

Rencontres scientifiques

OS juillet 2019

Maison de la RATP Espace du Centenaire 189, rue de Bercy - 75012 Paris

Perturbateurs endocriniens

Recherche et perspectives

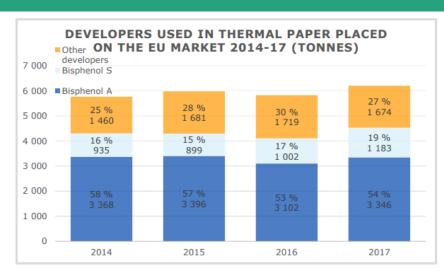
Projet ERICC

Perturbateurs endocriniens : gérer les risques dans un contexte de manque d'information

Jean-Marc Brignon (Ineris)
Laura Maxim (CNRS)
Enrico Mombelli (Ineris)
Doris Tan (CNRS)
Jean-Christophe Vergnaud (CNRS)

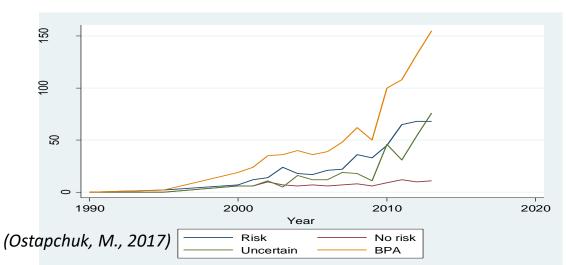
Les défis de la gestion des risques pour les PE

- Le problème de l'identification des PE : Beaucoup de molécules suspectées mais peu avérées PE
- Complexité de l'évaluation des impacts sanitaires et économiques :


Expositions à faibles doses, Mécanismes d'action et effets multiples, Impacts sanitaires en termes de maladies chroniques multifactorielles, Très long terme

Substituer par d'autres produits chimiques : quid du caractère PE des alternatives ?

pour un développement durable


Des outils de gestion des risques règlementaires mal adaptes?

- ➤ Evaluation complète et déterministe
 Dangers ⇒ Exposition ⇒ Risques ⇒
 Impacts (sanitaires, économiques)
- Niveau de preuve toxicologique et épidémiologique
- Asymétrie d'information Substance visée vs. Alternatives (BPA vs. BPS,BPF,...)
- Pertinence/Efficacité des mesures de gestion?

Graph 2: Developers used in thermal paper placed on the EU market in 2014-17 (total). Sources: ETPA, non-ETPA manufacturers and Eurostat.

(ECHA, 2018)

>ERICC : exploitation d'approches de modelisation alternatives

Ré-évaluation de la substitution du Bisphénol A dans les papiers thermiques avec intégration de méthodes n'exigeant pas de données épidémiologiques.

Utilisation de méthode Benchmark Dose : extrapolation de relations dose/réponse à partir d'un nombre restreint d'observations toxicologiques

Recherche de « fraction de populations à risque » par 2 méthodes :

Toxicologique (IPRA) (Voet H. et al., 2007)

Base épidémiologique (Bellanger et al. 2015)

Modélisation moléculaire et QSAR pour évaluer le caractère PE des alternatives (simulation d'amarrage moléculaire et diffusion transcutanée)

- Résultats en termes d'identification et quantification des dangers, des risques
- Impacts sur la décision de substitution du Bisphénol A basée par l'évaluation des impacts (analyse coûts/bénéfices)
- Enseignements en termes de gestion des risques

➤ Modélisation QSAR

« Score PE » et Rapidité de diffusion transcutanée (Kp)

Name	AR	ik.	lipha ER F	jeta GR	J4R	PAP	A alpha	A beta	A Barnra	alpha	ligha TR.	eta scot	e Kolass
BPA	3	2	3	3	0	0	0	2	0	1	2	16	Α
BPF	2	2	3	2	0	0	0	2	0	1	2	14	Α
D-8	2	2	2	2	0	0	0	1	0	2	2	13	Α
BPAP	1	3	3	1	0	0	0	0	0	1	1	10	С
BPS	2	1	3	1	0	0	0	1	0	1	1	10	В
Pergafast (DP 201)	1	1	1	2	1	0	0	1	0	0	1	8	С
D90 (n=1)	0	1	2	1	0	2	0	1	1	0	0	8	-
1,2-diphenoxyethane	1	0	0	0	0	0	0	0	0	1	0	2	Α

