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ABSTRACT

Malware continues to be an ongoing threat, with millions of
unique variants created every year. Unlike the majority of
this malware, Advanced Persistent Threat (APT) malware
is created to target a specific network or set of networks
and has a precise objective, e.g. exfiltrating sensitive data.
While 0-day malware detectors are a good start, they do not
help the reverse engineers better understand the threats at-
tacking their networks. Understanding the behavior of mal-
ware is often a time sensitive task, and can take anywhere
between several hours to several weeks. Our goal is to au-
tomate the task of identifying the general function of the
subroutines in the function call graph of the program to aid
the reverse engineers. Two approaches to model the sub-
routine labels are investigated, a multiclass Gaussian pro-
cess and a multiclass support vector machine. The output
of these methods is the probability that the subroutine be-
longs to a certain class of functionality (e.g., file I/O, exploit,
etc.). Promising initial results, illustrating the efficacy of
this method, are presented on a sample of 201 subroutines
taken from two malicious families.

Categories and Subject Descriptors

1.5.2 [Design Methodology]: Classifier design and evalu-
ation; K.6.5 [Security and Protection]: Invasive software
(e.g., viruses, worms, Trojan horses
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1. INTRODUCTION

Millions of unique variants of malware are created every
year, with McAfee labs cataloging more than 30 million new
samples in the first quarter of 2014 [14]. The majority of this
malware is created through simple modifications of known
malware and is not intended to subvert sophisticated secu-
rity procedures. On the other hand, Advanced Persistent
Threat (APT) malware is created with the intention to at-
tack a specific network or set of networks and has a precise
objective, e.g. setting up a persistent beaconing mechanism
or exfiltrating sensitive data. Because APT malware is much
more alarming, most incident response teams of large net-
works have several reverse engineers on hand to deal with
these threats.

A reverse engineer has the task of classifying the hundreds-
to-thousands of individual subroutines of a program into the
appropriate classes of functionality. With this information,
they can then begin to decipher the intent of the program.
But this is a very time consuming process, and can take
anywhere from several hours to several weeks depending on
the complexity of the program. At the same time, reversing
APT is a time critical process, and understanding the extent
of an attack is of paramount importance. And while 0-day
malware detectors are a good start, they do not help the
reverse engineers better understand the threats attacking
their networks.

In this paper, we have developed methods to aid the re-
verse engineer, specifically in the process of classifying indi-
vidual subroutines. Figure 1 illustrates a function call graph
visualized by the popular reverse engineering program, IDA
Pro [10]. The program in Figure 1 is a relatively small and
straightforward one.

The novel contribution this line of research makes is to au-
tomatically label each subroutine in the function call graph.
The subroutine label is modeled using a multiclass Gaus-
sian process or multiclass support vector machine giving the
probability that the subroutine belongs to a certain class
of functionality (e.g., file I/O, exploit, etc.). A multiview
approach is used to construct the subroutine kernel (or sim-
ilarity) matrix for use in the classification method. The dif-
ferent views include the instructions contained within each
subroutine, the API calls contained within each subroutine,
and the subroutine’s neighbor information.

The process begins with a skilled reverse engineer labeling
subroutines into general, predefined categories. The cate-
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push 445 ; hostshort
mov [ebp+name.sa_family], 2
call htons
push [ebp+arg_0] ; name
mov word ptr [ebp+name.sa_data], ax
call sub_40611D5
mov dword ptr [ebp+name.sa_data+2], eax
xor ebx, ebx
push 8 ; Size
lea eax, [ebp+name.sa_data+6]
push ebx ; Val
push eax ; Dst
call memset
add esp, 16h
lea eax, [ebp+name]
push 16 ; namelen
push eax ; name
push edi ;S
call connect
cmp eax, OFFFFFFFFh
jz loc_401A7D
|
v
"
mov esi, send
push ebx ; flags
push 137 ; len
ush offset buf ; buf

[FreeknvirormentStringsh- dd 1)

Purpose
Network
File I/0
Reqistry
Exploit

Probability
68.60%
15.13%
11.73%

4.54%

Figure 1: The function call graph as depicted by IDA. The novel contribution that our paper makes is to label each subroutine

with the probability of its functionality.

gories currently being used include file I/O, process/thread,
network, GUI, registry, and exploit. This information is used
to train a classifier, and finally this classifier can be used to
label new subroutines. Promising initial results, illustrating
the efficacy of this method, are presented on a sample of 201
subroutines taken from two malicious families.

