Making the Difference
1-888-SRA-4543
Resources and ordering information at SRAonline.com
Executive Summary

Most educators agree that children who are facile with spoken language and who demonstrate an understanding of the meanings and relationships that underlie words are children who will do well in school. On the other hand, children who do not have a basic understanding of academic language used for instruction in classrooms, or the vocabulary that appears in text, will have difficulty understanding information they read or hear.

Academic language is different from everyday speech and conversation. It is the directions and demonstrations used by teachers for the teaching of concepts. It is the language of text, of discussion, and of formal writing. Academic language provides a foundation for the development of other language skills. It is a very important link in the process of children’s learning and thinking development.

Many children acquire academic language outside of school. Such children commonly take part in conversations at home that involve abundant information and vocabulary that will be useful to them in school. By contrast, children from families with less adult–child support for refining the use of language are less likely to achieve the academic language proficiency required for success in school.

For English-language learners, academic language means far more than fluency in conversation. Although these students come to the classroom with prior knowledge in their native language, there often exists a gap between children whose native language is English and children for whom English is a second language. These children must acquire basic language skills and the additional academic language native English speakers are learning, if they are to be academically competitive.

Given the importance of academic language and the fact that vocabulary is such an essential aspect of it, one of the most crucial services that educators can provide is to systematically teach and reinforce the words, thinking, and knowledge children need to achieve long-term success.

This document describes the research base and validation of SRA’s Direct Instruction language curriculum — the Language for Learning, Language for Thinking, and Language for Writing programs:

- Part I highlights the importance of language in the school curriculum.
- Part II provides an overview of Language for Learning, Language for Thinking, and Language for Writing.
- Part III describes the principles of high quality educational tools used in Direct Instruction language programs.
- Part IV demonstrates the alignment of Language for Learning, Language for Thinking, and Language for Writing with critical elements of oral language.
- Part V discusses the importance of written language.
- Part VI highlights the alignment of Language for Writing with the research-based elements of written language.
- Part VII summarizes 17 published peer-reviewed investigations on the effectiveness of DISTAR Language, Language for Learning, Language for Thinking, or Language for Writing.

Academic language provides a foundation for the development of other language skills. It is a very important link in the process of children’s learning and thinking development.
Most educators agree that children who are facile with spoken language and who demonstrate an understanding of the meanings and relationships that underlie words are children who will do well in school. On the other hand, children who do not have a basic understanding of academic language used for instruction in classrooms, or the vocabulary that appears in text, will have difficulty understanding information they read or hear.

Academic language is different from everyday speech and conversation. It is the directions and demonstrations used by teachers for the teaching of concepts. It is the language of text, of discussion, and of formal writing. Academic language provides a foundation for the development of other language skills. It is a very important link in the process of children’s learning and thinking development.

Many children acquire academic language outside of school. Such children commonly take part in conversations at home that involve abundant information and vocabulary that will be useful to them in school. By contrast, children from families with less adult–child support for refining the use of language are less likely to achieve the academic language proficiency required for success in school.

For English-language learners, academic language means far more than fluency in conversation. Although these students come to the classroom with prior knowledge in their native language, there often exists a gap between children whose native language is English and children for whom English is a second language. These children must acquire basic language skills and the additional academic language native English speakers are learning, if they are to be academically competitive.

Given the importance of academic language and the fact that vocabulary is such an essential aspect of it, one of the most crucial services that educators can provide is to systematically teach and reinforce the words, thinking, and knowledge children need to achieve long-term success.

This document describes the research base and validation of SRA’s Direct Instruction language curriculum — the Language for Learning, Language for Thinking, and Language for Writing programs:

- Part I highlights the importance of language in the school curriculum.
- Part II provides an overview of Language for Learning, Language for Thinking, and Language for Writing.
- Part III describes the principles of high quality educational tools used in Direct Instruction language programs.
- Part IV demonstrates the alignment of Language for Learning, Language for Thinking, and Language for Writing with critical elements of oral language.
- Part V discusses the importance of written language.
- Part VI highlights the alignment of Language for Writing with the research-based elements of written language.
- Part VII summarizes 17 published peer-reviewed investigations on the effectiveness of DISTAR Language, Language for Learning, Language for Thinking, or Language for Writing.

Academic language provides a foundation for the development of other language skills. It is a very important link in the process of children’s learning and thinking development.
I. Importance of Oral Language

Oral language is a key aspect of children’s early development. Language acquisition is a natural process and occurs almost without effort. The ability to speak grows with age, but not all growth automatically gives children the background knowledge and vocabulary they need to understand the content they will encounter in school. When children seem to be behind in language development, they are likely to have difficulty learning to read, understanding what they read, and participating in social interactions.

Oral language is an important link in the process of children’s learning and thinking development. It is the basis of communication—in fact, it is the basis of literacy.

Oral Language and Beginning Reading Achievement

Reading is a language-based skill (Owens, 2001). Studies have repeatedly shown that elementary-aged children with lower beginning reading achievement are often those with language delays (Griffin, Hemphill, Camp, & Wolf, 2004; Nathan, Stackhouse, Goulandris, & Snowling, 2004). Language delays noted in the preschool years appear to be predictive of poor reading progress in the elementary grades. Delays as early as 24 and 31 months have been found to correlate with lower reading skills in elementary school (Rescorla, 2002).

There appears to be a direct connection between oral language skills and the development of phonological awareness (Metsala, 1999; Snow, Tabor, Nicholson, & Kurland, 1995). Research has consistently demonstrated that children who perform well on phonological awareness tasks become successful readers, whereas children who perform poorly on these tasks experience more difficulties in learning to read (Adams, 1990; Bos & Vaughn, 2002; Mann & Fox, 2003; NICHD, 2000; Torgesen, Wagner, & Rashotte, 1994).

