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Rationale & Objective: During the coronavirus
disease 2019 (COVID-19) pandemic, New York
encountered shortages in continuous kidney
replacement therapy (CKRT) capacity for criti-
cally ill patients with acute kidney injury stage 3
requiring dialysis. To inform planning for current
and future crises, we estimated CKRT demand
and capacity during the initial wave of the US
COVID-19 pandemic.

Study Design: We developed mathematical
models to project nationwide and statewide
CKRT demand and capacity. Data sources
included the Institute for Health Metrics and
Evaluation model, the Harvard Global Health
Institute model, and published literature.

Setting & Population: US patients hospitalized
during the initial wave of the COVID-19
pandemic (February 6, 2020, to August 4, 2020).

Intervention: CKRT.

Outcomes: CKRT demand and capacity at peak
resource use; number of states projected to
encounter CKRT shortages.

Model, Perspective, & Timeframe: Health sector
perspective with a 6-month time horizon.

Results: Under base-case model assumptions,
there was a nationwide CKRT capacity of 7,032
96
machines, an estimated shortage of 1,088
(95% uncertainty interval, 910-1,568) machines,
and shortages in 6 states at peak resource use.
In sensitivity analyses, varying assumptions
around: (1) the number of pre–COVID-19
surplus CKRT machines available and (2) the
incidence of acute kidney injury stage 3
requiring dialysis requiring CKRT among
hospitalized patients with COVID-19 resulted in
projected shortages in 3 to 8 states (933-1,282
machines) and 4 to 8 states (945-1,723
machines), respectively. In the best- and worst-
case scenarios, there were shortages in 3 and
26 states (614 and 4,540 machines).

Limitations: Parameter estimates are influenced
by assumptions made in the absence of pub-
lished data for CKRTcapacity and by the Institute
for Health Metrics and Evaluation model’s
limitations.

Conclusions: Several US states are projected to
encounter CKRT shortages during the COVID-
19 pandemic. These findings, although based
on limited data for CKRT demand and capacity,
suggest there being value during health care
crises such as the COVID-19 pandemic in
establishing an inpatient kidney replacement
therapy national registry and maintaining a
national stockpile of CKRT equipment.
The coronavirus disease 2019 (COVID-19) pandemic,
with more than 2,800,000 confirmed cases in the

United States as of July 6, 2020, has created a surge in
patients requiring intensive care.1,2 Among critically ill
patients with COVID-19, 4.8% to 6.9% develop acute
kidney injury stage 3 requiring dialysis (AKI 3D), a con-
dition routinely managed with continuous kidney
replacement therapy (CKRT) in the intensive care unit
(ICU).3-9

Anticipating this surge, health care systems underwent
crisis capacity activation for inpatient kidney replacement
therapy (KRT), constituting a substantial adjustment to
standards of care.4,7,10,11 Nephrologists used various stra-
tegies to improve KRT capacity, including procuring
additional CKRT machines from manufacturers, decreasing
the dose and duration of CKRT, and expanding the use of
intermittent dialysis modalities such as hemodialysis (HD)
and peritoneal dialysis (PD).10-12 Despite these efforts,
New York hospital systems encountered CKRT shortages
during the initial wave of the COVID-19 pandemic.11,13,14
In this time of uncertainty, mathematical models have
informed capacity planning for ICU beds and ventilators,
enabling increased ventilator production and distribution
across the United States to mitigate shortages.15-18 Simi-
larly, mathematical models could improve CKRT capacity
planning. The objective of this study was to develop
mathematical models of CKRT demand and capacity to
inform emergency planning, identify areas in which more
data are needed, and mitigate CKRT shortages during
the current COVID-19 pandemic and future health care
crises.2,17-19
Methods

We developed mathematical models to project CKRT de-
mand due to COVID-19, non–COVID-19 CKRT demand,
and CKRT capacity during the initial wave of the COVID-
19 pandemic. Model results were used to estimate
nationwide and statewide CKRT shortages. Given the un-
certainty in many of the model parameters, we first applied
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PLAIN-LANGUAGE SUMMARY
Despite strategic planning, New York encountered
continuous kidney replacement therapy (CKRT) short-
ages during the initial wave of the coronavirus disease
2019 (COVID-19) pandemic. To improve future plan-
ning, we developed mathematical models to project
CKRT demand and capacity in the United States by state.
Shortages were projected in 6 states during the initial
wave of the COVID-19 pandemic, with possible short-
ages in 8 additional states. Currently, these models are
based on limited data for CKRT demand and capacity
across the United States. This limitation highlights the
potential value of collecting national data for dialysis
machines, supplies, and personnel using an inpatient
kidney replacement therapy national registry and the
creation of a national stockpile of CKRT equipment.
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base-case parameter estimates and then varied them in
sensitivity analysis.

