify any of the data viewed.

Designated administrators for education organizations will likely use the Data Browser to

validate ingested data. As described in detail the ESDS Administration Guide, the Data

Browser is one of the available applications from the administrator home page for users

with permission to use it. Data Browser users are part of the ESDS hosted user directory

and in the federated directories for state and local education agencies.

2.16.1 Requirements

The Data Browser requires the following components:

• Rails

• API

2.16.2 Configuration

Follow the steps below to configure the Data Browser:

1. Create a configuration file that represents your environment, named

$RAILS_HOME/config/config.yml. Use the following example as a guide.

production:

api_base: https://api.example.com/api/rest

redirect_uri: https://databrowser.example.com/callback

portal_url: https://portal.example.com/headerfooter -

portlet/api/secure/jsonws/headerfooter

client_id: 10CharIden

client_secret: 48CharacterRandomSecret

• api_base - The URL where the application will need to connect in order to

work with the API, as well as direct the user for authentication.

• The below can be

• client_id - A 10 character random string [a-z|A-Z|0-9] that represents the

application for authentication to the API service. Be sure to use the encrypted

client_id. This can be generated using the genAppKeys.rb script located in the

opstools package.

• client_secret - A 48 character random string [a-z|A-Z|0-9] that is used as a

shared secret between the API and the application. Be sure to use the

50 Runbook inBloom

encrypted client_secret. This can be generated using the genAppKeys.rb

script located in the opstools package.

2.16.3 Installation

To install the Data Browser:

1. Extract the admin software package to $RAILS_HOME.

tar xvzf -C $RAILS_HOME databrowser-package.tgz

2. Change your current directory to $RAILS_HOME.

3. Execute the following commands to install all of the pre-requisite Ruby gems and

compile the assets:

bundle install --deployment

bundle exec rake assets:precompile

inBloom Runbook 51

3 Appendix

3.1 Sandbox

The Sandbox environment is a Production-like environment for use by application

developers. It contains the same infrastructure as the Production environment with minor

changes to the runtime configuration.

Sandbox Mode vs. the Sandbox Environment

The SDS can run in two modes: Production and Sandbox. The Sandbox environment is a

separate deployment that replicates the resources used in Production. This separate

environment is deployed in Sandbox mode, and it remains in Sandbox mode throughout

its existence. By using this isolated Sandbox environment, you can keep the Production

environment operating separately and securely while still offering Sandbox services to

application developers. When operated in sandbox mode, users will be able to register

and create their own tenant. They can also choose to ingest a sample data set

automatically or upload one manually. Additionally, the Sandbox mode provides

impersonation functionality.

3.1.1 Requirements

The environment should be hosted on separate hardware to prevent interactions between

Production and Sandbox systems.

Software requirements are also similar to that of Production. Specifically, the Sandbox

environment needs Tomcat with ESDS applications running, Rails running the Admin tool

and Data Browser, a MongoDB sharded cluster, and an OpenLDAP instance. These

should be separate instances from Production.

3.1.2 Installation

To install the ESDS Sandbox environment, follow the same procedures as the Production

environment installation with the following configuration differences:

• In the API node sli.properties:

sli.sandbox.enabled=true

sli.autoRegisterApps=true

bootstrap.sandbox.createSandboxRealm=true

52 Runbook inBloom

• In the admin application node config.yml:

is_sandbox: true

• In the IDP server node sli.properties:

sli.simple-idp.sandboxImpersonationEnabled=true