Each language has different phonological characteristics and English-language learners may encounter specific difficulties related to their home language (Fashola, Drum, Mayer, & Kang, 1996). Instruction focused on oral language helps children build phonological awareness, learn vocabulary, and acquire knowledge of English grammatical structures—essential elements for success in school (Biemiller, 2003).

Oral Language and Reading Comprehension

Comprehension is the very reason for reading; it involves gathering meaning from text. Research has demonstrated a relationship between reading comprehension and oral language tasks such as picture naming.

• Messer, Dockrell, and Murphy (2004) found that children with word naming difficulties struggled with reading and language comprehension skills.

• Early oral language skills have been shown to be predictive of reading comprehension in the early elementary grades (Griffin et al., 2004).

• The link between oral language comprehension and subsequent reading comprehension for native English speakers suggests that systematic instruction in vocabulary and listening and reading comprehension strategies is particularly important for English learners (Gersten & Gya, 2003).

• Children make gains in reading comprehension when their oral language skills improve. More specifically, studies have demonstrated oral language vocabulary to be tied to reading comprehension (Brett, Rothlein, & Hurley, 1996; Snow, Burns, & Griffin, 1998).

• Medo and Ryder (1993) found that both average and highly skilled children benefited from oral vocabulary instruction prior to reading content-rich texts.

Oral Language Skills and Social Interaction

Oral language skills also benefit children’s social interactions. Social tasks, such as engaging in a conversation to obtain information and expressing a particular point of view, are often dependent on the use of oral language.

• Research suggests that children with poorly developed oral language may experience social problems, such as rejection and feelings of isolation, as well as demonstrate inappropriate behaviors such as aggression and outbursts (Brinton, Fujiki, Spencer, & Robinson, 1997; Fujiki, Brinton, Isaacson, & Summers, 2001; Gertner, Rice, & Hadley, 1994).

• Qi and Kaiser (2004) compared the social skills of children with language delays to children with typical language development. Those children with language delays exhibited more problem behaviors and poorer social skills than the children with typical language development.

The social status of young children has been correlated with their oral language skills (Brinton et al., 1997).

• Gertner et al. (1994) found receptive language (i.e., understanding what is said) to be a discriminating factor that separated children who were socially accepted by their peers from those who were not. Children with low language skills were generally rated by their peers as less popular than children with typical language skills. In fact, oral language skills were found to be a stronger predictor of peer status than age or intelligence.

• Fujiki, Brinton, and Todd (1996) found that children with specific language impairments rated themselves as feeling significantly more lonely at school than their typically developing classmates.

• Jambunathan and Norris (2000) found that children’s perception of their self-competence was highly related to their actual language skills.

Long-Term Effects of Poorly Developed Oral Language

Longitudinal studies suggest that young children with poorly developed oral language skills continue to experience negative social and academic consequences as adolescents and adults (Arnabak, 2004). For example, Aram, Ekelman, & Nation (1984) administered a battery of language and non-language measures to 47 preschool children with language disorders. Twenty of these children were located 10 years later and evaluated in four areas: (a) intelligence, (b) speech and language, (c) academic achievement, and (d) social adjustment. Results suggested that children who experienced language disorders in the preschool years were highly likely to have long-standing language, academic, and behavioral problems in adulthood.
I. Importance of Oral Language

Oral language is a key aspect of children’s early development. Language acquisition is a natural process and occurs almost without effort. The ability to speak grows with age, but not all growth automatically gives children the background knowledge and vocabulary they need to understand the content they will encounter in school. When children seem to be behind in language development, they are likely to have difficulty learning to read, understanding what they read, and participating in social interactions.

Oral language is an important link in the process of children’s learning and thinking development. It is the basis of communication — in fact, it is the basis of literacy.

Oral Language and Beginning Reading Achievement

Reading is a language-based skill (Owens, 2001). Studies have repeatedly shown that elementary-aged children with lower beginning reading achievement are often those with delayed language skills (Griffin, Hemphill, Camp, & Wolf, 2004; Nathan, Stackhouse, Goulandris, & Snowling, 2004). Language delays noted in the preschool years appear to be predictive of poor reading progress in the elementary grades. Delays as early as 24 and 31 months have been found to correlate with lower reading skills in elementary school (Rescorla, 2002).

• Language delays noted in the preschool years appear to be predictive of poor reading progress in the elementary grades. Delays as early as 24 and 31 months have been found to correlate with lower reading skills in elementary school (Rescorla, 2002).

• There appears to be a direct connection between oral language skills and the development of phonological awareness (Metsala, 1999; Snow, Tabor, Richard, & Kurland, 1995).

• Research has consistently demonstrated that children who perform well on phonological awareness tasks become successful readers, whereas children who perform poorly on these tasks experience more difficulties in learning to read (Adams, 1990; Bos & Vaughan, 2002; Mann & Fey, 2003; NICHD, 2000; Torgesen, Wagner, & Rashotte, 1994).

• Each language has different phonological characteristics and English-language learners may encounter specific difficulties related to their home language (Fashola, Drum, Mayer, & Kang, 1996).

• Instruction focused on oral language helps children build phonological awareness, learn vocabulary, and acquire knowledge of English grammatical structures — essential elements for success in school (Bliss, 2003).

Oral Language and Reading Comprehension

Comprehension is the very reason for reading; it involves gathering meaning from text. Research has demonstrated a relationship between reading comprehension and oral language tasks such as picture naming.

• Messer, Dockrell, and Murphy (2004) found that children with word naming difficulties struggled with reading and language comprehension skills.

• Early oral language skills have been shown to be predictive of reading comprehension in the early elementary grades (Griffin et al., 2004).

• The link between oral language comprehension and subsequent reading comprehension for native English speakers suggests that systematic instruction in vocabulary and listening and reading comprehension strategies is particularly important for English learners (Gersten & Geya, 2003).

• Children make gains in reading comprehension when their oral language skills improve. More specifically, studies have demonstrated oral language vocabulary to be tied to reading comprehension (Bretz, Nottel, & Hurkey, 1996; Snow, Burns, & Griffin, 1998).