CKRT Demand Due to COVID-19

Model Structure
The model simulated a US cohort of patients hospitalized
due to COVID-19 between February 6, 2020, and August 4,
2020, reflecting the initial wave of the COVID-19 pandemic.
We estimated new daily cases of AKI 3D from COVID-19
requiring CKRT and daily CKRT demand as follows:

(1) Daily CKRT demand due to COVID-19 = (new daily
cases of AKI 3D from COVID-19 requiring CKRT) +
(existing cases of AKI 3D from COVID-19 requiring
CKRT), where
AJKD
(i) New daily cases of AKI 3D from COVID-19
requiring CKRT = (daily number of hospitaliza-
tions for COVID-19) × (incidence of AKI 3D
requiring CKRT among hospitalized patients with
COVID-19), and

(ii) Existing cases of AKI 3D from COVID-19
requiring CKRT = (cases of AKI 3D from
COVID-19 requiring CKRT on the previous day) −
(cases of AKI 3D from COVID-19 no longer
requiring CKRT on the current day)
Input Parameters
We obtained estimates of the daily number of hospitalized
patients with COVID-19 from the Institute for Health
Metrics and Evaluation (IHME) model (version 06/10/
2020), a multistage hybrid model that uses COVID-19
death rates, viral transmission characteristics, and the
impact of social interventions to provide daily estimates of
hospitalizations and deaths due to COVID-19.16 The IHME
model accounts for uncertainty in the number of hospi-
talizations in each state from fixed and random-effect es-
timations influenced by state characteristics.16 This range
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of uncertainty is used to produce several iterations of
model-generated results, which are aggregated to create
95% uncertainty intervals (UIs). When appropriate, we
present estimates derived from the IHME model as mean
with 95% UI.

For this simulated cohort, we determined the incidence
of AKI 3D requiring CKRT, the time from hospitalization
to the development of AKI 3D requiring CKRT, and the
duration of CKRT from the published literature
(Table 1).3-5,7,8,20,21 We estimated an incidence of AKI 3D
requiring CKRT from the largest New York study of pa-
tients with COVID-19.8 Within this study, 5.2% of hos-
pitalized patients with COVID-19 developed AKI 3D in the
ICU. Although only 46% of these patients received CKRT,
this was likely due to the expanded use of HD in the ICU
from CKRT capacity constraints.4,7,10,11 Because most of
these critically ill patients would have preferentially
received CKRT instead of HD in the pre–COVID-19 era, we
assumed an incidence of AKI 3D requiring CKRT among
hospitalized patients with COVID-19 of 5.2%.8

For the time from hospitalization to the development
of AKI 3D, the same study reported a median of 2 hours
with an interquartile range of −1.63 to +141 hours.8

Because the range included a negative value for time,
these data were unsuitable for the model value. With
insufficient US data, we estimated the time from hos-
pitalization to the development of AKI 3D requiring
CKRT from data by Zhou et al20 in China. In their study,
patients developed dyspnea by day 8 and AKI 3D
requiring the ICU around day 15. Assuming that patients
in their study were admitted to the hospital when they
developed dyspnea, we estimated a time from hospital-
ization to the development of AKI 3D in the ICU as 7
days (15 − 8 = 7 days).20

To estimate CKRT duration, we first used an estimate of
8 days based on the Acute Renal Failure Trial Network
Study, conducted between 2003 and 2007.21 To account
for a high mortality rate (55%)8 among patients with
COVID-19 who require CKRT, we assumed that CKRT
duration for nonsurvivors was 50% that of survivors, and
the adjusted CKRT duration used in the model was esti-
mated as follows: (4 days × 0.55) + (8 days × 0.45) ≈ 6
days.8

Non–COVID-19 CKRT Demand

Model Structure
We developed a second model to estimate non–COVID-19
CKRT demand and CKRT capacity. Within this model, we
simulated the average number of occupied ICU beds across
the United States between 2011 and 2016, before the
COVID-19 pandemic. We estimated pre–COVID-19 CKRT
demand and daily non–COVID-19 CKRT demand as
follows:

(2) Daily non–COVID-19 CKRT demand = (pre–COVID-
19 CKRT demand) × (non–COVID-19 CKRT demand
multiplier), where
697



Table 1. Input Parameters for Base-Case Model Simulations of CKRT Demand and Capacity During the Initial Wave of the COVID-
19 Pandemic in the United States

Parameter
Base-Case
Value

Range in Sensitivity
Analysis References

CKRT demand during the initial pandemic wavea

Incidence of AKI 3D requiring CKRT among hospitalized
patients with COVID-19

5.2% 4.8%-6.9% 4-8

Time from hospitalization to AKI 3D requiring CKRT
among hospitalized patients with COVID-19