A web-based interface for this research is also presented.
This interface allowed the reverse engineers to help guide the
methodological development by offering an intuitive view
into the classification results of this paper.

The rest of this paper is organized as follows. Section
2 gives an overview of the data and the views of the data
used for classification. In Section 3, we show how to con-
struct kernels for the different views and briefly describe the
multiclass support vector machine and multiclass Gaussian
process. The results are described in Section 4. In Section
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5 we give related work, Section 6 outlines plans for future
work, and finally, we conclude in Section 7.

2. DATA

The three views of the data, and their corresponding rep-
resentations, are described below. The first two views, as-
sembly instructions and API calls, have been studied exten-
sively in the literature and have been shown to have strong
discriminatory power in the malware versus benign classifi-
cation problem. The neighbor information view has had less
exposition, mainly due to subroutine classification being a
novel problem. All of this data is collected from the IDA
Pro [10] disassembly of the programs.

201 subroutines were collected and classified as one of six
possible categories: file I/O, process/thread, network, GUI,



mov | esi, 0x0040C000
lea edi, [esi-0xB000]
push edi

or ebp, OxFF
or ebp, OxFF
jmp 0x00419532
mov ebx, [esi
mov ebx, [esi
sub esi, OxFC
adc ebx, ebx

jc 0x00419528
push edi

or ebp, OxFF

Figure 2: The left table shows an example of the assembly instructions contained within a subroutine. A hypothetical resulting

Markov chain is shown on the right.

Type 7 examples
File I/O 44
Process/Thread 42
Network 70
GUI 21
Registry 18
Exploit 6

Table 1: The number of each class of subroutines. The

dataset contained 201 subroutines in total.

registry, or exploit. These subroutines came from 2 APT
malware families and some random benign programs. The
benign programs were mainly used to get more examples of
the GUI category. There were 32 programs in total. The
number of each class of subroutines is given in Table 1.

2.1 Instructions

Assembly instructions have had a lot of exposure in the
literature [1, 4, 19, 23]. This is a fundamental view of sub-
routines, and we make use of it in this work. The assembly
instructions are first categorized, i.e., there is a set number
of classes of instructions and all instructions seen fall into
one of the categories. In this work, 86 classes of instructions
are used, which are based on the pydasm instruction types.
Categorizations are used because there are a large number
of semantically similar instructions (e.g. add and fadd), and
this helps to limit the feature space to a manageable size.

There are several methods that can be used to repre-
sent the assembly instructions. The first method we ex-
perimented with was simply as sequences and then use a
sequence alignment algorithm to compare the subroutines.
This seems to be the most intuitive method, but yielded
poor results and was orders of magnitude slower than the
chosen method.

Because the sequence alignment method did not work as
well as hoped, the instructions were modeled as a Markov
chain. The instruction categories are the nodes of the Markov
chain graph. In the Markov chain representation, the edge
weight, e;;, between vertices ¢ and j corresponds to the tran-
sition probability from state i to state j, therefore, the edge
weights for edges originating at v; are required to sum to 1,
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>iwj€ii =1 Annxn (n=[V|) adjacency matrix is used
to represent the graph, where each entry in the matrix, a;
= €;;. An example is shown in Figure 2 on a simple eight
category representation for ease of illustration.

2.2 API Calls

When a reverse engineer begins the process of understand-
ing the functionality of a program, the API calls performed
within the subroutine are highly informative. For instance,
“wininet.dll” contains API calls that are exclusively used for
network activity, and is a good indicator that the subrou-
tine containing those calls is related to network functional-
ity. The efficacy of API calls for the program classification
problem has been shown in other work [8, 19]. Our dataset
contains 791 unique API calls from 22 unique DLLs.