• Medo and Ryder (1993) found that both average and highly skilled children benefitted from oral vocabulary instruction prior to reading content-rich texts.

Oral Language Skills and Social Interaction

Oral language skills also benefit children’s social interactions. Social tasks, such as engaging in a conversation to obtain information and expressing a particular point of view, are often dependent on the use of oral language.

• Research suggests that children with poorly developed oral language may experience social problems, such as rejection and feelings of isolation, as well as demonstrate inappropriate behaviors such as aggression and outbursts (Brinton, Fuji, Spencer, & Robinson, 1997; Fuji, Brinton, Isaacson, & Summers, 2001; Gertner, Rice, & Hadley, 1994).

• Qi and Kaiser (2004) compared the social skills of children with language delays to children with typical language development. Those children with language delays exhibited more problem behaviors and poorer social skills than the children with typical language development.

The social status of young children has been correlated with their oral language skills (Brinton et al., 1997).

• Gertner et al. (1994) found receptive language (i.e., understanding what is said) to be a discriminating factor that separated children who were socially accepted by their peers from those who were not. Children with low language skills were generally rated by their peers as less popular than children with typical language skills. In fact, oral language skills were found to be a stronger predictor of peer status than age or intelligence.

• Fuji, Brinton, and Todd (1996) found that children with specific language impairments rated themselves as feeling significantly more lonely at school than their typically developing classmates.

• Jambunathan and Norris (2000) found that children’s perception of their self-competence was highly related to their actual language skills.

Long-Term Effects of Poorly Developed Oral Language

Longitudinal studies suggest that young children with poorly developed oral language skills continue to experience negative social and academic consequences as adolescents and adults (Arnbak, 2004).

• For example, Aram, Ekleman, & Nation (1984) administered a battery of language and non-language measures to 47 preschool children with language disorders. Twenty of these children were located 10 years later and evaluated in four areas: (a) intelligence, (b) speech and language, (c) academic achievement, and (d) social adjustment. Results suggested that children who experienced language disorders in the preschool years were highly likely to have long-standing language, academic, and behavioral problems in adulthood.

Research has demonstrated a relationship between reading comprehension and oral language tasks such as picture naming.
Oral Language and Socioeconomic Status

Basic language instruction would be unnecessary if all children entered school with well-developed oral language skills. Unfortunately, many children begin school with less developed oral language:

• Hart and Risley (1995, 1999) provided detailed information about the social and linguistic environments in which typical children learn to talk.

• In a longitudinal study conducted over two and a half years of children from 42 diverse families, researchers conducted monthly hour-long observations of everything said by, to, and around each of the 42 children during unstructured activities in their homes (Hart & Risley, 1995).

The authors sought to determine why children differed greatly in terms of the age at which they began to learn language and how fast they learned once they began. Families represented welfare, lower, middle, and upper socioeconomic status (SES) homes. They found that race and gender were not significant factors influencing a child’s acquisition of language. However, the economic status of the family strongly correlated with the language development of the children. Children living in poverty were found to have acquired less than a third of the vocabulary of high SES families by the age of three. Vocabulary acquisition was highly correlated to the number of language experiences in the home. In a typical hour the average child in a high SES family heard 2,153 words while a child in a low SES family heard only 616 words.

The authors also attempted to determine how much difference children’s early experience would make in school performance at Grade 3, when the children were nine to ten years old.

• Measures of accomplishment at age three predicted measures of language skill at age nine and ten on both the Peabody Picture Vocabulary Test-Revised (PPVT-R) and receptive vocabulary (r = 0.58) and the Test of Language Development-2: Intermediate (TOLD-I) (r = 0.74) and its subscores (listening, speaking semantics, syntax).

• Vocabulary at age three was also strongly associated with reading comprehension scores on the Comprehensive Test of Basic Skills (CTBS-U) (r = 0.56).

Oral Language and Second-Language Learners

Learning a second language is difficult. Learning in a second language is even more difficult. According to recent research (Hakuta, Goto Buttrill, & Witt, 2000):

• Oral proficiency takes three to five years to develop, and academic English proficiency can take four to seven years.

• A child’s SES is a powerful predictor of the rate of English development.

• Second-language learners have to acquire oral and academic English and keep pace with English-language speakers, who continue to develop their language skills.

The Need is Clear

In summary, it is no surprise that children who poorly developed academic language skills tend to have lower academic achievement than those children whose English language development is average or above average. Children will not learn if they do not understand what the teacher is saying or cannot comprehend what they read in their textbooks. The need for a research-based curriculum to teach and reinforce academic language and, as a result, greatly enhance students’ chances of learning the academic content presented in subject matter classes is clear.

Families’ Language and Use Differ Across Income Groups

<table>
<thead>
<tr>
<th>Measures & Scores</th>
<th>13 Professional</th>
<th>23 Working-class</th>
<th>6 Welfare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parent</td>
<td>Child</td>
<td>Parent</td>
</tr>
<tr>
<td>Pretest score (a)</td>
<td>41</td>
<td>31</td>
<td>14</td>
</tr>
<tr>
<td>Recorded vocabulary size</td>
<td>2,176</td>
<td>1,116</td>
<td>1,498</td>
</tr>
<tr>
<td>Average utterances per hour</td>
<td>487</td>
<td>310</td>
<td>301</td>
</tr>
<tr>
<td>Average different words per hour (b)</td>
<td>382</td>
<td>297</td>
<td>251</td>
</tr>
</tbody>
</table>

(a) At the beginning of the study, parents completed a vocabulary pretest. Each parent was asked to complete a form abstracted from the Peabody Picture Vocabulary Test (PPVT). Each parent was given a list of 46 vocabulary words and a series of pictures (four options per vocabulary word) and asked to write the number of the picture that corresponded to the written word. Parent performance on the test was highly correlated with years of education (r = 0.5).