7 days 5-10 days 20b

Duration of CKRT among hospitalized patients with
COVID-19

6 days 6-9 days 8, 21c

Non–COVID-19 CKRT demand multiplier during the
pandemic

0.40 0.25-0.75 22d

IHME model version 06/10/2020 04/22/2020, 06/10/2020 16e

CKRT capacity: CKRT capacity multiplier 1.50 1.25-1.75 –f

CKRT demand and capacity; prevalence of AKI 3D among
ICU patients pre–COVID-19

8.8% 6.6%-11.0% 3g

Abbreviations: AKI 3D, acute kidney injury stage 3 requiring dialysis; CKRT, continuous kidney replacement therapy; COVID-19, coronavirus disease 2019; ICU, intensive
care unit; IHME, Institute for Health Metrics and Evaluation; SEIR, susceptible, exposed, infectious, recovered.
aFebruary 6, 2020, to August 4, 2020.
bIn sensitivity analysis, we varied this parameter from 5 to 10 days based on presumed time from hospitalization to ICU transfer and time from ICU transfer to development
of AKI 3D requiring CKRT.20
cWe assumed an unadjusted duration of CKRT of 8 days based on the Acute Renal Failure Trial Network Study.8 Assuming patients who died had an average CKRT
duration of 4 days, we adjusted this duration to 6 days to account for the high mortality rate among patients with COVID-19 (55%).21
dWe assumed a base-case value of 0.40 based on a review of assumptions made in the Harvard Global Health Institute COVID-19 model.22 We chose a range of 0.25 to
0.75 based on expert opinion.
eThe original IHME model (including the 04/22/2020 version) estimated daily hospitalizations due to COVID-19 from COVID-19 death rates with assumptions made on
the impact of social interventions on COVID-19 transmission.16 This model has been criticized as it did not specifically account for COVID-19 transmission characteristics,
traditionally modeled under an SEIR framework.23 IHME updated its model and the 06/10/2020 IHME version uses a multistage hybrid model, incorporating COVID-19
transmission characteristics, death rates, and the impact of social interventions. To assess the impact of this SEIR framework and other IHME updates to the model on
outcomes, we varied the IHME version between the 04/22/2020 and 06/10/2020 versions.
fThis assumption was based on clinical experience informed by local capacity. We confirmed the face validity of this assumption with nephrologists at 2 hospitals.
gData were obtained from a meta-analysis including 17 US studies and more than 415,000 patients with acute kidney injury in medical and surgical ICUs.3 Although this
sample size provided a very narrow confidence interval, we chose a range of 6.6% to 11.0% based on expert opinion.
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(i) Pre–COVID-19 CKRT demand = (occupied ICU
beds) × (prevalence of AKI 3D among ICU patients
pre–COVID-19)
Input Parameters
We obtained estimates of occupied ICU beds across the
United States from the Harvard Global Health Institute
(HGHI) model, a model that uses ICU bed numbers and
occupancy rates before the COVID-19 pandemic to provide
ICU bed capacity projections during the US COVID-19
pandemic.22 The HGHI model uses data for total and
occupied inpatient and ICU beds from the 2018 American
Hospital Association (AHA) database and the American
Hospital Directory.24 The AHA database incorporates 5-
year (2011-2016) hospital use trends across the United
States through an annual survey. In the HGHI model, ICU
bed count data missing from the AHA database were
resolved using data from the American Hospital
Directory.25

For this simulation of occupied ICU beds, we estimated
a prevalence of AKI 3D among ICU patients pre–COVID-19
of 8.8% from a meta-analysis that included more than
415,000 patients with AKI in medical and surgical ICUs
across 17 US studies (Table 1).3 Due to an anticipated
decline in elective procedures and trauma surgeries during
the COVID-19 pandemic, we assumed non–COVID-19
CKRT demand during the COVID-19 pandemic would
decrease to 40% of pre–COVID-19 CKRT demand
(through the non–COVID-19 CKRT demand multiplier of
0.40).22

CKRT Capacity

Model Structure
We used the model developed for non–COVID-19 CKRT
demand to estimate CKRT capacity before the COVID-19
pandemic. With insufficient data for CKRT capacity across
the United States, we estimated CKRT capacity as follows:

(3) CKRT capacity = (pre–COVID-19 CKRT demand) ×
(CKRT capacity multiplier), where

(i) Pre–COVID-19 CKRT demand = (occupied ICU

beds) × (prevalence of AKI 3D among ICU patients
pre–COVID-19)

Input Parameters
Our literature review revealed no publicly available data
for the number of CKRT machines in the United States.
Therefore, we assumed capacity was 1.50 times the
pre–COVID-19 (or historical) CKRT demand. That is, for
every 2 CKRT machines in use in a health care system, we
assumed there was 1 additional CKRT machine available
before the COVID-19 pandemic. This assumption was
based on clinical experience informed by local capacity in
Boston. We confirmed the face validity of this assumption
with nephrologists at 2 hospitals.
AJKD Vol 76 | Iss 5 | November 2020
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CKRT Shortages During the COVID-19 Pandemic

Using these models, we estimated daily total CKRT de-
mand as the sum of daily CKRT demand due to COVID-19
and daily non–COVID-19 CKRT demand. We compared
daily total CKRT demand with daily CKRT capacity by US
state to estimate CKRT shortages as follows:

(1) CKRT shortage: if CKRT capacity was less than the
95% UI of CKRT demand.

