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Notes for a slide will be provided when the slide is not self-explanatory 
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Computer performance evaluation uses a small number of building blocks to provide 
a remarkably accurate methodology to predict how performance will behave given 
changes to the configuration (hardware/software) and the workload (arrivals, 
request rates, service times)
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In this example, it is easy to see that a single queue with 2 servers can be more 
optimal than a queue for each server.
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This slide shows the basic statistics that need to be measured to define a workload.



9

Here is a simple configuration – a CPU server and two storage servers
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The basic modeling scenario is to understand the configuration, the workload and 
then infer what happens when one or both change.
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Queueing network models are quite different, depending on whether the network is 
“open” or “closed”
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A real-world application of mathematical queueing formulae is shown for the 
“Machine Repairman Model”.  In this system, the repairman is the bottleneck.  Think 
of the repairman’s time as the time in a CPU, which is also the bottleneck in many 
computer systems.  Since a factory wants to keep all employees busy, additional 
machines are needed as spares.  If there are more repairmen, then less spare 
machines are needed.  So, in a factory, it is useful to understand, given the average 
repair time and the number of repairmen (servers) how long a broken machine must 
wait in the queue before it is serviced and ready for work.
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In this example, the machine repairman model is applied to a “time-sharing” system, 
where a computer system takes the place of the repairman.  The user of the system 
takes the place of the machine.  So, on average, how long does the user wait for a 
response, which is the equivalent of the machine waiting for repair and the being 
repaired.
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These are the essential statistics that are used to create and understand queueing 
network models.
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Here is proof that Little’s Law is still as relevant today as it has ever been.  Consider 
a simple question of how many web servers are needed to provide a specific 
throughput to customers all over the world.  The think time can be used to derive 
the arrival rate. The basic service time can be measured in a test environment.  The 
overall response time is sum of service time an queueing time.  For any desired 
throughput, the concurrency can be used to “govern” the overall response time.
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Consider the discrete distribution of throwing a die.  The probability of getting a 
specific number, x, given the six numbers, is 1/6.

The probability of getting a number x and all numbers below it is  x/6



26

Uniform distributions can also be continuous.  For example, assume we are ready 
to read data off a track of disk.  The total rotation time is 12 ms. The probability of 
waiting 1 millisecond until the head gets to the desired location is the same as the 
probability of waiting 11.9 ms. The expected value, E[x] is 6 ms.
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The normal distribution is a limiting distribution.  The central limit theorem states 
that, for any distribution, the sums of samples from that distribution will converge to 
a normal distribution.  The formula is far from simple, but the average is � , which 
could be found by summing the observations and dividing by the number of 
observations.
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This all leads up to the exponential distribution, which has a very unusual property –
the memoryless property.  The expected value is the parameter �
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Essentially, given a random variable that is greater than t, the probability of it being 
greater than s+t is the same as the probability of it being greater than s.  Note that 
this is not true for the other continuous distributions we have looked at.
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This paradox continues to amaze me.  It shows just how different one distribution 
can be from another.  With a uniform distribution, one would expect the answer to 
be 10.
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The Poisson process is a counting process for arrivals in which the arrivals that are 
being counted arrive with interarrival times that are exponentially distributed.  This is 
another limiting distribution.  It occurs in nature in all sorts of ways.  The counting 
process of click in a Geiger counter follows this process.  Arrivals of random 
telephone calls into a switching unit follows this distribution.  Arrivals for computer 
processing requests follow this distribution.  
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This slides has a lot, so let’s break it down.

The sum of the probabilities of being in all of the states must add up to 1.

To guarantee flow balance, the completion rate for pn must equal the arrival rate 
from pn-1

Use the recursion shown in line 2 to show the probabilities as a function of the initial 
state

Because of the memoryless property, all of the � s  and � s are equal.

Define � to be the arrival rate divided by the service rate, which is more natural to 
express as the expected arrival rate times the expected service time.

� is less than zero - therefore, the sum S of the infinite series will be finite.  The sum 
converges to a simple formula 1/(1- � )

The probability of being in state pn is p0 times (� / � )n

The pdf of the distribution – the probability that there are n in the system, is a 
geometric distribution.  The expected value of this random variable is � /(1- � )

Applying Little’s law, we come up with the estimated wait time in the system.
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Let’s apply this with a simple example where � =1  and 1/u = E[s] = .25s
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This slide is not meant to be studied in detail, but is meant to show that things get a 
lot more complicated when we venture beyond the simple M/M/1 model.  However, 
they can be solved using Markov Birth-Death modeling.
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Cs
2 is called the coefficient of variation (cv).  Different distributions have different 

cvs.  This means that, if the service times are not exponentially distributed, the time 
in the queue will be different.
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A larger coefficient of variation implies a larger queue on average
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A moving average is a good way to reduce the variability of the observations and 
identify a trend
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The technique shown in the next 12 slides was described in a CMG paper by Brian 
Barnett.  It provides a much more rigorous approach to identifying the underlying 
trend when compared to the moving average approximation.
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Let’s assume a season is five observations.  We will take the running average of 
each group of contiguous 5 observations.
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Now, find the average value for each season.
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Define S as the observation divided by the seasonal average.
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We now want to take the observations and remove the seasonality to look for non-
seasonal trends.
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Using EXCEL, the values in column d are entered and a linear regression is used to 
estimate the parameters of a linear function.  Column T shows the model that 
approximates the linear trend that has been “de-seasonalized” and smoothed.
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This graph shows three curves.

Y shows the measured observations

Moving Average shows the values of the CMA column

T shows the de-seasonalized curve
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