(b) Parent utterances and different words were averaged with children 13-36 months old. Child utterances and different words were averaged for four observations when the children were 33-36 months old.

II. Overview of Direct Instruction Language Programs

The Direct Instruction language curriculum focuses on the language used in schools and textbooks. A major premise of this curriculum is that students must understand the language used for instruction in classrooms, as well as the language that appears in texts and workbooks. What is instructional language:

• The directions and verbal demonstrations used by instructors to teach arithmetic, reading, social studies, science, and other school subjects

• The language used by teachers to direct the sequence of events during a school day.

• The directions and instruction sequences that appear in textbooks and workbooks

• A broad array of background knowledge and the vocabulary associated with it

• A wide variety of English grammatical structures

The programs that make up the Direct Instruction language curriculum—Language for Learning, Language for Thinking, and Language for Writing—are the important elements of instructional language as well as broader knowledge of the words and sentence structures relevant to reading comprehension and writing.

What is Language for Learning?

Language for Learning is the first level of three Direct Instruction language intervention programs designed to teach basic language concepts and skills. The 150 lessons of Language for Learning (formerly DESTAR Language 1) focus on the language of classroom instruction. The program uses demonstrations, actions, and pictures to teach basic concepts and instructional words.

• Language for Learning moves from the identification of familiar objects to the description and classification of these objects.

• Children learn the precise meaning of both familiar and new concepts and use these concepts in statements and questions.

• Additional concepts taught in Language for Learning are important for logical reasoning such as “if-then,” “before-after,” “some,” and “only.”

In the Language for Learning program, students develop skills required to use vocabulary, descriptive words, and sentences with growing independence. They also accumulate the important background information, thinking skills, and vocabulary they need to succeed in school.

Who Benefits from Language for Learning?

Language for Learning is intended for students who:

• Need a firm foundation of spoken words before they can get much out of narratives or texts

• May not have extensive experience in hearing and speaking the English language in academic settings

• Need explicit instruction in expressive and receptive language

• Need to build English vocabulary and acquire knowledge of English grammatical structures

• Need to build knowledge of language of the classroom

Regardless of their age or grade level, all students entering Language for Learning should have some oral language skills.

• They must be able to imitate a word or phrase spoken by an adult (e.g., they should be able to repeat “a cat” or “under the table”)

• They must be able to answer questions such as, “What is this?” or “What are you doing?” or they must be able to learn to do so quickly.

• They must be able to answer simple yes/no questions such as, “Are you standing?” or “Is this a chair?”

• They must be able to point to and label common objects, such as, “a desk,” and complete simple actions such as, “sit.”

• They must be able to describe pictures of objects and actions using the same words that are used to name the actual objects and actions.

Students who cannot carry out these language tasks should be taught these skills before starting the program.

The Need is Clear

In summary, it is no surprise that children who poorly developed academic language skills tend to have lower academic achievement than those children whose English language development is average or above average. Children will not learn if they do not understand what the teacher is saying or cannot comprehend what they read in their textbooks. The need for a research-based curriculum to teach and reinforce academic language and, as a result, greatly enhance students’ chances of learning the academic content presented in subject matter classes is clear.

Families’ Language and Use Differ Across Income Groups

<table>
<thead>
<tr>
<th>Measures & Scores</th>
<th>13 Professional</th>
<th>23 Working-class</th>
<th>6 Welfare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parent</td>
<td>Child</td>
<td>Parent</td>
</tr>
<tr>
<td>Pretest score (a)</td>
<td>41</td>
<td>31</td>
<td>14</td>
</tr>
<tr>
<td>Recorded vocabulary size</td>
<td>2,176</td>
<td>1,116</td>
<td>1,498</td>
</tr>
<tr>
<td>Average utterances per hour</td>
<td>487</td>
<td>310</td>
<td>301</td>
</tr>
<tr>
<td>Average different words per hour (b)</td>
<td>382</td>
<td>297</td>
<td>251</td>
</tr>
</tbody>
</table>

(a) At the beginning of the study, parents completed a vocabulary pretest. Each parent was asked to complete a form abstracted from the Peabody Picture Vocabulary Test (PPVT). Each parent was given a list of 46 vocabulary words and a series of pictures (four options per vocabulary word) and asked to write the number of the picture that corresponded to the written word. Parent performance on the test was highly correlated with years of education (r = 0.5).

(b) Parent utterances and different words were averaged with children 13-36 months old. Child utterances and different words were averaged for four observations when the children were 33-36 months old.
Oral Language and Socioeconomic Status

Basic language instruction would be unnecessary if all children entered school with well-developed oral language skills. Unfortunately, many children begin school with less developed oral language.

- Hart and Risley (1995, 1999) provided detailed information about the social and linguistic environments in which typical children learn to talk.
- In a longitudinal study conducted over two and a half years of children from 42 diverse families, researchers conducted monthly hour-long observations of everything said by, to, and around each of the 42 children during unstructured activities in their homes (Hart & Risley, 1995).

The authors sought to determine why children differed greatly in terms of the age at which they began to learn language and how fast they learned once they began. Families represented welfare, lower, middle, and upper socioeconomic status (SES) homes. They found that race and gender were not significant factors influencing a child’s acquisition of language. However, the economic status of the family strongly correlated with the language development of the children.

Children living in poverty were found to have acquired less than a third of the vocabulary of high SES families by the age of three. Vocabulary acquisition was highly correlated to the number of language experiences in the home. In a typical hour the average child in a high SES family heard 2,153 words while a child in a low SES family heard only 616 words.

The authors also attempted to determine how much difference children’s early experience would make in school performance at Grade 3, when the children were nine to ten years old.

- Measures of accomplishment at age three predicted measures of language skill at age nine and ten on both the Peabody Picture Vocabulary Test-Revised (PPVT-R) and receptive vocabulary (r = 0.58) and the Test of Language Development-2: Intermediate (TOLD-2) (r = 0.74) and its subscores (listening, speaking semantics, syntax).