(2) Possible CKRT shortage: if CKRT capacity was within
the 95% UI of CKRT demand.

(3) No CKRT shortage: if CKRT capacity was greater than
the 95% UI of CKRT demand.

Accordingly, the models projected the number of states
encountering CKRT shortages, the number of states
encountering possible CKRT shortages, the magnitude of
shortage at peak resource use during the initial wave of the
COVID-19 pandemic, and the initial date of shortage in
each state. Because peak resource use occurs at different
times in different states, the projected nationwide com-
bined shortage in CKRT machines at peak resource use
refers to the sum of these statewide shortages that occur at
different times.

Sensitivity Analysis

To assess the impact of uncertainty in model input pa-
rameters on model outcomes, we conducted 1-way and
multiway deterministic sensitivity analysis. In 1-way
sensitivity analysis, key parameters influencing our esti-
mates of CKRT demand and capacity were varied across a
range of plausible values (Table 1). For example, we varied
the incidence of AKI 3D requiring CKRT among hospital-
ized patients with COVID-19 between 4.8% and 6.9%
based on data from 3 hospital systems in New York.4-8

Based on expert opinion, we varied the non–COVID-19
CKRT demand multiplier and the CKRT capacity multiplier
between 0.25 and 0.75 and between 1.25 and 1.75,
respectively. We also conducted a sensitivity analysis of the
IHME model by projecting outcomes using the 06/10/
2020 IHME model (base-case) and the 04/22/2020 IHME
model. Additionally, in multiway deterministic sensitivity
analyses, all input parameters influencing CKRT demand
and capacity were simultaneously varied to examine the
best-case (lowest demand, highest capacity) and worst-
case (highest demand, lowest capacity) scenarios.
Results

Base-Case

The models projected that from February 6, 2020, to
August 4, 2020, cumulatively, 28,479 (95% UI, 21,974-
39,338) patients with COVID-19 in the United States
would require CKRT. We estimated a nationwide daily
capacity of 7,032 CKRT machines (Table S1). A state-by-
state comparison of CKRT demand and capacity demon-
strated a combined shortage of 1,088 (95% UI,
AJKD Vol 76 | Iss 5 | November 2020
910-1,568) machines, with shortages projected in 6
states—Connecticut, Maryland, Massachusetts, Michigan,
New Jersey, and New York—at peak resource use during
the initial wave of the COVID-19 pandemic. Additionally,
possible CKRT shortages were projected in 8 states-
—Arizona, Colorado, Louisiana, Nebraska, New Mexico,
Rhode Island, South Carolina, and Wyoming (Table 2;
Fig 1). Model-projected dates of initial CKRT shortage are
in Table S2.

One-Way Sensitivity Analysis

Sensitivity analysis of the CKRT demand input parameters
demonstrated shortages in 4 to 8 states (945-1,723 ma-
chines) when the incidence of AKI 3D requiring CKRT
among hospitalized patients with COVID-19 was varied
between 4.8% and 6.9%, shortages in 4 to 8 states (986-
1,388 machines) when the non–COVID-19 CKRT demand
multiplier during the COVID-19 pandemic was varied
between 0.25 and 0.75, shortages in 6 to 8 states (1,088-
2,067 machines) when the duration of CKRT among
hospitalized patients with COVID-19 was varied between 6
and 9 days, and no change in the number of states with
shortages (or the number of machines in shortage) when
the time from hospitalization to AKI 3D requiring CKRT
among hospitalized patients with COVID-19 was varied
between 5 and 10 days (Tables S3-S6).

Similarly, sensitivity analysis demonstrated shortages in
3 to 8 states (919-1,302 machines) when the prevalence
of AKI 3D among ICU patients pre–COVID-19 (influ-
encing CKRT demand and capacity) was varied between
11.0% and 6.6%, shortages in 3 to 8 states (933-1,282
machines) when the CKRT capacity multiplier (influencing
CKRT capacity) was varied between 1.75 and 1.25, and
shortages in 6 to 7 states (1,088-1,239 machines) when
the IHME model estimates used were varied between the
June 10, 2020 (base-case), and the April 22, 2020, version
(Tables S7-S9). The impact of uncertainty in these input
parameters on the outcome of number of states encoun-
tering CKRT shortages is summarized in Figure 2.

Multiway Sensitivity Analysis

In the best-case scenario (lowest demand, highest capac-
ity), projections demonstrated that from February 6, 2020,
to August 4, 2020, a total of 26,053 (95% UI, 20,229-
35,523) patients with COVID-19 in the United States
would require CKRT. We estimated a nationwide daily
capacity of 10,254 CKRT machines (Table S10). A state-
by-state comparison demonstrated a combined shortage
of 614 (95% UI, 498-834) machines, with shortages
projected in 3 states—Connecticut, New Jersey, and New
York—at peak resource use during the initial wave of the
COVID-19 pandemic. Additionally, there were possible
shortages in 2 states—Arizona and Colorado (Fig 3).