We tried several methods to encode the information from
the API calls, notably using a feature vector of length 791
for each unique API call and a feature vector of length 22
for each unique DLL. Based on early results, we settled on
using the feature vector of length 22, where each entry in
the vector corresponds to the count of calls to that specific
DLL within the subroutine.

2.3 Neighbor Information

Although API calls are clearly very informative, there ex-
ists a large number of subroutines that do not contain any
API calls. This prompted the use of neighborhood informa-
tion, with the assumption that the neighboring subroutines
of subroutine = will be likely to perform a similar function
to the neighboring subroutines of subroutine y, given that x
and y have the same label.

Two views are constructed with the neighbor informa-
tion, the incoming and outgoing neighbor views. Similar
to the API calls, a feature vector of length 22 (for the 22
unique DLLs) is used for each view. The incoming view is
constructed by counting all unique DLLs in every incoming
subroutine and setting the appropriate entry in the feature
vector. For example, in Figure 3, the counts of the blue
subroutines’ DLLs would be used to construct the feature
vector. The outgoing neighbor view is constructed analo-
gously.



Figure 3: Illustration of the neighbor information used. For
a given red node, the incoming blue nodes and the outgoing
purple nodes are used.

3. METHODS

Kernel-based classifiers have been shown to perform well
on a wide variety of tasks [16, 18]. For this work, support
vector machines and Gaussian processes are used to classify
the subroutines. These methods are related [16], and both
rely on kernel matrices to perform their respective optimiza-
tions.

3.1 Kernels

A kernel, K(x,x’), is a generalized inner product and can
be thought of as a measure of similarity between two objects
[18]. The power of kernels lies in their ability to compute the
inner product between two objects in a possibly much higher
dimensional feature space, without explicitly constructing
the feature space. A kernel, K : X x X — R, is defined as:

K(x,x) = (¢(x), ¢(x)) (1)

where (-, -) is the dot product and ¢(+) is the projection of the
input object into feature space. A well-defined kernel must
satisfy two properties: it must be symmetric (for all x and
x € X: K(x,x') = K(x,x)) and positive-semidefinite (for
any r1,...,2n € Xandc € R™: 3750 37" | cic; K (xi, ;) >
0). Kernels are appealing in a classification setting due to
the kernel trick [18], which replaces inner products with ker-
nel evaluations. The kernel trick uses the kernel function to
perform a non-linear projection of the data into a higher
dimensional space, where linear classification in this higher
dimensional space is equivalent to non-linear classification
in the original input space.

If each view from Section 2 is treated as a feature vector,
a Gaussian kernel can be defined:

K(X, x/) _ 0_267>\d(z,w/)2

(2)

where x and x’ are the feature vectors for a specific view, o
and A are the hyperparameters of the kernel function (de-
termined through cross-validation or MCMC), and d(,-) is
the distance between two examples. The Euclidean distance
is used for d(,-).
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3.2 C(lassification

Support Vector Machine.

A support vector machine searches for a hyperplane in the
feature space that separates the points of the two classes
with a maximal margin [6]. The hyperplane that is found
by the SVM is a linear combination of the data instances,
x;, with weights, «;. It is important to note that only points
close to the hyperplane will have non-zero a’s. These points
are called support vectors. Therefore, the goal in learning
SVMs is to find the weight vector, a, describing each data
instance’s contribution to the hyperplane. Using quadratic
programming, the following optimization problem can be
efficiently solved:

- 1
max (Z ai— 5
i=1
subject to the constraints:

zn: aYi = 0
i=1

ZZaiajyiyjK(xi,Xj)> (3)

i=1 j=1

(4)

()

Given a found in Equation 3, the decision function is de-
fined as:

f(x) = sgn (Z iy K (x, Xi)) (6)
which returns class +1 if the summation is > 0, and class -1
if the summation is < 0. The number of kernel computations
in Equation 6 is decreased because many of the a’s are zero.

