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Abstract 

 

This paper reviews the structure and properties of 

binary, and polyphase complementary spread spec-

trum codes, synthesis techniques to implement 

their code generators and code compressors, as 

well as a number of applications to modern com-

munication systems.  

 

1. INTRODUCTION 

 

Complementary codes (CC) due to Golay are pairs 

of orthogonal binary phase sequences with inter-

esting properties. The primary one is that their 

separate correlation sequences have equal ampli-

tude and opposing polarity side lobes. Consequent-

ly, the sum of their correlation sequences exhibit 

zero value side lobes. Thus while there are no 

phase codes whose linear correlation sequences are 

side lobe free, we can synthesize such correlation 

sequences as the sum of the complementary corre-

lation sequences. The family of CC codes is easily 

extended from binary CC to non binary CC. The 

CC, first applied to radar systems, are now enjoy-

ing high interest in spread spectrum communica-

tion systems as can be seen in IEEE 802.11b as 

complementary code keying (CCK) and as pream-

bles for random access channels (RACH) 3-G cel-

lular systems. 

 

A simple recursion process to form complemen-

tary codes of length 2p proceeds as follows. From 

the code pair A(n) and B(n) we form the next code 

pair A(n+1) and B(n+1) by appending and com-

plementing as shown in (1). 
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The initial code pair is denoted the kernel, and 

while it can be any arbitrary sequence pair, it is 

commonly selected as A(0) = B(0) = 1. A se-

quence of complementary codes formed by this 

process is shown in (2). For ease of notation we 

use 1 and 0 as field elements which when convert-

ed to waveform levels are mapped to +1 and -1 

respectively.  
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The coding process can be modified at each step in 

the iteration process by i) time reverse A, ii) time 

reverse B, iii) time reverse A and B, iv) comple-

ment even bits of A and B, v) complement odd bits 

of A and B, vi) complement A, vii) complement B, 

viii), complement A and B, (ix) interchange A and 

B.  A final code generation option, often employed 

in the radar community, is interleaving of succes-

sive elements of A and B and of A and B . 

 

There exist a set of simple, efficient filter struc-

tures that generate the CC as their impulse re-

sponses and, more importantly, implement the 

matched filters that de-spread or compress the CC. 

The structure shown in figure 1 is a CC spreading 

filter. Figure 2 presents the impulse response of 

this filter at successive stages in its cascade. The 

structure shown in figure 3 is the compressing fil-

ter corresponding to the filter shown if figure 1. 

Figure 4 presents the compression response at suc-

cessive stages in its cascade.  

 

 
Figure 1. CC Generating Filter  

 

The responses illustrated in figure 4 correspond to 

the matched filter being time aligned with the re-

ceived time series and constructing the peak of the 

correlation series. The full correlation series of the 

two codes exhibit the side lobe structure the code 

pair was designed to suppress. If the pair of CC 

codes are transmitted simultaneously as I and Q 

components of a complex carrier there is a possi-

bility that there will be residual phase shift be-

tween the complex signals at the transmitter and 
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Figure 2. Impulse Response: CC Generating Filter 

 

 
Figure 3. CC Compression (Matched) Filter 
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Figure 4 Compression Response: CC Matched  

Filter 

 

receiver. This phase shift permits coupling be-

tween the A and B codes in their matched filters 

which is observed at the filter output as cross cor-

relation of the two codes. The A and B codes do 

exhibit significant cross correlation.  Figure 5 pre-

sents the full response of the matched filters along 

with their side lobe free sum and the cross correla-

tion of the two codes A and B. The amount of this 

cross correlation leaked into the desired correlation 

output is 2 sin(), where  is the phase angle offset 

of the receiver IQ pair.   
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Figure 5. Full Replica and Cross Correlation of A 

and B Codes  

 

2.  Related Codes 

 

The non-zero cross correlation side lobes between 

the A and B codes can be cancelled by a second 

pair of sequences called the code mates of the first 

pair. The mates are also complementary and exhib-

it the same side lobe cancellation property of the 

original codes. The cross correlation side lobes of 

the original code pair and of the mate code pair 

exhibit equal amplitude and opposing polarity side 

lobes. Hence the sum of the cross correlation se-

quence of the complementary pair and of the mate 

pair similarly sum to zero. The correlation se-

quence assembled by combining the correlation 

sequences of the complementary pair and of their 

mates is characterized by a single correlation peak, 

the response of an ideal probing signal.  

 

The code mates C and D are related to codes A and 

B as indicated in (3). 

 

                   
C = Time Reverse (B)

D = -Time Reverse (A)
                (3) 

 

The reversal of the time series is accomplished by 

moving the negative sign on the butterflies in the 

generating filter from the lower leg to the upper 

leg or equivalently changing the recursion shown 

in (1) to become that shown in (4). The sign rever-

sal is accomplished by reversing the signs in the 

lower leg of the final butterfly of the filter cascade.   
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Figure 6 presents the full response of the matched 

filters along with their side lobe free sum and the 

cross correlation of the two code mates C and D. 

Notice that, as expected the sum of the two corre-

lation sequence is side lobe free and that the cross 

correlation sequence has side lobes of opposing 

polarity to those seen in figure 5. Note too, that the 

matched filter side lobes for the A and B codes are 

also of opposing polarity of the corresponding 

matched filter side lobes for the code mates C and 

D. When we form the sum of the two pairs of cor-

relation sequences, any residual cross correlation 

term in the first sum is canceled by the corre-

sponding cross correlation terms in the second 

sum.  
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Figure 6. Full Replica and Cross Correlation of C 

and D Codes  

 

3  Polyphase Codes 

 

We note that the stages of the CC generating filters 

and of the CC compression filters are formed by 

delay registers and butterfly structures. The delay 

registers are all-pass networks, networks that satis-

fy the relationship shown in (5). 

 

                      |H(θ)| = 1,  -π θ < π                (5) 

All pass networks exhibit unity gain at all frequen-

cies and only contribute phase shift to their trans-

fer functions. It is common to perform frequency 

transformations of filters by replacing all pass 

networks in the filter with different all pass net-

works. The most common such transformation is 

the low-pass to low-pass transformation shown in 

(6).  Transformations of the form shown here pre-

serve the structure of the filter while inducing a 

frequency mapping between the original and trans-

formed spectral responses. 

                                
1 1 - bz

z z - b
                         (6) 

 

The all-pass transformation of interest to us here is 

the one shown in (7). 

    

                  
jφ(n)

nn n n

1 1 1
e W

z z z
                (7) 

 

We can modify the CC generating filter by replac-

ing each all-pass delay register segment with an-

other all-pass register segment with an associated 

arbitrary phase rotator. This transformation modi-

fies the iterative relationship of (1) to the relation-

ship shown in (8) and alters the delayed butterfly 

structure of the filter to match that shown in figure 

7.   The relationship shown in (8) first noted by 

Sivaswamy who generalized the Golay binary CC 

relationships to include polyphase CC. 
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Figure 7. Filter Segment All-pass Frequency 

Transformation 

 

The butterfly in the modified filter segment has a 

striking resemblance to the butterfly structure of 

the fast Fourier transform (FFT). The CC generat-

ing filter and compression filter can in fact be cast 

in the same flow diagram as an FFT.  

 

The polyphase CC maintains all of the properties 

of the binary CC. These include the complemen-

tary canceling side lobes of the pair of cross corre-

lation functions and the  
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