In the worst-case scenario (highest demand, lowest
capacity), projections demonstrated that from February 6,
2020, to August 4, 2020, a total of 38,013 (95% UI,
699



Table 2. Model-Generated CKRT Demand, Capacity, and Shortage at Peak Resource Use During the Initial Wave of the COVID-19
Pandemic

State
CKRT Demand at Peak
Resource Use (95% UI)a

CKRT
Capacity

Projected CKRT
Shortage

CKRT Shortage at Peak
Resource Use (95% UI)a

Alabama 59 (57-62) 167 No —
Alaska 3 (3-4) 10 No —
Arizonab 78 (58-233) 122 Possible 0 (0-110)
Arkansas 27 (20-63) 65 No —
California 274 (258-292) 627 No —
Coloradob 59 (53-242) 101 Possible 0 (0-141)
Connecticutc 143 (127-162) 59 Yes 85 (68-104)
Delaware 18 (17-20) 25 No —
District of Columbia 24 (22-27) 32 No —
Florida 209 (199-239) 552 No —
Georgia 126 (115-203) 258 No —
Hawaii 6 (6-7) 19 No —
Idaho 9 (8-10) 23 No —
Illinois 217 (199-238) 266 No —
Indiana 104 (98-111) 183 No —
Iowa 29 (26-35) 43 No —
Kansas 24 (23-26) 64 No —
Kentucky 46 (44-49) 124 No —
Louisianab 119 (109-129) 117 Possible 2 (0-12)
Maine 10 (8-22) 24 No —
Marylandc 130 (112-151) 106 Yes 24 (5-45)
Massachusettsc 159 (146-172) 130 Yes 29 (16-42)
Michiganc 255 (235-277) 234 Yes 21 (1-43)
Minnesota 55 (52-59) 109 No —
Mississippi 41 (39-46) 71 No —
Missouri 63 (61-66) 161 No —
Montana 5 (5-5) 18 No —
Nebraskab 20 (16-55) 46 Possible 0 (0-9)
Nevada 42 (41-44) 115 No —
New Hampshire 14 (12-17) 19 No —
New Jerseyc 410 (381-442) 138 Yes 272 (243-304)
New Mexicob 22 (20-44) 36 Possible 0 (0-8)
New Yorkc 1,019 (939-1,104) 363 Yes 656 (576-741)
North Carolina 105 (97-144) 298 No —
North Dakota 9 (8-18) 24 No —
Ohio 140 (132-149) 307 No —
Oklahoma 36 (34-37) 97 No —
Oregon 22 (21-23) 66 No —
Pennsylvania 239 (221-259) 293 No —
Rhode Islandb 25 (23-28) 27 Possible 0 (0-1)
South Carolinab 58 (46-136) 131 Possible 0 (0-6)
South Dakota 5 (5-6) 10 No —
Tennessee 82 (67-159) 225 No —
Texas 207 (199-217) 604 No —
Utah 19 (15-36) 47 No —
Vermont 3 (2-3) 6 No —
Virginia 89 (84-94) 173 No —
Washington 34 (60-66) 128 No —
West Virginia 17 (17-18) 55 No —
Wisconsin 44 (42-49) 110 No —
Wyomingb 3 (2-6) 5 Possible 0 (0-1)
Note: This analysis uses the base-case values for the input parameters listed in Table 1. Minor discrepancies in numerical values in the table are due to rounding.
Abbreviations: CKRT, continuous kidney replacement therapy; COVID-19, coronavirus disease 2019; UI, uncertainty interval.
aWe derived these estimates from the Institute for Health Metrics and Evaluation model and present them as means with 95% UI.16
bRepresents states that could possibly encounter a shortage (where CKRT capacity is within the 95% UI of CKRT demand).
cRepresents states that are projected to encounter a shortage (where CKRT capacity is below the 95% UI of CKRT demand).
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Figure 1. Continuous kidney replacement therapy (CKRT) shortages by state during the initial wave of the coronavirus disease 2019
(COVID-19) pandemic; base-case scenario. Estimates were model-generated. Group (1) represents all states projected to
encounter a CKRT shortage, where CKRT capacity is below the 95% uncertainty interval (UI) of CKRT demand; group (2), states
that may encounter a CKRT shortage, where CKRTcapacity is within the 95% UI of CKRTdemand; group (3), states not anticipated
to encounter a CKRT shortage, where CKRT capacity is above the 95% UI of CKRT demand.