Vocabulary at age three was also strongly associated with reading comprehension scores on the Comprehensive Test of Basic Skills (CTBS-3) (r = 0.56).

Oral Language and Second-Language Learners

Learning a second language is difficult. Learning in a second language is even more difficult. According to recent research (Hakuta, Goto Buttrill, & Witt, 2000):
- Oral proficiency takes three to five years to develop, and academic English proficiency can take four to seven years.
- A child’s SES is a powerful predictor of the rate of English development.
- Second-language learners have to acquire oral and academic English and keep pace with English-language speakers, who continue to develop their language skills.

The Need is Clear

In summary, it is no surprise that children with poorly developed academic language skills tend to have lower academic achievement than those children whose English language development is average or above average. Children will not learn if they do not understand what the teacher is saying or cannot comprehend what they read in their textbooks. The need for a research-based curriculum to teach and reinforce academic language and, as a result, greatly enhance students’ chances of learning the academic content presented in subject matter classes is clear.

The Direct Instruction language curriculum focuses on the language used in schools and textbooks. A major premise of this curriculum is that students must understand the language used for instruction in classrooms, as well as the language that appears in texts and workbooks. What is instructional language?

- The directions and verbal demonstrations used by instructors to teach arithmetic, reading, social studies, science, and other school subjects
- The language used by teachers to direct the sequence of events during a school day
- The directions and instruction sequences that appear in textbooks and workbooks
- A broad array of background knowledge and the vocabulary associated with it
- A wide variety of English grammatical structures

The programs that make up the Direct Instruction language curriculum — Language for Learning, Language for Thinking, and Language for Writing — add the important elements of instructional language as well as broader knowledge of the words and sentence structures relevant to reading comprehension and writing.

What is Language for Learning?

Language for Learning is the first level of three Direct Instruction language intervention programs designed to teach basic language concepts and skills. The 150 lessons of Language for Learning (formerly DESTAR Language 1) focus on the language of classroom instruction. The program teaches demonstrations, actions, and pictures to teach basic concepts and instructional words.

- Language for Learning moves from the identification of familiar objects to the description and classification of these objects.
- Children learn the precise meaning of both familiar and new concepts and use these concepts in statements and questions.
- Additional concepts taught in Language for Learning are important for logical reasoning such as “if-then,” “before-after,” “some,” and “only.”

In the Language for Learning program, students develop skills required to use vocabulary, descriptive words, and sentences with growing independence. They also accumulate the important background information, thinking skills, and vocabulary they need to succeed in school.

Who Benefits from Language for Learning?

Language for Learning is intended for students who:
- Need a firm foundation of spoken words before they can get much out of narratives or texts
- May not have extensive experience in hearing and speaking the English language in academic settings
- Need explicit instruction in expressive and receptive language
- Need to build English vocabulary and acquire knowledge of English grammatical structures
- Need to build knowledge of language of the classroom

Regardless of their age or grade level, all students entering Language for Learning should have some oral language skills.

- They must be able to imitate a word or phrase spoken by an adult (e.g., they should be able to repeat a “cat” or “under the table”).
- They must be able to answer questions such as, “What is this?” or “What are you doing?” or they must be able to learn to do so quickly.
- They must be able to answer simple yes/no questions such as, “Are you standing?” or “Is this a chair?”
- They must be able to point to and label common objects, such as, “a door,” and complete simple actions such as, “sit.”
- They must be able to describe pictures of objects and actions using the same words that are used to name the actual objects and actions.

Students who cannot carry out these language tasks should be taught these skills before starting the program.

Who Benefits from Language for Learning?

Language for Learning is intended for students who:
- Need a firm foundation of spoken words before they can get much out of narratives or texts
- May not have extensive experience in hearing and speaking the English language in academic settings
- Need explicit instruction in expressive and receptive language
- Need to build English vocabulary and acquire knowledge of English grammatical structures
- Need to build knowledge of language of the classroom

Regardless of their age or grade level, all students entering Language for Learning should have some oral language skills.

- They must be able to imitate a word or phrase spoken by an adult (e.g., they should be able to repeat a “cat” or “under the table”).
- They must be able to answer questions such as, “What is this?” or “What are you doing?” or they must be able to learn to do so quickly.
- They must be able to answer simple yes/no questions such as, “Are you standing?” or “Is this a chair?”
- They must be able to point to and label common objects, such as, “a door,” and complete simple actions such as, “sit.”
- They must be able to describe pictures of objects and actions using the same words that are used to name the actual objects and actions.

Students who cannot carry out these language tasks should be taught these skills before starting the program.
What is Language for Thinking?

Language for Thinking (formerly DISTAR Language 1) is the second level of three Direct Instruction language intervention programs. The 150 lessons of Language for Thinking extend the instruction found in Language for Learning to more advanced concepts.

- Develop reasoning and critical thinking through work with classification, if/then reasoning, and analogies.
- They expand their vocabularies and learn how words are related as synonyms, opposites, and homonyms.
- In sentence skill exercises, students analyze what a sentence says and learn what inferences can be drawn from that sentence.
- Additional concepts set the stage for reading comprehension through activities that include asking questions, retelling accounts, and making inferences.

Who Benefits from Language for Thinking?

Language for Thinking is intended for students who are older or have higher skill levels than students placed in Language for Learning. The program is intended for students who:

- Have completed, or almost completed, Language for Learning
- Have meager vocabulary for their age and who have difficulty comprehending what they read
- Tend to need more repetitions to interpret and infer information from oral and written language
- Need explicit instruction in expressive and receptive language
- Need to build English vocabulary and acquire knowledge of English grammatical structures

In Language for Thinking, students use an expanded vocabulary and increasingly complex sentence structures. After completing the Language for Thinking program, students are prepared to discern precise meaning, both literal and inferential, from text materials they encounter in and out of school.

What is Language for Writing?

