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SEGGER Company Introduction

BOSTON
Massachusetts

USA

SILICON 
VALLEY

California, USA

HEADQUARTER
Monheim, 
Germany 

Worldwide Distribution

Founder
Rolf Segger

Founded
1992

Employees
> 60

Managing Director
Ivo Geilenbrügge

CTO
Alexander Grüner

The Embedded Experts
Your One-Stop Shop from Development to Production

SHANGHAI
China 
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SEGGER Company Introduction

SEGGER has over 30 years of experience in Embedded Systems, producing 
state-of-the-art middleware, and offering a full set of hardware tools

(for development and production) and software tools.

Production
Tools

Software 
Tools

Debug
Probes

Embedded 
Software



“Basic” vs “Advanced”
Embedded Debugging
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Basic Debug Setup

Debug
Header

MCU

Target board

Windows, macOS, or 
Linux workstation 

with IDE, Debugger

Debug
Probe

■ Basic Debugging:

■ Download / Run code

■ Halt / Resume program execution

■ Single-stepping

■ Breakpoints

SWD/
JTAGUSB
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When Basic Debugging is not enough…

Tracking down infrequent, hard-to-reproduce bugs

Determining the reason for entering a hard fault

Locating “dead code”

Locating “code hot-spots”
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Key to Advanced Debugging: Instruction Tracing

Instruction Tracing

Trace data written 
to on-chip Trace 

Buffer

Trace Data output 
on debug interface 

pins   

Trace probe stores 
trace data in 
internal trace 

buffer 

Trace probe 
streams trace data 

to debugger on 
host computer

1

2 3
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Instruction Tracing via on-chip Trace Buffer

■ Examples: Embedded Trace Buffer (ETB), Micro Trace Buffer (MTB), Embedded Trace 
FIFO (ETF)

■ MCU running: Instruction history ➔ on-chip trace buffer

■ MCU halted: Trace buffer contents ➔ debugger (via debug probe)

■ Drawbacks:

■ Small trace buffer size (kB)

■ Very limited instruction history (ring buffer)

Debug
Probe

Debug
Header

MCU

SWD/
JTAGUSB

Trace 
Buffer

CPU
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Instruction Tracing via on-probe Trace Buffer 

Trace
Probe

Debug
Header

MCU

SWD/
JTAG

USB

Trace Pins /
Trace Clock

ETM

CPU

■ MCU outputs trace information on dedicated debug interface pins

■ Embedded Trace Macrocell (ETM) (Cortex-M, Cortex-R)

■ Program Trace Macrocell (PTM) (Cortex-A) 

■ MCU running: Instruction history ➔ trace probe (stored in trace buffer)

■ MCU halted: Trace buffer contents ➔ debugger

■ Advantage: Larger trace buffer size (MB to GB)

■ Disadvantage: 2 to 5 extra pins required to be routed to the debug interface

Trace 
Buffer
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Instruction Tracing using a Streaming Trace Probe

■ Passes instruction trace data to the host computer in real-time

■ Streaming into files possible ➔ buffer sizes of TB

■ Tracing over extended periods of time possible

■ Enables other advanced debugging features

■ Real-Time Code Coverage

■ Real-Time Code Profiling

Streaming Trace
Probe

(e.g.
J-Trace PRO)

Debug
Header

MCU

SWD/
JTAG

USB3/
Gbit Ethernet

Trace Pins /
Trace Clock

ETM

CPU

Trace 
Buffer
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Code Coverage:
Which parts of the code have been executed?

■ Shows how much of a 
source line, block, function 
or file has been executed

■ Detects code which has 
not been covered by tests

■ Detects unreachable code

■ Helps improve the code / 
create suitable test suite 
for uncovered blocks

■ “Only tested code is 
finished code“

Real-Time Code Coverage with J-Trace PRO and Ozone 
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Code Profiling:
How often has a certain piece of code been executed? 

Real-Time Code Profiling with J-Trace PRO and Ozone 

■ Measures execution time and 
frequency of functions, blocks 
and instructions

■ Highlights where computing 
time is spent

■ Potential for optimization:

■ Code that is executed 
frequently

■ Code that places a high load 
on the system
(“hot spots”)
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Code Coverage and Code Profiling Reports

■ The information from the Code 
Coverage/Profiling Window can 
be exported…

■ …for further analysis in external 
tools, or

■ …as human-readable text files 
to be stored for QA processes 
or certification
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Code Timeline: How does everything ‘stack up’? 

■ The Code Timeline provides a graphical representation of the Call Stack over time

■ The timeline is based on the recorded trace data

■ Mapped to the source function information 

How long did 
that function 

call take?

Which sub-
routines have 
been called?

Which RTOS 
tasks are being 

executed?