Reddy et al
29,208-52,978) patients with COVID-19 in the United
States would require CKRT. We estimated a nationwide
daily capacity of 4,395 CKRT machines (Table S11). A
state-by-state comparison demonstrated a combined
AJKD Vol 76 | Iss 5 | November 2020
shortage of 4,540 (95% UI, 3,886-6,692) machines, with
shortages projected in 26 states at peak resource use during
the initial wave of the COVID-19 pandemic. There were
possible shortages in 13 other states (Fig 4). The impact of
701
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Time from hospitalization to AKI 3D requiring CKRT among hospitalized
patients with COVID-19 (7; 5-10)(days)

IHME model version (06/10/2020; 06/10/2020 and 04/22/2020)

Duration of CKRT (6; 6-9) (days)

Non-COVID-19 CKRT demand multiplier during the COVID-19 pandemic
(0.40; 0.25-0.75)

Incidence of AKI 3D requiring CKRT among hospitalized patients with
COVID-19 (5.2; 4.8-6.9) (%)

CKRT capacity multiplier (1.5; 1.75-1.25)

Prevalence of AKI 3D among ICU patients pre-COVID-19 (8.8; 11.0-6.6) (%)

3 4 5 6 7 8 9
No. of States Projected to Encounter CKRT Shortage

Figure 2. One-way sensitivity analysis of the number of states projected to encounter continuous kidney replacement therapy
(CKRT) shortage during the initial wave of the coronavirus disease 2019 (COVID-19) pandemic. The horizontal axis of this tornado
diagram shows the number of states projected to encounter a CKRT shortage. The vertical axis shows key input parameters. The
base-case value for each input parameter is listed in parentheses before the semicolon. The range across which we varied each
parameter is listed after the semicolon. The number on the left in the range corresponds to the left end of the horizontal bar, and
the number on the right in the range corresponds to the right end of the horizontal bar. The dashed vertical line represents the
base-case scenario. As shown, the CKRT capacity multiplier has the greatest impact on the outcome of number of states projected
to encounter CKRT shortage during the initial wave of the COVID-19 pandemic. Abbreviations: AKI 3D, acute kidney injury stage 3
requiring dialysis; ICU, intensive care unit; IHME, Institute for Health Metrics and Evaluation.

Reddy et al
uncertainty in multiway sensitivity analysis on the
outcome of number of states encountering CKRT shortages
is summarized in heat maps of the base-case, best-case,
and worst-case scenarios in Figure 5.
Discussion

Our models provide estimates of CKRT demand and ca-
pacity in the United States. The models projected a
nationwide shortage of 1,088 CKRT machines (95% UI,
910-1,568) across 6 US states—Connecticut, Maryland,
Massachusetts, Michigan, New Jersey, and New York—-
with possible shortages in 8 additional states—Arizona,
Colorado, Louisiana, Nebraska, New Mexico, Rhode Is-
land, South Carolina, and Wyoming—during the initial
wave of the COVID-19 pandemic. Concordant with model
findings, hospital systems in New York, Massachusetts, and
Louisiana encountered shortages in CKRT machines, so-
lutions, cartridges, and/or trained personnel that were
managed through the expansion of intermittent dialysis
modalities and a decrease in CKRT dose and dura-
tion.8,13,26,27 However, although individual hospital sys-
tems reported shortages, due to a lack of consistent
reporting of CKRT demand and capacity, it is unclear
whether these shortages occurred throughout each state
with a projected shortage in our models. Apart from
anecdotal data from the press, webinars, and social media,
702
little is otherwise known about the actual state of CKRT
demand and capacity in the United States.13,26,28

Within these models, limited US data led to uncertainty.
In sensitivity analysis, uncertainty in CKRT demand input
parameters (such as the incidence of AKI 3D and the
duration of CKRT among hospitalized patients with
COVID-19) had the largest impact on the model outcome
of the number of machines in shortage at peak resource
use during the COVID-19 pandemic. For example, the
range of the incidence of AKI 3D requiring CKRT among
hospitalized patients with COVID-19 in the models (4.8%-
6.9%) was derived from 3 New York counties, where the
incidence was considerably higher than in other regions
such as China (1.45%-2.3%).4-9,29 In the absence of data
from other US states, it is unclear whether this high inci-
dence is reflective of the rest of the United States.

