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Abstract—

Millions of edge devices are now equipped with increasingly
strong computing, communication and storage capabilities.
It is beneficial to connect these edge devices into networks
for sharing different network service workloads so that these
services are close to end-users and achieve reduced network
access delay. In this paper, we proposed a measurement-assisted
learning algorithm to find efficient multi paths between edge
nodes with the assistance of intermediate nodes serving as an
edge layer for reduced delay in edge networks in a stochastic
approximation approach. Our simulation results demonstrate
the effectiveness of the proposed learning algorithm.

I. Introduction

With the pervasiveness of end devices and wireless
networks (4G/5G/WiF1i), billions of sensors and mobile
devices have been connected on the Internet. End devices
equipped with powerful processing units and resourceful
storages have become the leading roles for generating dis-
tributed contents on network edges [1].The decentralized
content generation by machine-to-machine is far beyond
the centralized content centers.

Centralized content platforms, such as Clouds, CDNs,
data processing and computing are mostly provisioned
remotely from content service providers [2]. However, the
emerging edge networking supports content generating and
computing performed at network edges, which are directly
referred to the end devices capable with strong abilities in
computing and storage. Edge devices may play an impor-
tant role in the three-tier end-edge-cloud architecture as
shown in Fig. 1: end devices near users building the “end”
layer for data generation of specified applications, edge
devices near the backbone of the Internet constructing
the “edge” layer for high performance network transport,
and intelligent applications in the cloud forming the brain
for data analysis and control.

In the above edge network, edge nodes can cooperate
and coordinate with each other for complicated content
computation and communication [3]. Nevertheless, because
these edge nodes are located at the edges of the Internet,
poor network conditions may prevent edge nodes from
direct communication [4]. Fortunately, centralized nodes
instructed with powerful resources on the core layer usually
provide connections for clustered edge nodes. Therefore,
edge nodes can setup different detours or alternative
paths instead of direct connections with help of these
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An illustration of a three-tier end-edge-cloud architecture.
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Fig. 1.

super nodes. In this paper, we study a measurement-
assisted multi-path edge routing problem in a stochastic
approximation approach, called the dynamic stochastic
shortest path (DSSP), to improve the edge connections
with detours.

I1. Algorithm

Consider an edge-centric network denoted by G =
(N, A), where N is the set of network nodes and A is
the set of constructed links. Let S(j) be the set of all
successors of edge node j residing at the edge layer. Then,
S(s) represents the super neighbor nodes at the edge layer
of source node S. An edge-to-edge path from source S to
destination D in an edge network is shown in Fig. 2. Thus,
edge node S and D can utilize intermediate super nodes
at the edge layer to forward traffic for better performance.
For convenience, we abbreviate these intermediate super
nodes at the edge layer as super nodes or relay nodes.
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Fig. 2. An edge-to-edge delay computation example.

Fig. 2(a) illustrates an alternative path routing example
using n super nodes as relays on the forwarding routing
path. Therefore, the edge-to-edge delay from source S
to destination D can be represented as Tyq = Ty, +
Triry + ... + Ty, q. Source S is able to measure the
exact delay T, of the local link accurately, while it is
difficult for S to obtain the exact delays, Ty r,, Tryrgs



et al. of those non-local links between the relays and
destination D in a timely manner. Nevertheless, the delays
of those non-local links can be measured by relays and
summarized into probability distributions. Those delay
distributions of non-local links can be further exchanged
between available relays and source S. Therefore, S can
compute the expected delays of the non-local overlay links
to quantify their link states.

As shown in Fig. 2(b), the alternative routing path from
S to D via relay node 1 is then divided into two segments:
S — R; and R; — D. This edge-to-edge delay is computed
as Tsg = D3, +v,,, where Dg, is the exact delay from S to
node 1 by observations or measurements of the local link,
and v,, is the expected delay of the stochastic shortest
path from node 1 to D. Source S can further establish
an optimization model to determine the best edge node
J as chosen node 1 in order to minimize the edge-to-edge
delay Tsq = D2, + v.(r € S(s)) following Eq. (1). Note
that all the intermediate or relays nodes are chosen from
super nodes residing at the edge network.

J =arg min {DJ. +v,} (1)
reS(s)

II1. Evaluation

To evaluate the performance of the proposed
measurement-driven overlay routing algorithm, we con-
ducted a simulation study with the Internet delay data set
[5]. First, we extracted the available connected nodes from
the data set, then generated a number of network topolo-
gies with random 500 nodes consisting of 400 pairs of edge
nodes and 100 super nodes for alternative path discovery
simulations, as shown in Fig. 3. Finally, we compare the
K-th Stochastic Shortest Path (KSSP) routing algorithm
with two traditional algorithms: the Deterministic Shortest
Path (DSP) and the Minimal Hop (MHP) in terms of the
average delay performance.
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Fig. 3. Network simulation scenarios with 100 edge nodes.

As shown in Fig. 4, the cumulative distribution function
curve of KSSP converges much faster than the other
two algorithms. The results demonstrate that the delay
performance of KSSP is more centralized with various
network topologies and different path value K. Table
I shows that the proposed KSSP algorithm achieves a
low delay variance, which means the alternative path
delay performance by KSSP is quite stable under dynamic
network conditions. Note that the delay performance of the
multi alternative shortest path is slightly worse than the

single shortest path. It is because the proposed algorithm
selects different shortest paths, and the selected paths
would be excluded from the candidate shortest paths.
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Fig. 4. CDF of the edge-to-edge delay (seconds)

TABLE I
Delay mean and variance (seconds) with different K values
Algorithms K=l - K=2 - K=3 -
Mean Variance Mean Variance Mean Variance
KSSP 5.43e-2 3.82e-6 5.74e-2 3.80e-6 5.98e-2 3.33e-6
DSP 5.69e-2 5.37e-5 5.69e-2 5.37e-5 5.69e-2 5.37e-5
MHP 5.69e-2 5.37e-5 6.07e-2 4.24e-5 6.30e-2 6.33e-5

IV. Conclusion

Our simulation results demonstrate the proposed multi-
path routing algorithm is applicable for edge networking.
The default edge-to-edge path may be unavailable or
experience degraded performance; detour is beneficial to
achieve ultimate edge-to-edge delivery by employing the
intermediate nodes. This indicates that the traditional
dynamic routing algorithms may not achieve a desired
performance in edge networking. The proposed stochas-
tic routing is constructed only based on the statistical
information of overlay links between edge nodes; thus, it
is resilient to inaccurate link state information. It brings
forth potential applications of stochastic routing in edge-
based applications.
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