Design IIR Butterworth Filters Using 12 Lines of Code

While there are plenty of canned functions to design Butterworth IIR filters [1], it’s instructive and not that complicated to design them from scratch. You can do it in 12 lines of Matlab code. In this article, we’ll create a Matlab function `butter_synth.m` to design lowpass Butterworth filters of any order. Here is an example function call for a 5th order filter:

```matlab
N= 5 % Filter order
fc= 10; % Hz cutoff freq
fs= 100; % Hz sample freq
[b,a]= butter_synth(N,fc,fs)

b = 0.0013 0.0064 0.0128 0.0128 0.0064 0.0013
a = 1.0000 -2.9754 3.8060 -2.5453 0.8811 -0.1254
```

Then, to find the frequency response:

```matlab
[h,f]= freqz(b,a,256,fs);
H= 20*log10(abs(h))
```

The magnitude response of the 5th order filter is shown in Figure 1, along with the response of the analog prototype.

![Magnitude response of N= 5 IIR Butterworth filter with fc = 10 Hz and fs = 100 Hz. The prototype analog filter’s response is also shown.](image)

Figure 1. Magnitude response of N= 5 IIR Butterworth filter with f\textsubscript{c} = 10 Hz and f\textsubscript{s} = 100 Hz. The prototype analog filter’s response is also shown.
Notation

First, a word about notation. We need to distinguish frequency variables in the continuous-time (analog) world from those in the discrete-time world. In this article, the following notation for frequency will be used:

- **Continuous frequency**: \(F \) Hz
- **Continuous radian frequency**: \(\Omega \) radians/s
- **Complex frequency**: \(s = \sigma + j\Omega \)
- **Discrete frequency**: \(f \) Hz
- **Discrete normalized radian frequency**: \(\omega = 2\pi f / f_s \) radians, where \(f_s \) is the sample frequency

Background

Analog Butterworth filters have all-pole transfer functions. For example, a third-order Butterworth filter with \(\Omega_c = 1 \) rad/s has the transfer function:

\[
H(s) = \frac{1}{s^3 + 2s^2 + 2s + 1}
\]

or

\[
H(s) = \frac{1}{(s - p_{a0})(s - p_{a1})(s - p_{a2})}
\]

(1)

where the subscript \(a \) denotes analog (s-plane) poles. The poles in the s-plane are:

- \(p_{a0} = -0.5 + 0.866 \)
- \(p_{a1} = -1 \)
- \(p_{a2} = -0.5 - 0.866 \)

We will transform the poles in the s-plane to poles in the z-plane using the bilinear transform \([2,3]\). The bilinear transform converts \(H(s) \) to \(H(z) \) by replacing \(s \) with:

\[
s = 2f_s \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)
\]

(2)

where \(f_s \) is the sample frequency. If we solve for \(z \), we get:

\[
z = \frac{1 + s/(2f_s)}{1 - s/(2f_s)}
\]

(3)

Equation 3 maps a point on the s-plane to a point on the z-plane. For example, if \(f_s = 2 \) Hz, the s-plane real pole at -1 maps to:

\[
p = \frac{1 - 1/4}{1 + 1/4} = 0.6
\]
For the 3rd order filter, with $\Omega_c = 1$ and $f_s = 2$, the z-plane poles fall as shown in Figure 2.

From equation 1, $H(s)$ has 3 zeros at $s = \infty$. How do they map to the z plane? We will show later that the bilinear transform maps $-\infty$ to ∞ on the $j\Omega$ axis to $-f_s/2$ to $f_s/2$ on the unit circle. So the 3 zeros of $H(s)$ map to $+/- f_s/2$ on the unit circle, which corresponds to $z = -1$. (Recall that on the unit circle, $z = e^{j\omega}$, where $\omega = 2\pi f/f_s$. For $f = +/- f_s/2$, we have $\omega = +/-\pi$, so $z = e^{j\pi} = -1$). The three zeros are represented by the ‘o’ in figure 2.