Similarly, uncertainty in CKRT capacity input param-
eters (such as the CKRT capacity multiplier) had the
largest impact on the model outcome of number of states
projected to encounter CKRT shortages. This is not un-
expected because a lack of data on the number of CKRT
machines in each state forced the use of assumptions to
estimate CKRT capacity as a multiple of pre–COVID-19
(or historical) CKRT demand. Varying this parameter
between 1.25 and 1.75 predictably resulted in a lower or
higher surplus of CKRT machines, changing the threshold
at which a state may encounter a CKRT shortage. More
AJKD Vol 76 | Iss 5 | November 2020
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Figure 3. Continuous kidney replacement therapy (CKRT) shortages by state during the initial wave of the coronavirus disease 2019
(COVID-19) pandemic; best-case scenario. Estimates were model-generated. Group (1) represents all states projected to encounter
a CKRT shortage, where CKRT capacity is below the 95% uncertainty interval (UI) of CKRT demand; group (2), states that may
encounter a CKRT shortage, where CKRT capacity is within the 95% UI of CKRT demand; group (3), states not anticipated to
encounter a CKRT shortage, where CKRT capacity is above the 95% UI of CKRT demand. The best-case scenario projected by
the model is obtained when the input parameters are varied simultaneously as follows: (1) incidence of acute kidney injury stage
3 requiring dialysis (AKI 3D) requiring CKRT among hospitalized patients with COVID-19: 4.8%; (2) time from hospitalization to
AKI 3D: 10 days; (3) duration of CKRT: 6 days; (4) non–COVID-19 CKRT demand multiplier during the initial wave of the
COVID-19 pandemic: 0.25; (5) prevalence of AKI 3D among intensive care unit patients pre–COVID-19: 11.0%; and (6) CKRT ca-
pacity multiplier: 1.75.
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Figure 4. Continuous kidney replacement therapy (CKRT) shortages by state during the initial wave of the coronavirus disease 2019
(COVID-19) pandemic; worst-case scenario. Estimates were model-generated. Group (1) represents all states projected to
encounter a CKRT shortage, where CKRT capacity is below the 95% uncertainty interval (UI) of CKRT demand; group (2), states
that may encounter a CKRT shortage, where CKRTcapacity is within the 95% UI of CKRTdemand; group (3), states not anticipated
to encounter a CKRT shortage, where CKRT capacity is above the 95% UI of CKRT demand. The worst-case scenario projected by
the model is obtained when the input parameters are varied simultaneously as follows: (1) incidence of acute kidney injury stage 3
requiring dialysis (AKI 3D) requiring CKRT among hospitalized patients with COVID-19: 6.9%; (2) time from hospitalization to AKI
3D: 5 days; (3) duration of CKRT: 9 days; (4) non–COVID-19 CKRT demand multiplier during the initial wave of the COVID-19
pandemic: 0.75; (5) prevalence of AKI 3D among intensive care unit patients pre–COVID-19: 6.6%; and (6) CKRT capacity multi-
plier: 1.25.
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Base-Case Scenario

No CKRT shortage (CKRT capacity is above the 95% UI of CKRT demand)
Possible CKRT shortage (CKRT capacity is within/included in the 95% UI 
of CKRT demand)
CKRT shortage (CKRT capacity is below the 95% UI of CKRT demand)

Best-Case Scenario

No CKRT shortage (CKRT capacity is above the 95% UI of CKRT demand)
Possible CKRT shortage (CKRT capacity is within/included in the 95% UI
of CKRT demand)
CKRT shortage (CKRT capacity is below the 95% UI of CKRT demand)

Figure 5. Heat maps demonstrating states with continuous kidney replacement therapy (CKRT) shortages during the initial wave of
the coronavirus disease 2019 (COVID-19) pandemic in the base-case, best-case, and worst-case scenario. The base-case scenario
uses input parameters listed in the base-case value column of Table 1. The best-case scenario uses the highest CKRT capacity es-
timate and lowest CKRT demand estimate, which is obtained when the input parameters are varied simultaneously as detailed in the
legend to Figure 3. The worst-case scenario uses the lowest CKRT capacity estimate and highest CKRT demand estimate, which is
obtained when the input parameters are varied simultaneously as detailed in the legend to Fig 4. Abbreviation: UI, uncertainty interval.
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Worst-Case Scenario

No CKRT shortage (CKRT capacity is above the 95% UI of CKRT demand)
Possible CKRT shortage (CKRT capacity is within/included in the 95% UI
of CKRT demand)
CKRT shortage (CKRT capacity is below the 95% UI of CKRT demand)

Figure 5. (continued).
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data from US states on the number of CKRT machines
available (capacity) and in use (demand) would allow
future model-based analyses to provide more precise es-
timates of CKRT shortages.

Although the assumptions made on CKRT demand and
capacity allowed projections of plausible results at a
nationwide and statewide level, these projections are
insufficiently granular to hold true at the county, health
care system, and hospital levels. As such, these models may
not be useful for county- or hospital-level decision mak-
ing. Instead, these models provide high-level projections
of CKRT shortages and highlight the need for reliable
nationwide and local data on the number of CKRT ma-
chines available and in use in each system.

In the absence of reliable data on CKRT machine
availability, recommendations during the COVID-19
pandemic have been for all systems to conserve KRT
(CKRT, HD, and PD) supplies and standardize lower
dialysate patient prescriptions in fear of an imminent
shortage.10,11 This has led hospitals to race to purchase
706
more KRT machines and supplies, creating a competition
for machines.11,28,30 If publicly available data on KRT ca-
pacity existed, hospitals could collaborate during health
care crises to mitigate shortages while continuing to pro-
vide the standard of care. Although this analysis focused on
CKRT machines, estimates of CKRT demand and capacity
could be further improved if data were available for all
inpatient KRT machines, supplies, and personnel.11

The current lack of standardized reporting of data on
inpatient KRT machines, supplies, and personnel is an
impediment to emergency preparedness; strategies to
improve data collection are urgently needed. Creating a
national multidisciplinary task force comprising key
stakeholders—the federal government, the nephrology
community, industry, and patients—could improve data
collection and emergency preparedness planning for KRT.
Considerations for a task force include: (1) developing a
national registry of inpatient KRT machines, supplies, and
personnel; (2) creating a national stockpile of KRT ma-
chines and supplies; and (3) adding questions about the
AJKD Vol 76 | Iss 5 | November 2020
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number of CKRT, HD, and PD machines in each hospital to
the American Hospital Association annual hospital survey.