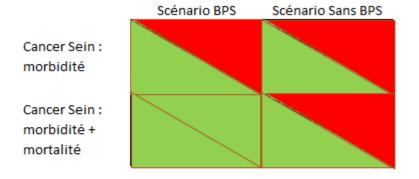
Certaines alternatives aussi ou plus dangereuses que BPA (BPF, B-8, BPAP, BPS)

Fractions de la population présentant un risque

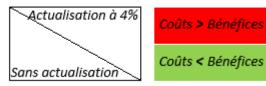
Comparaison des résultats de 2 méthodes alternatives (IPRA, PAF) avec Dossier

Règlementaire

	IPRA (Po	OCE) %	(ANSES/EC	HA, 2015) %	PAF %		
ВРА	Agents de caisse	Consommat eurs	Agents de caisse	Consommat eurs	Agents de caisse	Consommat eurs	
Glande mammaire	18,8	12,9	1,22	0,1			
Endométriose	2	0	0,1	0,01			
Prise de poids ⁶ (exposition modélisée selon (ECHA, 2015))	18,4	1,5	0,3	0,03	5,8	1,7	
Prise de poids (données de biosurveillance)	31,6	6,5				2,7	
Cholestérolémie ⁷	20,1	3	0,7	0,07			
BPS	Agents de caisse	Consommat eurs	Agents de caisse	Consommat eurs	Agents de caisse	Consommat eurs	
Prise de poids ⁸	60,2	47,9					

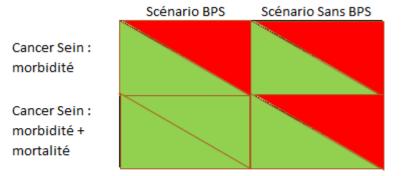

Fraction de population présentant les effets sanitaires sélectionnés pour le BPA et le BPS selon trois méthodes d'évaluation

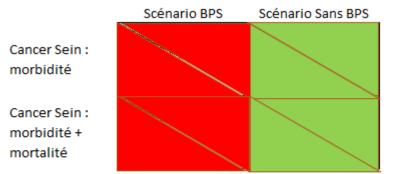
- Résultats trop partiels
- Très forte sensibilité des résultats à la méthode employée


Opportunité (coût / bénéfices) de la substitution du BPA

- Instabilité des résultats
- Pas de conclusion possible

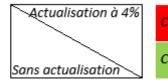
Impact sanitaire Dossier règlementaire (impact sanitaire du BPS non modélisé)





Opportunité (coût / bénéfices) de la substitution du BPA

- ➤ II faut substituer BPA et BPS
- Mais risques des autres alternatives ne sont pas représentés



Impact sanitaire Dossier règlementaire (impact sanitaire du BPS non modélisé)

Impact sanitaire Projet ERICC (impacts sanitaire BPS modélisé)

Coûts > Bénéfices

Coûts < Bénéfices

Conclusions et Perspectives

- Outils règlementaires fondés sur l'évaluation des impacts : Trop sensibles à l'incertitude et au manque de connaissance Mobilisent beaucoup de ressources Fournissent des résultats peu fiables Même si on fait appel à des modèles « non standard »
- Forte focalisation sur certaines molécules emblématiques (BPA) Manque d'information sur leurs alternatives (Autres BP, D-8, ...)
- ➤ Intérêt des modélisation moléculaire/QSAR, mais résultats encore partiels et incomplets (impacts environnementaux de Pergafast,...)
- Face à la complexité et aux enjeux, évoluer vers une gestion du risque plus basée sur la connaissance des dangers (notamment PE) des produits chimiques