A Direct Digital Synthesizer with Arbitrary Modulus

Suppose you have a system with a 10 MHz sample clock, and you want to generate a sampled sinewave at any frequency below 5 MHz on 500 kHz spacing; i.e., 0.5, 1.0, 1.5, ... MHz. In other words, f = k*f_s/20, where k is an integer and f_s is sample frequency. This article shows how to do this using a simple Direct Digital Synthesizer (DDS) with a look-up table that is at most 20 entries long. We’ll also demonstrate a Quadrature-output DDS. A note on terminology: some authors call a DDS a Numerically-Controlled Oscillator (NCO).

Disclaimer: I have not implemented this DDS in hardware, so there could be problems with the scheme that I have not anticipated.

Background [1,2]

A continuous-time sinewave with frequency f_0 is given by y = sin(2\pi f_0 t + \phi_0). For a sampled signal, we replace t by nT_s, where n is the sample number and T_s is the sample time. Letting \phi_0 = 0, we have:

y = sin(2\pi f_0 nT_s)

The phase of the signal is:

\[\Phi = 2\pi f_0 nT_s \quad \text{rad (mod } 2\pi) \]

Or

\[\Phi = f_0 nT_s \quad \text{cycles (mod 1)} \quad (1) \]

The phase wraps every 2\pi radians = 1 cycle. Equation 1 shows that the phase increases (accumulates) by f_0T_s every sample. So we can calculate the phase using an accumulator with input = f_0T_s, as shown in Figure 1a. The value of \phi has a range of 0 to 1 (cycles). We generate the sinewave from the phase using a look-up table (LUT). What we’ve just described is a basic DDS. Note that another option to generate the sinewave from the phase not discussed here is the CORDIC algorithm [3].

Figure 1b adds quantization in the accumulator register, the phase, and the LUT entries. The accumulator input has 2^C steps over a range of 0 to 1, giving a frequency step \Delta f = f_s/2^C, where f_s is the sample frequency. The resulting output frequencies are f_s/2^C, 2f_s/2^C, 3f_s/2^C ... Given the 2^C steps, we can say the DDS has a modulus of 2^C. As an example, if C= 24 bits, and f_s= 10 MHz, the frequency step is:

\[\Delta f = 10E6/2^{24} = 0.59605 \text{ Hz.} \]

This frequency step is impressively small. However, if you want to program a frequency that is not on one of the steps, such as f_s/10, there will be a small frequency error of up to \Delta f/2.
If we were to maintain the 24 bits of phase, the LUT size for this example, taking symmetry of the sine into account, would be $\frac{3}{4} \times 2^{24} = 2^{12} = 4,194,304$ entries. To avoid such a large LUT, the phase is normally quantized to $P < C$ bits. The phase quantization results in so-called phase truncation spurs in the output spectrum. A typical value of P used in DDS chips is 15 bits, which, taking advantage of the symmetry of the sine, gives LUT size of $2^{13} = 8192$ entries.

You can see that a standard DDS is not a perfect solution to our problem of generating $f_0 = k \cdot f_s / 20$: it does not produce the exact frequency; it requires a not-so-small LUT; and it has spurs due to truncation of the phase. (Note that there are techniques for reducing phase-truncation spurs [4]).

![Figure 1. a) Implementation of Equation 1. b) DDS with quantization.](image-url)
DDS with Arbitrary Modulus

A DDS with modulus other than 2^C can address the shortcomings of a conventional DDS for our application.

If we multiply both sides of Equation 1 by an integer L, we get:

$$L\Phi = Lf_0nT_s \pmod{L}$$

This equation can be implemented by modifying the accumulator in Figure 1a as shown in Figure 2. Here we require m to be an integer between 0 and $L-1$, so there are L entries in the LUT, where L is not restricted to 2^C. The input $L*f_0/fs$ is an integer:

$$L*f_0/fs = k \quad (2)$$

or

$$f_0 = k*fs/L \quad (3)$$

Since k is an integer, f_0 has a step size of $\Delta f = fs/L$. For a given Δf and fs, we have:

$$L = fs/\Delta f \quad (4)$$

Letting $f_s = 10$ MHz and $\Delta f = 0.5$ MHz, we get $L = 20$. The number of bits required for the accumulator is found by taking $\log_2(L)$ and rounding up to the next integer. For $L = 20$, we need 5 bits.