We can now write the 3rd-order Butterworth $H(z)$ as:

$$H(z) = K \frac{(z+1)(z+1)(z+1)}{(z-p_0)(z-p_1)(z-p_2)} \quad (4)$$

where, from equation 3, $p = [0.7143 + j 0.33 \quad 0.6 \quad 0.7143 - j 0.33]$. Expanding the numerator and denominator, we have:

$$H(z) = K \frac{b_0z^3 + b_1z^2 + b_2z + b_3}{z^3 + a_1z^2 + a_2z + a_3}$$

$$H(z) = K \frac{b_0 + b_1z^{-1} + b_2z^{-2} + b_3z^{-3}}{1 + a_1z^{-1} + a_2z^{-2} + a_3z^{-3}} \quad (5)$$

Where $b = [1 \quad 3 \quad 3 \quad 1]$ and $a = [1 \quad -2.0286 \quad 1.4762 \quad -0.3714]$. K is chosen to make gain = 1 at $\omega = 0$: $K = 1/H(\omega=0) = 1/H(z=1) = \text{sum}(a)/\text{sum}(b) = .00952$

Looking again at Figure 1, you may have wondered why the attenuation of the IIR filter is greater than that of the analog filter as f approaches $f_s/2$. The reason is that the analog filter’s zeros are at ∞, while the bilinear transform compresses the frequency scale so that the IIR filter’s zeros are at $f_s/2$.
Filter Synthesis

Here is a summary of the steps for finding the filter coefficients:

1. Find the poles of the analog prototype filter with $\Omega_c = 1$ rad/s.
2. Given the desired f_c of the digital filter, find the corresponding analog frequency F_c.
3. Scale the s-plane poles by $2\pi F_c$.
4. Transform the poles from the s-plane to the z-plane.
5. Add N zeros at $z = -1$.
6. Convert poles and zeros to polynomials with coefficients a_n and b_n.

Now let’s look at the steps in detail. Note we’ll repeat a lot of the math we already presented above. A Matlab function `butter_synth` that performs the filter synthesis is provided in the Appendix. It gives the same results as the built-in Matlab function `butter(n, Wn)` [1].

1. Poles of the analog filter. For a Butterworth filter of order N with $\Omega_c = 1$ rad/s, the poles are given by [4,5]:

$$ p_{ak} = -\sin\theta + j \cos\theta $$

where $\theta = \frac{(2k-1)\pi}{2N}, \ k = 1: N$
2. Given the desired f_c, find analog frequency F_c. As we’ll show in the next section, the bilinear transform does not map the analog frequency F to discrete frequency f linearly. To achieve a digital filter cut-off frequency of f_c, the analog prototype cut-off frequency must be:

$$F_c = \frac{f_c \pi}{\tan \left(\frac{\pi f_c}{f_s} \right)}$$

This exercise is called frequency pre-warping. For example, if $f_s = 100$ Hz and we want $f_c = 20$ Hz, then $F_c = 23.13$ Hz.

3. Scale the s-plane poles by $2\pi F_c$. The poles obtained in step 1 gave $\Omega_c = 1$ rad/s (i.e. $1/(2\pi)$ Hz). Multiplying the poles by $2\pi F_c$ scales the analog filter cut-off frequency to F_c and the digital filter cut-off frequency to f_c.

4. Transform the poles from the s-plane to the z-plane using the bilinear transform. From equation 3,

$$p_k = \frac{1 + p_k/(2f_s)}{1 - p_k/(2f_s)}, \quad k = 1:N$$

5. Add N zeros at $z = -1$. Following the example of equation 4, the numerator of $H(z)$ is $(z + 1)^N$, meaning there are N poles at $z = -1$. We now can write $H(z)$ as:

$$H(z) = K \frac{(z + 1)^N}{(z - p_0)(z - p_1) \ldots (z - p_{N-1})}$$ \hspace{1cm} (6)

In butter_synth, we represent the N zeros as a vector $q = \text{ones}(1, N)$.

6. Convert poles and zeros to polynomials with coefficients a_n and b_n. If we expand the numerator and denominator of equation 6, we get polynomials in z^{-n}:

$$H(z) = K \frac{b_0 + b_1z^{-1} + \ldots + b_Nz^{-N}}{1 + a_1z^{-1} + \ldots + a_Nz^{-N}}$$ \hspace{1cm} (7)

The Matlab code to perform the expansion is:

```matlab
a = poly(p)
a = real(a)
b = poly(q)
```

We want $H(z)$ to have a gain of 1 at $\omega = 0$. Letting $z = e^{j\omega}$, we have $z = 1$. Then, referring to equation 7, we have gain at $\omega = 0$ of:
\[H(z = 1) = K \frac{\sum b}{\sum a} \]

So, for gain of 1 at \(\omega = 0 \), we make \(K = \frac{\sum a}{\sum b} \).

