
www.embeddedonlineconference.com

Advanced Debugging
and Performance
Analysis Techniques
for Embedded
Applications

Axel Wolf

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

THE SPEAKER
Technical Director @ SEGGER US

Focus: Development Tools and Software for
Embedded Systems

Axel Wolf is Technical Director at SEGGER Microcontroller
LLC in the US, where he is responsible for business
development, key account management, partner
management, as well as technical support. Axel also
regularly represents SEGGER at trade shows, conferences,
and partner events. He has 25+ years of experience in
microcontrollers, embedded software development, and
the associated development tools. Before joining SEGGER
in January of 2018, Axel served in advanced technical,
marketing, and management positions at Renesas
Electronics, NXP Semiconductors, Philips Semiconductors,
Infineon Technologies, and Siemens Semiconductors. He
holds a BSEE from Baden-Wuerttemberg Cooperative
State University (DHBW) in Stuttgart, Germany. Axel is
located in Milpitas, California. He can be reached at
axel.wolf@segger.com.

Axel Wolf

mailto:axel.wolf@segger.com

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

AGENDA

1 SEGGER Introduction

2 “Basic” vs. “Advanced”
Embedded Debugging

3 Live Demo:
Streaming Instruction Trace /
Real-Time Code Coverage /
Real-Time Code Profiling

4 Other Advanced Debugging
Features

5 Live demo: Real-Time
Recording and Runtime
Analysis

6 Summary

SEGGER Introduction1

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

SEGGER Company Introduction

BOSTON
Massachusetts

USA

SILICON
VALLEY

California, USA

HEADQUARTER
Monheim,
Germany

Worldwide Distribution

Founder
Rolf Segger

Founded
1992

Employees
> 60

Managing Director
Ivo Geilenbrügge

CTO
Alexander Grüner

The Embedded Experts
Your One-Stop Shop from Development to Production

SHANGHAI
China

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

SEGGER Company Introduction

SEGGER has over 30 years of experience in Embedded Systems, producing
state-of-the-art middleware, and offering a full set of hardware tools

(for development and production) and software tools.

Production
Tools

Software
Tools

Debug
Probes

Embedded
Software

“Basic” vs “Advanced”
Embedded Debugging

2

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

Basic Debug Setup

Debug
Header

MCU

Target board

Windows, macOS, or
Linux workstation

with IDE, Debugger

Debug
Probe

■ Basic Debugging:

■ Download / Run code

■ Halt / Resume program execution

■ Single-stepping

■ Breakpoints

SWD/
JTAGUSB

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

When Basic Debugging is not enough…

Tracking down infrequent, hard-to-reproduce bugs

Determining the reason for entering a hard fault

Locating “dead code”

Locating “code hot-spots”

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

Key to Advanced Debugging: Instruction Tracing

Instruction Tracing

Trace data written
to on-chip Trace

Buffer

Trace Data output
on debug interface

pins

Trace probe stores
trace data in
internal trace

buffer

Trace probe
streams trace data

to debugger on
host computer

1

2 3

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

Instruction Tracing via on-chip Trace Buffer

■ Examples: Embedded Trace Buffer (ETB), Micro Trace Buffer (MTB), Embedded Trace
FIFO (ETF)

■ MCU running: Instruction history ➔ on-chip trace buffer

■ MCU halted: Trace buffer contents ➔ debugger (via debug probe)

■ Drawbacks:

■ Small trace buffer size (kB)

■ Very limited instruction history (ring buffer)

Debug
Probe

Debug
Header

MCU

SWD/
JTAGUSB

Trace
Buffer

CPU

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

Instruction Tracing via on-probe Trace Buffer

Trace
Probe

Debug
Header

MCU

SWD/
JTAG

USB

Trace Pins /
Trace Clock

ETM

CPU

■ MCU outputs trace information on dedicated debug interface pins

■ Embedded Trace Macrocell (ETM) (Cortex-M, Cortex-R)

■ Program Trace Macrocell (PTM) (Cortex-A)

■ MCU running: Instruction history ➔ trace probe (stored in trace buffer)