To perform multiclass classification with the support vec-
tor machine, a one-versus-all strategy is used [9]. A classifier
is trained for each class resulting in [ scores, where [ is the
number of classes (in our case, 6). This list of scores can
then be transformed into a multiclass probabilty estimate
by standard methods [25].

Gaussian Process.

Gaussian processes are a popular probabilistic alternative
to support vector machines for kernel learning. A Gaus-
sian process can be completely specified by a mean function,
m, and covariance (kernel) function, K, although the mean
function is often taken to be zero without loss of generality
[16]. They can be thought of as an infinite For multiclass
classification, we use multinomial logistic Gaussian process
regression [11]. For each class label, [, define

fi ~ GP(0, K) (7

to be an independent Gaussian process with covariance ma-
trix K and positive training examples belonging to class [.
Let p;(z) be the probability of z belonging to the Ith class,
and be defined as:

exp fi ()

e h®) g1, L—1
el lepne o=l

8
forl =L (8)

pi (-T) = 1
1452/ exp fi(=)

p(x) is now a probability vector containing the probabilities
of belonging to each of the L classes.

The fi(z) are then conditioned on the training lables,
y, and a posterior distribution is obtained for f;(z), and
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Figure 4: Kernel heatmaps showing the efficacy of combining multiple data views for cybersecurity. Combining views helps
to “smooth” the space and results in better classification accuracy.

thus p(z), at the training points. This is accomplished via
Markov Chain Monte Carlo (MCMC) methods [20]. Predic-
tion of new observations x. is then conducted by obtaining
the predictive fi(x.) by conditioning on the estimated f;
corresponding to the training data.

files) = Ku(K +on D)™ fi (9)

3.3 Combining Information

Combining multiple views has been shown to be advanta-
geous for the malware versus benign classification problem
[2]. For this reason, and the intuitive reasons outlined in
Section 2, multiple views of subroutines are included in the
models. For support vector machines, this can be accom-
plished with multiple kernel learning [21]. For the Gaussian
processes approach used here, a new kernel can be defined
over multiple views via product correlation (i.e., taking a
product of the kernels for the individual views). Figure 4
gives an intuitive example of the benefits gained by using
multiple views. Figure 4 (a) and Figure 4 (b) are distinct
views of the instructions and API calls. Combining these
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views in a sense “smooths” the kernel space, allowing for
better predictive accuracy.

Support Vector Machine.
With multiple kernel learning, each individual kernel’s
contribution, £, must also be found such that:

M
K(x,x') =Y BiKi(x,x) (10)
i=1

is a convex combination of M kernels with 8; > 0, where
each kernel, K;, uses a distinct set of features [21]. In the
current case, each distinct set of features is a different view
of the data (Section 2). The general outline of the algorithm
is to first combine the kernels with 3, = 1/M, find «, and
then iteratively continue optimizing for 8 and « until con-
vergence. (3 can be solved for efficiently using a semi-infinite
linear program [21].

Gaussian Process.
Learning with multiple views in the Gaussian process is
conceptually simpler in some respects, although it can be



Method Views Accuracy Average Probability of True
SVM Instructions .9403 .8903
GP Instructions 9701 .8075
SVM API Calls .8159 7857
GP APT Calls .8159 .7609
SVM API Calls, Neighbor Information .9403 .8703
GP API Calls, Neighbor Information 9154 .8443
SVM Instructions, API Calls L9851 .9169
GP Instructions, API Calls L9851 .8988

Table 2: 10-fold CV results on a dataset with 201 subroutines. These results demonstrate the benefit of including API calls

within the classification model.
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Figure 5: Histogram of the predicted probability of the true
class with using only the instruction view.

more computationally demanding. To begin, modify Equa-
tion 2 to take the multiple views into account. This involves
defining a distance function on each view, e.g. d;(z,z’)? for
the jth view where in our case d; is the Euclidean distance.
If there are M views, the new multiview kernel is defined as:

(11)

The A;’s now act as a way to combine the different metric
spaces of the subroutines, similar to how the 3 weight vec-
tor works in the multiple kernel learning method. The A;’s
are now also optimized over within the same framework as
the other parameters of the Gaussian process model using
MCMC sampling [20]. Equation 10 could be used in place
of Equation 11 within the same framework, but Equation 11
was found to produce better results.