Live Demo:
Streaming Instruction Trace / 
Real-Time Code Coverage / Real-
Time Code Profiling
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SEGGER Cortex-M Trace Reference Board

Debug header 
with Trace pins

3 LEDs for visual 
feedback

STM32F407 
Arm Cortex-M4 

MCU

Also available: Trace 
Reference Boards for: 

NXP RT1050
STM32H7
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Hardware Setup

USB3.0

Debug /
Trace / 
Power

Special
Code

Special
Project

Configu-
ration

Gbit
Ethernet Now let’s switch 

over to Ozone



Other Advanced Debugging 
Features

4
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RTOS Awareness

■ Ozone’s RTOS awareness plugins 
provide information about the 
application’s OS, such as:

■ Which task did the system halt at?

■ What are the other tasks doing?

■ How much stack are they using?

■ Additionally, a JavaScript interface is 
available to add RTOS awareness for 
any OS

Quick demo…
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Data & Power Sampling

■ Part of the Timeline Window

■ Allows correlating and visualizing:

■ Data Sampling

■ Current Consumption

■ Program Execution

■ Also see video here:
https://youtu.be/Iu9XpFNgU7Q

Quick demo…

https://youtu.be/Iu9XpFNgU7Q
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Target Exception Dialog

■ Shows when the target's CPU 
enters an exception state, such as 
a fault on Cortex-M

■ Also see videos here:  
https://youtu.be/RaiTXe9huyo
https://youtu.be/oL8qVAVMA0o

https://youtu.be/RaiTXe9huyo
https://youtu.be/oL8qVAVMA0o
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Conditional Code and Data Breakpoints

■ Ozone’s (Code) Breakpoint capabilities 
enable users to specify advanced 
breakpoint properties

■ Trigger condition

■ Implementation type

■ Ozone’s Data Breakpoint capabilities 
enable users to place data breakpoints 
on global program variables and 
individual memory addresses



©  E m b e d d e d O n l i n e C o n f e r e n c e . c o m  A l l  r i g h t s  r e s e r v e d EmbeddedOnlineConference.com

■ Toolkit for continuous real-time recording of an embedded application

■ Live analysis and visualization of captured data

■ Captures tasks, interrupts, timers, resources, API calls, and user events

■ Recording via J-Link and SEGGER RTT Technology, IP, or UART

■ Minimally system-intrusive

■ Works with RTOS and bare-metal systems

■ Provides complete insight into an application,
to gain a deep understanding of the runtime behavior

■ Particularly advantageous when developing and working in
complex systems with multiple tasks and events

■ Consists of two parts:

■ A visualization/Recording app, running on any host computer (Windows, MacOS, or Linux) 

■ Some embedded code running on the target system

Real-Time Analysis with SystemView



©  E m b e d d e d O n l i n e C o n f e r e n c e . c o m  A l l  r i g h t s  r e s e r v e d EmbeddedOnlineConference.com

Benefits of SystemView

■ SystemView makes it possible to analyze…

■ Which interrupts, tasks, and software timers have executed,

■ how often,

■ exactly when,

■ and how much time they have used

■ It sheds light on…

■ exactly what happened on the target in which order,

■ which interrupt has triggered which task switch,

■ and which interrupt and task has called which API function of the 
underlying RTOS



Live demo: Real-time Recording 
and Runtime Analysis

5



Hardware Setup

USB3.0

Debug /
Trace / 
Power

Now let’s switch 
over to SystemView
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What’s happening under the hood

J-Link
Debug Probe

J-Link Debug Probe / J-Trace PRO Trace Probe



Summary6
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Summary (I)

■ J-Trace PRO enables streaming trace on Cortex-M, 
Cortex-A, and Cortex-R based targets with 
ETM/PTM

■ J-Trace PRO now also available for RISC-V

■ Ozone is a cross-platform debugger and 
performance analyzer for J-Link and J-Trace

■ Together, they offer advanced debug features like

■ Instruction Trace

■ Real-Time Code Coverage

■ Real-Time Code Profiling

■ Code Timeline

■ and more

■ Advanced debugging can save you time, money, 
and frustration 
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Summary (II)

■ SystemView can provide real-time visualization 
and analysis of a target application’s runtime 
behavior

■ System behavior can be recorded for off-line 
analysis

■ SystemView and RTT don’t require additional port 
pins or hardware (other than the J-Link debug 
probe)

■ RTT can now also be used with RISC-V based 
devices that support System Bus Access

■ SEGGER’s plea to RISC-V core and SoC Designers:
When implementing the RISC-V Debug Module, 
include the System Bus Access block to take 
advantage of RTT and SystemView

■ This is an optional feature, but worth adding…
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THANK YOU
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