■ MCU halted: Trace buffer contents ➔ debugger

■ Advantage: Larger trace buffer size (MB to GB)

■ Disadvantage: 2 to 5 extra pins required to be routed to the debug interface

Trace
Buffer

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

Instruction Tracing using a Streaming Trace Probe

■ Passes instruction trace data to the host computer in real-time

■ Streaming into files possible ➔ buffer sizes of TB

■ Tracing over extended periods of time possible

■ Enables other advanced debugging features

■ Real-Time Code Coverage

■ Real-Time Code Profiling

Streaming Trace
Probe

(e.g.
J-Trace PRO)

Debug
Header

MCU

SWD/
JTAG

USB3/
Gbit Ethernet

Trace Pins /
Trace Clock

ETM

CPU

Trace
Buffer

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

Code Coverage:
Which parts of the code have been executed?

■ Shows how much of a
source line, block, function
or file has been executed

■ Detects code which has
not been covered by tests

■ Detects unreachable code

■ Helps improve the code /
create suitable test suite
for uncovered blocks

■ “Only tested code is
finished code“

Real-Time Code Coverage with J-Trace PRO and Ozone

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

Code Profiling:
How often has a certain piece of code been executed?

Real-Time Code Profiling with J-Trace PRO and Ozone

■ Measures execution time and
frequency of functions, blocks
and instructions

■ Highlights where computing
time is spent

■ Potential for optimization:

■ Code that is executed
frequently

■ Code that places a high load
on the system
(“hot spots”)

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

Code Coverage and Code Profiling Reports

■ The information from the Code
Coverage/Profiling Window can
be exported…

■ …for further analysis in external
tools, or

■ …as human-readable text files
to be stored for QA processes
or certification

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

Code Timeline: How does everything ‘stack up’?

■ The Code Timeline provides a graphical representation of the Call Stack over time

■ The timeline is based on the recorded trace data

■ Mapped to the source function information

How long did
that function

call take?

Which sub-
routines have
been called?

Which RTOS
tasks are being

executed?

Live Demo:
Streaming Instruction Trace /
Real-Time Code Coverage / Real-
Time Code Profiling

3

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

SEGGER Cortex-M Trace Reference Board

Debug header
with Trace pins

3 LEDs for visual
feedback

STM32F407
Arm Cortex-M4

MCU

Also available: Trace
Reference Boards for:

NXP RT1050
STM32H7

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

Hardware Setup

USB3.0

Debug /
Trace /
Power

Special
Code

Special
Project

Configu-
ration

Gbit
Ethernet Now let’s switch

over to Ozone

Other Advanced Debugging
Features

4

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

RTOS Awareness

■ Ozone’s RTOS awareness plugins
provide information about the
application’s OS, such as:

■ Which task did the system halt at?

■ What are the other tasks doing?

■ How much stack are they using?

■ Additionally, a JavaScript interface is
available to add RTOS awareness for
any OS

Quick demo…

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

Data & Power Sampling

■ Part of the Timeline Window

■ Allows correlating and visualizing:

■ Data Sampling

■ Current Consumption

■ Program Execution

■ Also see video here:
https://youtu.be/Iu9XpFNgU7Q

Quick demo…

https://youtu.be/Iu9XpFNgU7Q

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

Target Exception Dialog

■ Shows when the target's CPU
enters an exception state, such as
a fault on Cortex-M

■ Also see videos here:
https://youtu.be/RaiTXe9huyo
https://youtu.be/oL8qVAVMA0o

https://youtu.be/RaiTXe9huyo
https://youtu.be/oL8qVAVMA0o

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

Conditional Code and Data Breakpoints

■ Ozone’s (Code) Breakpoint capabilities
enable users to specify advanced
breakpoint properties

■ Trigger condition

■ Implementation type

■ Ozone’s Data Breakpoint capabilities
enable users to place data breakpoints
on global program variables and
individual memory addresses