— o2 M A (w,a’)?

K(x,z")

4. RESULTS

In this section we will describe several experiments to test
how well the methods described in Section 3 perform on the
multiclass subroutine classification problem. 10-fold cross
validation is used for all experiments unless stated otherwise.
Within each fold, the parameters of the models are adjusted
using 10-fold CV on the training data while the original
hold-out is used for validation. We collected a dataset of
201 subroutines that are assigned one of the six labels from
Table 1. Subroutines that perform multiple functions are ex-
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cluded, and the problem of estimating subroutines belonging
to multiple classes is left for future work. For the support
vector machine, the Shogun machine learning toolbox [22]
is used. The Bayesian multiclass logistic GP was custom
coded for use here.

4.1 Classifying Subroutines

The first set of experiments examines the plausibility of
our approach to classifying subroutines. Using just the in-
structions, we are able to achieve an accuracy of 94-97% with
10-fold cross validation. Table 2 shows the full results. The
average probability of true is even more impressive than the
raw accuracy. To reiterate, the methods of Section 3 return
a probability vector of that subroutine belonging to each of
the six classes. The “average probability of true” in Table 2
refers to the predicted probability of the true class averaged
over all predictions. The average probability of true, using
only the instructions, is .8075 for the Gaussian process and
.8903 for the support vector machine. A histogram of these
probability is given in Figure 5.

While we are not able to classify all subroutines correctly,
the probability of the class can act as a pseudo-confidence for
the reverse engineer looking at the results. And as Figure 5
demonstrates, the subroutine’s true class is predicted at 90-
100% roughly 75% of the time. In a sense, false predictions
can be more harmful in this setting than the malware versus
benign setting as a false prediction can give false leads to the
reverse engineer, potentially wasting days of their time. By
giving the probability vector of belonging to the different
types of functionality, the reverse engineer can have some
confidence of the predictions by focusing on the subroutines
with 90-100% probability.

As mentioned in Section 2, API calls are very informative
for a reverse engineer trying to understand a subroutine.
API calls often clearly encode the type of functionality that
a subroutine performs as the DLL from which the API call
is imported from is usually homogeneous, i.e., contains func-
tions that perform one type of functionality such as network.
Unfortunately, API calls are not guaranteed to be in subrou-
tines. In our dataset, only 163 out of the 201 subroutines
contained API calls. Table 2 demonstrates the pitfall in only
using API calls, as instruction-only classifiers are easily able
to outperform API-only classifiers. But, including the sub-
routine’s neighbors’ API information significantly improved
performance, .8159 — .9403 for the SVM.

Although API-only classifiers are outperformed by instruction-

only classifiers, including API calls significantly improves
performance, giving 98.51% classification accuracy. Fur-
thermore, the average probability of true is increased for



Method Views

Accuracy Average Probability of True

SVM Instructions .8000 7716
GP Instructions .8800 .5750
SVM API Calls .5000 .5067
GP API Calls .4200 4132
SVM Instructions, API Calls .9400 .7955
GP Instructions, API Calls .9000 .6552
SVM API Calls, Neighbor Information .8400 .6804
GP API Calls, Neighbor Information .8400 7228
SVM Instructions, API Calls, Neighbor Information .9400 .8112
GP Instructions, API Calls, Neighbor Information .9400 7382

Table 3: In this problem, there are 151 training subroutines taken from one family and one member of another family. There
are 50 subroutines in the test set, which are taken from the remaining members of the second family. These results indicate
that including neighbor information may help the classification methods.
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Figure 6: Histogram of the predicted probability of the true
class with using the instruction view and the API call view.

both the support vector machine and the Gaussian process,
the increase for the Gaussian process being quite substantial
(.8075 — .8988). The histogram for the predicted probabili-
ties of the true class for the support vector machine classifier
is given in Figure 6.