And that’s the last step. Figure 3 shows the frequency response vs. order N for filters synthesized by butter_synth. Figure 4 shows the impulse response vs. order N for three cases.

![Figure 3. IIR Butterworth magnitude responses for \(f_c = 10 \) Hz and \(f_s = 100 \) Hz.](image)

\[
\text{[h,f]} = \text{freqz}(b,a,256,fs); \\
H = 20*\log10(\text{abs}(h));
\]
Figure 4. IIR Butterworth impulse responses for $f_c = 1$ kHz and $f_s = 32$ kHz.

```matlab
x = [1 zeros(1,95)];  % impulse
y = filter(b,a,x);   % impulse response
```

Frequency Mapping of the Bilinear Transform

The bilinear transform does not map the continuous frequency F to discrete frequency f linearly. To show this, we evaluate equation 2 for $s = j\Omega$ and $z = e^{j\omega}$:

$$ j\Omega = 2f_s \frac{1 - e^{-j\omega}}{1 + e^{-j\omega}} $$

$$ j\Omega = j2f_s \tan\left(\frac{\omega}{2}\right) $$

Now substitute $\Omega = 2\pi F$ and $\omega = 2\pi f/f_s$:

$$ F = \frac{f_s}{\pi} \tan\left(\frac{\pi f}{f_s}\right) \quad (8) $$

Figure 5 plots equation 8 for $f_s = 100$ Hz. The entire analog frequency range maps to $-f_s/2$ to $f_s/2$. Also shown on the zoomed plot on the right is the transformation of discrete frequency $f = 20$ Hz to continuous frequency $F = 23.13$ Hz. Note that the frequency mapping is approximately linear for $f < f_s/10$ or so.
Figure 6 shows the effect of using equation 8 to pre-warp the cut-off frequency of an analog prototype filter to give $f_c = 20$ Hz. With pre-warping, the analog prototype poles were scaled by $2\pi * 23.13$. Without pre-warping, they were scaled by $2\pi * 20$.

Figure 5. Frequency mapping of the bilinear transform for $f_s = 100$ Hz. x axis is discrete frequency and y-axis is continuous frequency. The right plot is a zoomed version of the left plot, showing the value of F for $f = 20$ Hz.

Figure 6. Effect of pre-warping for $f_c = 20$ Hz and $f_s = 100$ Hz. 5th order IIR Butterworth.
References

Neil Robertson December 2017
Appendix Matlab Function butter_syn (12 lines of code, excluding error check)

This program is provided as-is without any guarantees or warranty. The author is not responsible for any damage or losses of any kind caused by the use or misuse of the program.

```
% butter_syn.m    12/9/17 Neil Robertson
% Find the coefficients of an IIR butterworth lowpass filter using bilinear transform
%  
% N= filter order
% fc= -3 dB frequency in Hz
% fs= sample frequency in Hz
% b = numerator coefficients of digital filter
% a = denominator coefficients of digital filter

function [b,a]= butter_syn(N,fc,fs);
if fc>=fs/2;
    error('fc must be less than fs/2')
end

% I. Find poles of analog filter
k= 1:N;
theta= (2*k-1)*pi/(2*N);
ap= -sin(theta) + j*cos(theta);  \ % poles of filter with cutoff = 1 rad/s

% II. scale poles in frequency
Fc= fs/pi * tan(pi*fc/fs);  \ % continuous pre-warped frequency
pa= pa*2*pi*Fc;  \ % scale poles by 2*pi*Fc

% III. Find coeffs of digital filter
% poles and zeros in the z plane
p= (1 + pa/(2*fs))./(1 - pa/(2*fs));  \ % poles by bilinear transform
q= -ones(1,N);  \ % zeros

% convert poles and zeros to polynomial coeffs
a= poly(p);  \ % convert poles to polynomial coeffs a
a= real(a);  \ % convert zeros to polynomial coeffs b
b= poly(q);
K= sum(a)/sum(b);  % amplitude scale factor
b= K*b;
```