Language for Writing (formerly DISTAR Language 2) is the third level of three Direct Instruction language intervention programs. The program is designed to lay a foundation for communication skills, particularly written communication, and provide the support and scaffolding that helps struggling writers apply the skills in their own writing. Language for Writing provides 140 lessons that focus on the concepts and skills important to clear writing, including:

- Writing sentences and paragraphs
- Using correct grammar and punctuation
- Applying higher-order thinking
- Interpreting written text

Students who complete the Language for Writing program will have learned to analyze the structure of spoken and written sentences and to use these skills to write narratives, summarize, retell, and make comparisons.

Who Benefits from Language for Writing?

Language for Writing is designed to help students in Grades 2–5 who have been through Language for Learning and Language for Thinking. The Language for Writing program can also be used for students who:

- Have not been in the first two programs, if their scores on the placement test indicate they are ready for the third level
- May not have extensive experience with grammatical forms, word usages, and organizational skills that are tools for writing
- Tend to need more repetitions to apply academic language with accuracy and complexity in written form

Students placed in the program should be reading and writing at an end-of-Grade 2 or beginning-of-Grade 3 level and have adequate knowledge of conversational English.

After completing the Language for Thinking program, students are prepared to discern precise meaning, both literal and inferential, from text materials they encounter in and out of school.

III. Principles of High Quality Educational Tools Used in Direct Instruction Language Programs

Principles include:

- Big ideas, conspicuous strategies, mediated scaffolding, strategic integration, primed background knowledge, and judicious review (Kame’enui, Carnine, Dixon, Simmons, & Coyne, 2002)
- Best practices, as identified by Bos and Vaughn (2002), for teaching language to children
- Scripted presentations, group unison responding, continuous assessment and mastery, and error correction procedures (Watkins & Shlocum, 2004)

Big Ideas

Big ideas are the core components (concepts) of a given instructional area (Kame’enui et al., 2002). Direct Instruction language programs use big ideas to identify the scope of what is presented. The content of the programs can be divided into three big ideas that can be efficiently taught through teacher-directed instruction:

- The language of instruction, including English grammatical structures, used by teachers in the classroom and found in text materials
- A body of background knowledge and new vocabulary
- Elements of logical reasoning, higher-order thinking, and organization

This content is then organized and sequenced into groups of related tasks, sometimes referred to as tracks. The goal for any level of the programs is to teach students skills that enable them to apply big ideas within a specific universe of content.
What is Language for Thinking?

Language for Thinking (formerly DISTAR Language II) is the second level of three Direct Instruction language intervention programs. The 150 lessons of Language for Thinking extend the instruction found in Language for Learning to more advanced concepts.

- Students develop reasoning and critical thinking through work with classification, if/then reasoning, and analogies.
- They expand their vocabularies and learn how words are related as synonyms, opposites, and homonyms.
- In sentence skill exercises, students analyze what a sentence says and learn what inferences can be drawn from that sentence.
- Additional concepts set the stage for reading comprehension through activities that include asking questions, retelling accounts, and making inferences.

Who Benefits from Language for Thinking?

Language for Thinking is intended for students who are older or have higher skill levels than students placed in Language for Learning. The program is intended for students who:

- Have completed, or almost completed, Language for Learning
- Have meager vocabulary for their age and who have difficulty comprehending what they read
- Tend to need more repetitions in order to interpret and infer information from oral and written language
- Need explicit instruction in expressive and receptive language
- Need to build English vocabulary and acquire knowledge of English grammatical structures

In Language for Thinking, students use an expanded vocabulary and increasingly complex sentence structures. After completing the Language for Thinking program, students are prepared to discern precise meaning, both literal and inferential, from text materials they encounter in and out of school.

What is Language for Writing?

Language for Writing (formerly DISTAR Language III) is the third level of three Direct Instruction language intervention programs. The program is designed to lay a foundation for communication skills, particularly written communication, and provide the support and scaffolding that helps struggling writers apply the skills in their own writing. Language for Writing provides 140 lessons that focus on the concepts and skills important to clear writing, including:

- Writing sentences and paragraphs
- Using correct grammar and punctuation
- Applying higher-order thinking
- Interpreting written text

Students who complete the Language for Writing program will have learned to analyze the structure of spoken and written sentences and to use these skills to write narratives, summarize, retell, and make comparisons.

Who Benefits from Language for Writing?

Language for Writing is designed to help students in Grades 2–5 who have been through Language for Learning and Language for Thinking. The Language for Writing program can also be used for students who:

- Have not been in the first two programs, if their scores on the placement test indicate they are ready for the third level
- May not have extensive experience with grammatical forms, word usages, and organizational skills that are tools for writing
- Tend to need more repetitions to apply academic language with accuracy and complexity in written form

Students placed in the program should be reading and writing at an end-of-Grade 2 or beginning-of-Grade 3 level and have adequate knowledge of conversational English.

III. Principles of High Quality Educational Tools Used in Direct Instruction Language Programs

Principles include:

- Big ideas, conspicuous strategies, mediated scaffolding, strategic integration, primed background knowledge, and judicious review (Kame'enui, Carnine, Dixon, Simmons, & Coyne, 2002)
- Best practices, as identified by Bos and Vaughn (2002), for teaching language to children
- Scripted presentations, group unison responding, continuous assessment and mastery, and error correction procedures (Wattke & Shlocum, 2004)

Big Ideas

Big ideas are the core components (concepts) of a given instructional area (Kame’enui et al., 2002). Direct Instruction language programs use big ideas to identify the scope of what is presented. The content of the programs can be divided into three big ideas that can be efficiently taught through teacher-directed instruction:

- The language of instruction, including English grammatical structures, used by teachers in the classroom and found in text materials
- A body of background knowledge and new vocabulary
- Elements of logical reasoning, higher-order thinking, and organization

This content is then organized and sequenced into groups of related tasks, sometimes referred to as tracks. The goal for any level of the programs is to teach students skills that enable them to apply big ideas within a specific universe of content.