4.2 Testing on a New Family

One of the problems with developing methods with a lim-
ited dataset is that it is difficult to know if the improvements
seen on the current dataset will generalize to much larger
datasets. This is especially true for our problem, as we cur-
rently only have 201 labeled subroutines and have achieved
a relatively high accuracy (98.51%) with 10-fold cross vali-
dation. To make the problem more challenging, we created
a new experiment where the training data includes all of the
subroutines from the first family of malware, the random
benign files, and one sample from the second family. The
testing set is composed of the subroutines from the remain-
ing samples of the second family of malware.

In addition to allowing for new methodological develop-
ments, this is a more realistic test. APT malware is usu-
ally developed in campaigns. When a new malware sample
attacks a network, a reverse engineer has most likely spent
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Figure 7: Histogram of the predicted probability of the true
class with using the instruction view, the API call view, and
the neighbor view. This is for the problem of classifying a
family based on one example.

time on another sample from that family. Therefore, at least
one member of that family’s subroutines would be in the
training dataset.

Table 3 lists the results for this new experiment. Because
this is a more difficult experiment, both accuracy and the
average probability of the true class suffer compared to the
results of Table 2. With this harder experiment, it is clear
that including the neighbor information helps the results.
For the Gaussian process, including neighbor information
pushes the accuracy from 90% to 94%, and the average prob-
ability of the true class from .6552 to .7382. The histogram
for the predicted probability of the true class is shown in
Figure 7. As our dataset is still relatively small, it is dif-
ficult to know whether the neighbor’s DLLs will continue
to be informative as new data is collected, but the results
of Table 3 indicate that it should be helpful and is worth
further investigation.

4.3 Prototype System

Developing methods for cybersecurity applications, or any
application for that matter, should not be done in a vac-
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kill_thread_w_conn?

push esi
mov esi, ecx
push edi
lea edi, [esi+220h]
push edi ; 1pCriticalSection
| 8 call ds:EnterCriticalSectior
mov ecx, esi

call kill_handle? -
mov ecx, esi

call kill_threads_exit_process_oMll
[esi+238h]

test eax, eax

jle short loc_1000BB6C

push eax ; s

mov  eax,

call close_conn?
add esp, 4

mov dword ptr [esi+238h], @
push edi ; lpCriticalSection
mov dword ptr [esi+238h], @
call ds:LeaveCriticalSection
pop edi

xor eax, eax

pop esi

Figure 8: A screenshot from a live prototype developed in tandem with the methods of Section 3.

uum. To make sure the developed methods stayed relevant
to the reverse engineer, a prototype user interface was si-
multaneously created to display the results. This system
is a web-based application using d3.js for the graph layout
and a python backend for the classification. This allowed for
constant feedback from the reverse engineer. A screenshot
of the system is given in Figure 8.

The reverse engineer was able to check the results and
make sure the algorithms developed were performing in a
consistent way. All the subroutines of a typical program (~
400-500) can be classified in around 5-10 seconds, making
this tool very useful in a online setting. This tool also al-
lowed for some interesting real-world results. The algorithm
labeled one subroutine, not in any training set, as being .55
network and .4 process/thread. After investigating the sub-
routine, the reverse engineer came to the conclusion that
this subroutine was looking for threads with an active in-
ternet connection and killing them. Observations such as
these make it clear that not all subroutines are “pure”, and
although it is left for future work, having the ability for sub-
routines to be placed into multiple classes in necessary for
a robust system. These types of developments would not
have happened unless we were closely interacting with the
incident responders.

5. RELATED WORK

Because subroutine classification is a novel problem, there
is no direct related work. But the methods presented in this
paper have been heavily influenced by other papers in the
literature using machine learning techniques on the malware
versus benign classification problem [3, 7, 12, 17]. Notably,
the features used in our classification methods, the instruc-
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tions and API calls of each subroutine, have had a lot of
exposure in the literature [1, 4, 8, 19, 23]. The main differ-
ence between this work and what has been published being
that a data instance is not an entire program, but rather a
single subroutine.