Notably, as hospitals return to standard capacities to-
ward the eventual end of the COVID-19 pandemic, many
will be left with surplus CKRT machines. This creates a
unique opportunity to improve emergency preparedness
because the federal government could repurpose these
surplus machines to provide relief for future waves of the
COVID-19 pandemic and other health care crises.11,30

With these strategies in place to collect data on the num-
ber and availability of KRT machines, subsequent iterations
of mathematical models could help determine the optimal
number of KRT machines needed for a national stockpile,
inform triage of machines to areas of need, and prompt
early manufacturing of KRT supplies for future health care
crises.

In the interim, pragmatic research is needed to study
new practices borne out of necessity from the COVID-19
pandemic. For example, concerns of CKRT shortages led
to recommendations to standardize CKRT dosing and
duration.9 Prior studies have shown a benefit to adopting
standardized criteria for initiation of KRT.31 If the outcome
of these CKRT recommendations during the COVID-19
pandemic suggests no harm, this standardization of
dosing can help conserve dialysis solutions. Similarly, due
to shortages, urgent-start PD has also expanded in the
inpatient setting.12,32–34 Although short-term outcomes of
urgent-start PD during the COVID-19 pandemic suggest
safety, longer-term results on peritonitis, technique fail-
ure, and mortality are needed to assess the benefit of this
program.12,32,33 Successful practices from the COVID-19
pandemic, if studied appropriately, could help avoid
shortages and improve patient outcomes during future
health care crises.

There are limitations to this analysis. First, the model
results are subject to simplifications and assumptions.
Sensitivity analysis demonstrates the influence of these
assumptions on the results. The models use IHME model
estimates and are subject to that model’s limitations.23 In
particular, early versions of the IHME model did not ac-
count for viral transmission characteristics, traditionally
done with a susceptible, exposed, infectious, recovered
(SEIR) framework. This study used estimates from the 06/
10/2020 IHME model, which is an improved multistage
hybrid model that incorporates an SEIR framework. The
impact of this SEIR framework on model outcomes can be
seen in the sensitivity analyses, in which the absence of this
framework in the 04/22/2020 IHME model resulted in 1
additional state (Louisiana) encountering a CKRT shortage,
with 151 additional machines in shortage at peak resource
use during the initial wave of the COVID-19 pandemic.

Second, due to the dynamic nature of the COVID-19
pandemic, subtle characteristics of model results from
IHME such as the exact date of peak resource use should be
interpreted cautiously.35 Fortunately, because the IHME
model is updated periodically, we anticipate future IHME
AJKD Vol 76 | Iss 5 | November 2020
iterations will allow for more precise projections over
time.16

Third, we assumed that all patients with AKI 3D in the
ICU receive CKRT. As hospitals are faced with a surge in
AKI 3D, the use of intermittent dialysis modalities in the
ICU have expanded.23 To the extent that supplies and
personnel for these modalities are available, results may
underestimate total KRT capacity in the ICU.10

Finally, although we conducted a deterministic multi-
way sensitivity analysis, this approach tends to overweight
extreme values compared with probabilistic sensitivity
analysis.36 Given the evolving nature of COVID-19 and the
limited data on these input parameters, we were unable to
generate more specific distributions for the model input
parameters at the time of manuscript submission. Policy-
makers are cautioned to avoid overvaluing the likelihood
of the best-case and worst-case scenarios presented in this
report.

In conclusion, several US states could encounter CKRT
shortages at peak resource use during the initial wave of
the COVID-19 pandemic. More complete and reliable data
on CKRT demand and capacity would improve the esti-
mates of future model-based analyses. Strategies such as
the creation of an inpatient KRT national registry and a
national stockpile to bolster state capacity should be
considered to mitigate CKRT shortages during the COVID-
19 pandemic and future health care crises.
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Estimating CKRT Shortages During the COVID-19 Pandemic in the US 

Results

Varying individual model 
parameters: 3-8 states

Best-case:    3 states 
Worst-case:  26 states

CONCONCLUSION: CKRT shortages are projected in several US states during the COVID-19 pandemic. 
An inpatient KRT registry and national stockpile may improve these estimates and mitigate shortages.

Design Analysis
Model-based simulations of 
CKRT* demand and capacity 

Shortage if Demand > Capacity

Patients with AKI 3D 
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and CKRT machines

CKRT Capacity
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CKRT Demand
CKRT shortages in 6 US States: 
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resource use

February to August 2020

*CKRT: Continuous Kidney 
Replacement Therapy
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