<table>
<thead>
<tr>
<th>Program</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language for Learning</td>
<td>• Actions</td>
</tr>
<tr>
<td></td>
<td>• Description of objects</td>
</tr>
<tr>
<td></td>
<td>• Information and background knowledge</td>
</tr>
<tr>
<td></td>
<td>• Instructional words and problem-solving concepts</td>
</tr>
<tr>
<td></td>
<td>• Problem-solving strategies and applications</td>
</tr>
<tr>
<td>Language for Thinking</td>
<td>• Information and background knowledge</td>
</tr>
<tr>
<td></td>
<td>• Reasoning and critical thinking</td>
</tr>
<tr>
<td></td>
<td>• Vocabulary development</td>
</tr>
<tr>
<td></td>
<td>• Observing and describing</td>
</tr>
<tr>
<td></td>
<td>• Comprehension concepts</td>
</tr>
<tr>
<td></td>
<td>• Interpreting graphic displays</td>
</tr>
<tr>
<td>Language for Writing</td>
<td>• Grammar (including parts of speech)</td>
</tr>
<tr>
<td></td>
<td>• Sentence constructions (statements, questions, commands)</td>
</tr>
<tr>
<td></td>
<td>• Mechanics (capitalization and punctuation rules)</td>
</tr>
<tr>
<td></td>
<td>• Critical thinking (deductions, definitions, analogies)</td>
</tr>
<tr>
<td></td>
<td>• Writing (elements of clear narrative and expository prose)</td>
</tr>
</tbody>
</table>
Conspicuous Strategies

Conspicuous strategies involve the steps teachers take in making learning more explicit for students (Kame’enui et al., 2002). Explicit instruction is “a systematic method of teaching with emphasis on proceeding in small steps, checking for student understanding, and achieving active and successful participation by all students” (Rosenhine, 1987, p. 34).

This type of instruction can be summarized as unambiguous, clear, and direct teaching (Arrasmith, 2003). Teachers:
- Show students what to do (modeling)
- Give them opportunities to practice with teacher monitoring and feedback (guided practice)
- Provide opportunities for them to perform these skills on their own (independent practice)

Bos and Vaughn (2002) note the importance of modeling to demonstrate skills within structured language programs that provide intensive practice and feedback for students; they cite Language for Learning and the DISTAR Language programs as illustrative of effective structured oral language programs. Explicit instruction is evident in Language for Thinking and Language for Writing as well.

Mediated Scaffolding

Mediated scaffolding pertains to providing students support and assistance that is gradually reduced over time so they can eventually perform a skill on their own (Kame’enui et al., 2002).

Mediated scaffolding is built into all Direct Instruction language programs.
- Before students are asked to perform skills on their own, they are shown what to do by the teacher and then practice these skills with careful teacher monitoring and feedback.
- Only when students are successful during guided practice activities do they participate in activities on their own.

Strategic Integration

“Whenever possible, new strategies should build on what has been taught earlier” (Kame’enui et al., 2002, p. 13). This process is referred to as strategic integration.

Direct Instruction language programs use strategic integration at the very core of their instructional sequence.
- Content is organized so that each lesson introduces only a small amount of new material (about 10%).
- Everything taught in a lesson is consistent with what has been taught earlier.

- Each lesson provides additional practice on content introduced in the preceding one or two lessons.
- Part of each lesson has some form of cumulative review or applications that address skills and information presented in earlier lessons.

Thus, newly learned skills are mixed with well-practiced ones; difficult tasks are interspersed with easier ones (Watkins & Slocum, 2004). No skills are ever introduced and then dropped; they continue to be woven into other tracks to ensure skill maintenance and generalization.

Primed Background Knowledge

Primed background knowledge relates to developing prerequisite or background skills before more complex skills are taught (Kame’enui et al., 2002). Primed background knowledge and strategic integration of skills go hand in hand; thus, it is critical to ensure that students have requisite skills mastered before they tackle a more complex skill. Likewise, they should have opportunities to practice newly learned skills with previously learned ones.

The idea in Direct Instruction language programs is to design instruction so all students succeed. These programs ensure success by developing skills in small intervals from one lesson to the next. The content from one group of lessons to the next does not change drastically, even though more complex content is being introduced. The end result is that students learn how to apply newly acquired vocabulary and grammatical structures to more complex higher-order thinking skills.

Judicious Review

Optimizing the number, spacing, and timing of repetitions of a skill over time is the hallmark of judicious review. Judicious review enhances memory and fluency (Kame’enui et al., 2002), the more students practice a skill over time, the more likely they will be able to demonstrate it in the future.

Direct Instruction language programs include reviews that are sufficient in number, distributed over time, cumulative in skill complexity (moving from easier to more difficult), and varied to promote skill generalization. This type of systematic planning and teaching for generalization was noted as an important guideline for teaching language to students by Bos and Vaughn (2002).

Scripted Presentation

Scripts are tools designed to ensure consistency of instructional delivery by standardizing the wording teachers use, and to free teachers from designing, field testing, and refining instruction in every subject they teach (Watkins & Slocum, 2004). The scripts found in Direct Instruction language programs include carefully developed explanations, examples, and wording.

- Vocabulary is limited to what is necessary.
- The presentation assumes skills implied by what students have done earlier.

Each of these programs is field tested to ensure maximum student performance. Changes were made in the current programs based on this field testing when difficulties in instructional delivery, curricular design, or student performance were noted. In short, Direct Instruction language programs are engineered for student success.

Some teachers feel that scripted presentations hinder their creativity; however, the opposite is true: Teachers put life into scripted programs. According to Watkins and Slocum (2004), “Teachers relate to the students through the words in the scripts. They are the source of warmth, excitement, and life in the presentation. They make the expected adjustments for individual differences among students. Teachers are the only ones who can adjust the pace to the needs of the group, allowing more time for tasks that are difficult for a particular group and moving more quickly through tasks that are easier. Teachers are the only ones who can play the critical roles of problem solver and decision maker, identifying problems in student learning and adjusting the instruction accordingly.”