There has been some investigation into using the control
flow and function call graphs to help in detecting polymor-
phic malware [5, 12]. But these papers use the structural
information of these graphs as features to then classify pro-
grams as either malicious or benign. On the other hand, we
are less interested in the program as a whole, and more in-
terested with labeling the subroutines themselves with their
functionality.

Finally, as shown in Section 4, combining the different
views of the subroutine (instructions, API calls, and neigh-
bor information) significantly helps in the multiclass classi-
fication problem of this paper. Combining multiple views of
malware has been examined before in the literature [2, 13,
15]. Just as before, these papers looked at different views
of the entire program, but we examine different views of
individual subroutines.

6. FUTURE WORK

As stated previously, acquiring data for this research is
very expensive and time consuming, and this is the biggest
factor hindering further methodological developments. This
is one reason why the user interface of Figure 8 was devel-
oped. We hope that once there is a critical mass of labeled
subroutine data, the tools of this paper will begin to sig-
nificantly speed up the reverse engineering process. This
speed up will allow us to collect more data from the reverse
engineers, making our methods more effective. This is the



synergy we are seeking between our methods/tools and the
reverse engineers who use them.

The first attempt at constructing the similarity matrices
for use in the kernel classifiers was based on sequence align-
ment [19, 24]. While sequence alignment between two pro-
grams may be easily confused by simple reordering of basic
blocks and subroutines, we believed that the subroutines
would be homogeneous enough to avoid these problems. In
our initial tests, we found that the Markov chain represen-
tation performed slightly better with respect to accuracy,
much better in terms of the predicted probabilities of the
true class, and was orders of magnitude faster. Along these
lines, it would be foolish not to continue investigating the
subroutine metric space to find better, more reliable ker-
nels. The most fruitful direction is most likely going to be
finding new ways of incorporating the graph structure and
neighborhood information, a direction we are pursuing.

As mentioned in Section 4, subroutines are not always
functionally “pure”, i.e., a subroutine can perform multiple
functions. We have shown that we can classify pure subrou-
tines with high accuracy. It would be interesting to design
methods that can robustly classify subroutines into more
than one class.

Along these lines, classifying subroutines into general cat-
egories can be seen as a first step to classifying groups of
subroutines, or a sub-graph of the function call graph, into
more specific tasks. These tasks could include things such
as data exfiltration or keylogging. These complex tasks are
often comprised of more than one subroutine. We are look-
ing at ways to cluster the function call graph using graph
structure and the general labels found in this paper to find
the more specific task labels.

Assuming that we can accurately identify the specific tasks
of a program, such as data exfiltration, keylogging, etc.,
building classifiers based on this information for the mal-
ware/benign problem for an overall program would seem like
a natural next step. One would expect malware to perform
several malicious tasks, but benign programs should, for the
most part, be free of these tasks.

To get the methods of this paper adopted for mainstream
use, a new user interface will need to be developed that can
be easily integrated into the workflow of a reverse engineer.
The reverse engineers of this project have been very willing
to test our prototype system, but it is highly unlikely that
all reverse engineers will be so willing to learn new tools.
A future plan is to integrate this line of research with the
highly used program, IDA Pro [10]. Creating a plugin for
IDA Pro that can automatically label the subroutines would
be far less disruptive and much more likely to be adopted
than a new web-based application.

7. CONCLUSIONS

Classifying programs as either benign or malicious is an
important first step to stopping advanced APT malware,
but a simple binary decision does not give the analysts the
information they need to properly assess the threat. In this
paper, we presented a first step in helping reverse engineers
understand a malicious program more quickly by classifying
the subroutines of the function call graph into six general
categories: file I/O, process/thread, network, GUI, registry,
and exploit. Support vector machines and Gaussian pro-
cesses were used for the classification process. We showed
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that we can achieve high accuracy (98.51%) on a set of 201
labeled subroutines.
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