As shown in Figure 2, $m = L\Phi$, so the phase is $\Phi = m/L$. Simplistically, the LUT entries are:

$$u(m) = \sin(2\pi m/L), \quad m = 0: L-1 \quad (5)$$

However, for fixed point entries, we need to round the values of $u(m)$ and prevent overflow when $m = L/4$ and $u(L/4) = \sin(\pi/2) = 1.0$. (For example, if the number of bits $D = 8$, the largest allowable entry is not 1.0 but $(2^7 -1)/2^7 = 127/128 = 01111111$). We can compute the fixed-point entries as:

$$u(m) = (1 - \varepsilon) * \sin(2\pi m/L), \quad m = 0: L-1$$

$$\text{LUT}(m) = \text{round}(u(m)*2^{D-1})/2^{D-1} \quad (6),$$

Where D is the number of bits in the 2’s complement LUT entry and $\varepsilon << 1$. I used $\varepsilon = 1/2^{D-2}$. Multiplication by $1 - \varepsilon$ is makes the LUT entry for $m = L/4$ less than 1.0 after rounding.

For our case, with $L = 20$, the LUT values are plotted in figure 3. The LUT contains one cycle of a sinewave evaluated over L samples. Note that when L is a multiple of 4, it is possible to reduce the LUT size to $L/4$ entries by taking the symmetry of the sinewave into account.
Let’s look at the behavior of our example DDS, with \(f_s = 10 \) Hz and \(\Delta f = 0.5 \) Hz. The Matlab code is listed in the Appendix. To start out, let the output frequency \(f_0 = 0.5 \) Hz. From equations 2 and 4, \(k = f_0/\Delta f \), so \(k = 1 \). As shown in Figure 4, \(m \) increments through all the integers from 0 to \(L-1 \), then repeats. So the DDS just steps through every entry of the LUT. Also shown in Figure 4 is the phase \(\phi = m/L \) cycles, and the sampled sinewave output.

Now, if we let \(f_0 = 1 \) Hz, \(k = 2 \). Thus \(m = 0, 2, 4, \ldots \) and the DDS steps through every 2\(^{nd}\) entry of the LUT, as shown in Figures 5a and 5b.
If we let $f_0 = 1.5$ Hz, $k= 3$. Thus $m= 0, 3, 6, ...$ and the DDS steps through every 3^{rd} entry of the LUT, as shown in Figures 5c and 5d. As can be seen in Figure 5c, it takes three cycles for the phase sequence to repeat.

For $L= 20$, the allowable output frequencies f_0 that are less than $f_s/2$ are: 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, and 4.5 Hz, corresponding to $k = 1: 9$. For L even, there are $L/2$-1 allowable values of f_0.

Since accumulator output m is always an integer, there is no phase truncation error. The only error in the output y is due to rounding of the LUT entries. Figure 6 compares spectra for $f_0 = 1.5$ Hz of a conventional DDS with 15-bits of phase to our DDS with $L= 20$ (4.3 bits of phase). Both have 16-bit LUT entries. The modulus 20 DDS has lower spurious, with the worst spur at about -105 dB with respect to the level at 1.5 Hz.

Finally, note that it is also possible to make a DDS with an arbitrary *programmable* modulus. The approach involves using two accumulators [5,6].

![Graphs](https://example.com/graphs.png)

Figure 4. DDS with $L= 20$ and $f_s = 10$ Hz.

a) Accumulator output m for $f_0 = 0.5$ Hz. b) Phase in cycles. c) LUT output y.
Figure 5. DDS with $L=20$ and $f_s = 10$ Hz.

a) Accumulator output m for $f_0 = 1.0$ Hz, and
b) LUT output y
c) Accumulator output m for $f_0 = 1.5$ Hz, and
d) LUT output y
Figure 6. Spectra of conventional DDS and DDS with modulus $L = 20$. $f_0 = 1.5$ Hz and $f_s = 10$ Hz.
Left: Conventional DDS with 15 bits of phase and 16-bit LUT entries.
Right: DDS with $L = 20$ (4.3 bits of phase) and 16-bit LUT entries.