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

■ Toolkit for continuous real-time recording of an embedded application

■ Live analysis and visualization of captured data

■ Captures tasks, interrupts, timers, resources, API calls, and user events

■ Recording via J-Link and SEGGER RTT Technology, IP, or UART

■ Minimally system-intrusive

■ Works with RTOS and bare-metal systems

■ Provides complete insight into an application,
to gain a deep understanding of the runtime behavior

■ Particularly advantageous when developing and working in
complex systems with multiple tasks and events

■ Consists of two parts:

■ A visualization/Recording app, running on any host computer (Windows, MacOS, or Linux)

■ Some embedded code running on the target system

Real-Time Analysis with SystemView

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

Benefits of SystemView

■ SystemView makes it possible to analyze…

■ Which interrupts, tasks, and software timers have executed,

■ how often,

■ exactly when,

■ and how much time they have used

■ It sheds light on…

■ exactly what happened on the target in which order,

■ which interrupt has triggered which task switch,

■ and which interrupt and task has called which API function of the
underlying RTOS

Live demo: Real-time Recording
and Runtime Analysis

5

Hardware Setup

USB3.0

Debug /
Trace /
Power

Now let’s switch
over to SystemView

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

What’s happening under the hood

J-Link
Debug Probe

J-Link Debug Probe / J-Trace PRO Trace Probe

Summary6

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

Summary (I)

■ J-Trace PRO enables streaming trace on Cortex-M,
Cortex-A, and Cortex-R based targets with
ETM/PTM

■ J-Trace PRO now also available for RISC-V

■ Ozone is a cross-platform debugger and
performance analyzer for J-Link and J-Trace

■ Together, they offer advanced debug features like

■ Instruction Trace

■ Real-Time Code Coverage

■ Real-Time Code Profiling

■ Code Timeline

■ and more

■ Advanced debugging can save you time, money,
and frustration

© E m b e d d e d O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d EmbeddedOnlineConference.com

Summary (II)

■ SystemView can provide real-time visualization
and analysis of a target application’s runtime
behavior

■ System behavior can be recorded for off-line
analysis

■ SystemView and RTT don’t require additional port
pins or hardware (other than the J-Link debug
probe)

■ RTT can now also be used with RISC-V based
devices that support System Bus Access

■ SEGGER’s plea to RISC-V core and SoC Designers:
When implementing the RISC-V Debug Module,
include the System Bus Access block to take
advantage of RTT and SystemView

■ This is an optional feature, but worth adding…

w w w . e m b e d d e d o n l i n e c o n f e r e n c e . c o m

THANK YOU

w w w . e m b e d d e d o n l i n e c o n f e r e n c e . c o m

	Slide 1: Advanced Debugging and Performance Analysis Techniques for Embedded Applications
	Slide 2
	Slide 3
	Slide 4
	Slide 5: SEGGER Company Introduction
	Slide 6: SEGGER Company Introduction
	Slide 7
	Slide 8: Basic Debug Setup
	Slide 9: When Basic Debugging is not enough…
	Slide 10: Key to Advanced Debugging: Instruction Tracing
	Slide 11: Instruction Tracing via on-chip Trace Buffer
	Slide 12: Instruction Tracing via on-probe Trace Buffer
	Slide 13: Instruction Tracing using a Streaming Trace Probe
	Slide 14: Code Coverage: Which parts of the code have been executed?
	Slide 15: Code Profiling: How often has a certain piece of code been executed?
	Slide 16: Code Coverage and Code Profiling Reports
	Slide 17: Code Timeline: How does everything ‘stack up’?
	Slide 18
	Slide 19: SEGGER Cortex-M Trace Reference Board
	Slide 20: Hardware Setup
	Slide 21
	Slide 22: RTOS Awareness
	Slide 23: Data & Power Sampling
	Slide 24: Target Exception Dialog
	Slide 25: Conditional Code and Data Breakpoints
	Slide 26: Real-Time Analysis with SystemView
	Slide 27: Benefits of SystemView
	Slide 28
	Slide 29: Hardware Setup
	Slide 30: What’s happening under the hood
	Slide 31
	Slide 32: Summary (I)
	Slide 33: Summary (II)
	Slide 34
	Slide 35