Quadrature Output DDS

A quadrature output DDS has both cosine and sine outputs. The cosine phase leads sine phase by $\pi/2$ radians = $\pi/4$ cycle. Given m as the LUT address for a sine, the address for the cosine is:

\[p = m + L/4 \mod(L) \]

where L is the DDS modulus = LUT length, which must be a multiple of 4. We can modify the Matlab code in the Appendix to compute both sine and cosine. Here is the modified for loop:

```matlab
sine(1)= 0; cosine(1)= 1; m= 0; for n= 2:N
r = k + m;
m= mod(r,L); % LUT address/ sine
p= mod(m+ L/4,L); % LUT address/ cosine
sine(n)= lut(m+1); % sine output
cosine(n)= lut(p+1); % cosine output
end
```
The Quadrature DDS outputs for \(L= 20, f_s= 10 \, \text{Hz}, \) and \(f_0 = 1 \, \text{Hz} \) are shown in Figure 7.

Figure 7. Quadrature DDS with \(L= 20, f_s= 10 \, \text{Hz}, \) and \(f_0 = 1 \, \text{Hz} \).

a) cosine address \(p \). b) cosine output. c) sine address \(m \). d) -sine output.

Simplest DDS with \(L= 4 \)

If we let \(L= 4 \), there is only one output frequency below \(f_s/2 \):

\[
f_0 = k \times f_s/L = f_s/4 \quad (k= 1)
\]

The LUT sine values from Equation 5 are:

\[
\text{LUT} = [0 \ \sin(\pi/2) \ 0 \ \sin(3\pi/2)]
\]

\[
= [0 \ 1 \ 0 \ -1]
\]

The cosine values are \([1 \ 0 \ -1 \ 0]\).
A quadrature L= 4 DDS using cosine and -sine can be used to down-convert a signal centered at \(f_s/4 \) to complex baseband [7,8]. Since all LUT values are 0 or +/-1, no multiplier is needed to perform the frequency conversion.

References

Neil Robertson June 3, 2019. Revised 6/8/19
Appendix MatLab Code for DDS with Modulus = 20

% dds_mod20.m 5/30/19 Neil Robertson
% DDS with modulus L = 20
% output frequency f0 = k*fs/L
% Plot LUT, phase, and output

fs= 10; % Hz sample freq
df= 0.5; % Hz desired freq step
L= fs/df % length of LUT= modulus of accumulator

if mod(L,1)~=0
 error(' fs/fstep must be an integer')
end

% create LUT with one full cycle of sinewave (not using symmetry)
D= 16; % bits LUT entries quantization
m= 0:L-1;
phi_lut= m/L; % cycles phase
epsilon= 1/2^(D-2);
u= (1 - epsilon) *sin(2*pi*phi_lut);
lut= round(u*2^(D-1))/(2^(D-1)); % quantize lut entries

% DDS
N= 30; % number of output samples
f0= 0.5; % Hz output frequency (must be multiple of df)
k= L*f0/fs; % integer input to DDS

y(1)= 0;
m= 0;
for n= 2:N
 r = k + m;
 m= mod(r,L); % LUT address
 y(n)= lut(m+1); % output
 phi(n)= m/L; % cycles phase
end

% %
% % Plotting
% %
% plot LUT
stem(0:L-1,lut),grid
axis([0 32 -1 1])
xlabel('m'),ylabel('lut'),figure
% %plot m and phi
subplot(311),plot(0:N-1,phi*L,'.-', 'markersize', 9),grid
axis([0 30 0 20])
xlabel('n'),ylabel('m')
subplot(312),plot(0:N-1,phi,'.-', 'markersize', 9),grid
axis([0 30 0 1])
xlabel('n'),ylabel('phi (cycles) = m/L')
%
% plot y along with "continuous" sinewave y2 in grey

fs_plot = fs*16; % fs of "continuous" sine
Ts = 1/fs_plot;
Len = 16*N;
i = 0:Len-1;
y2 = sin(2*pi*f0*i*Ts); % "continuous" sine

subplot(313),plot(0:N-1,y, '.', 'markersize', 9),grid
hold on
plot(i/16,y2, 'color', [.5 .5 .5])
axis([0 N -1 1])
xlabel('n'),ylabel('y')