Group Unison Responding

One way to obtain active student engagement is to call on individual students to provide answers. If the questions are relevant and well-placed, students practice well and teachers receive immediate feedback on student understanding of content (Watkins & Slocum, 2004).

However, these individual responses have limitations. When one student is responding, other students may not be paying attention. Further, the teacher obtains information on only one student — without knowing if the other students actually understood the question/material.

An alternative way to obtain student responses to ensure attention and skill acquisition, and to decrease behavior problems, is to use group unison responding. With group unison responding, students respond as one. Thus, students:
- Have opportunities to respond more and to receive feedback on their responses.
- Do not have time to “go off task” given the rapid pacing and instructional requirements.

Group unison responding is followed by individual questions to check for further student understanding.

Direct Instruction language programs provide an appropriate mix of group responses (85%) and individual turns (15%) to create an optimum learning environment (Marchand-Martella, Blakely, & Shafer, 2004).

Continuous Assessment and Testing for Mastery

“‘It is important to monitor students’ progress toward program objectives continuously’ (Watkins & Slocum, 2004). Assessment is part of every Direct Instruction language lesson. For anything that is taught, the teacher provides a task to determine whether the students understand the content presented. Teachers monitor students’ performance and use the information to identify skills or information that needs to be remediated.

Further, mastery tests are provided after every 10 lessons in all Direct Instruction language programs.

- These assessments are designed to help teachers monitor students’ progress and provide feedback to the students about their learning.
- When these assessments are analyzed, teachers become data-based decision makers, determining if groups have mastered the concepts and skills taught in the program to that point or require re-teaching of specific concepts or practice of specific skills.
- This cycle of instruction, feedback, and re-teaching, when necessary, helps students experience success that instills confidence and motivation to continue learning.
Conspicuous Strategies

Conspicuous strategies involve the steps teachers take in making learning more explicit for students (Kame‘e‘ui et al., 2002). Explicit instruction is “a systematic method of teaching with emphasis on proceeding in small steps, checking for student understanding, and achieving active and successful participation by all students” (Rosenhine, 1987, p. 34).

This type of instruction can be summarized as unambiguous, clear, and direct teaching (Arrasmith, 2003). Teachers:

- Show what students do to do (modeling)
- Give them opportunities to practice with teacher monitoring and feedback (guided practice)
- Provide opportunities for them to perform these skills on their own (independent practice)

Bos and Vaughn (2002) note the importance of modeling to demonstrate skills within structured language programs that provide intensive practice and feedback for students; they cite Language for Learning and the DISTAR Language programs as illustrative of effective structured oral language programs. Explicit instruction is evident in Language for Thinking and Language for Writing as well.

Mediated Scaffolding

Mediated scaffolding pertains to providing students support and assistance that is gradually reduced over time so they can eventually perform a skill on their own (Kame‘e‘ui et al., 2002).

Mediated scaffolding is built into all Direct Instruction language programs:

- Before students are asked to perform skills on their own, they are shown what to do by the teacher and then practice these skills with careful teacher monitoring and feedback
- Only when students are successful during guided practice do they participate in activities on their own

Strategic Integration

“Whenever possible, new strategies should build on what has been taught earlier” (Kame‘e‘ui et al., 2002, p. 13). This process is referred to as strategic integration.

Direct Instruction language programs use strategic integration at the very core of their instructional sequence:

- Content is organized so that each lesson introduces only a small amount of new material (about 10%).
- Everything taught in a lesson is consistent with what has been taught earlier.

- Each lesson provides additional practice on content introduced in the preceding one or two lessons.
- Part of each lesson has some form of cumulative review or applications that address skills and information presented in earlier lessons.

Thus, newly learned skills are mixed with well-practiced ones; difficult tasks are interspersed with easier ones (Watkins & Slocum, 2004). No skills are ever introduced and then dropped; they continue to be woven into other tracks to ensure skill maintenance and generalization.

Primed Background Knowledge

Primed background knowledge relates to developing prerequisite or background skills before more complex skills are taught (Kame‘e‘ui et al., 2002). Primed background knowledge and strategic integration of skills go hand in hand; thus, it is critical to ensure that students have requisite skills mastered before they tackle a more complex skill. Likewise, they should have opportunities to practice newly learned skills with previously learned ones.

The idea in Direct Instruction language programs is to design instruction so all students succeed. These programs ensure success by developing skills in small intervals from one lesson to the next. The content from one group of lessons to the next does not change drastically, even though more complex content is being introduced. The end result is that students learn how to apply newly acquired vocabulary and grammatical structures to more complex higher-order thinking skills.

Judicious Review

Optimizing the number, spacing, and timing of repetitions of a skill over time is the hallmark of judicious review. Judicious review enhances memory and fluency (Kame‘e‘ui et al., 2002), the more students practice a skill over time, the more likely they will be able to demonstrate it in the future. Direct Instruction language programs include reviews that are sufficient in number, distributed over time, cumulative in skill complexity (moving from easier to more difficult), and varied to promote skill generalization. This type of systematic planning and teaching for generalization was noted as an important guideline for teaching language to students by Bos and Vaughn (2002).

Scripted Presentation

Scripts are tools designed to ensure consistency of instructional delivery by standardizing the wording teachers use, and to free teachers from designing, field testing, and refining instruction in every subject they teach (Watkins & Slocum, 2004). The scripts found in Direct Instruction language programs include carefully developed explanations, examples, and wording.

- Vocabulary is limited to what is necessary.
- The presentation assumes skills implied by what students have done earlier.

Each of these programs is field tested to ensure maximum student performance. Changes were made in the current programs based on this field testing when difficulties in instructional delivery, curricular design, or student performance were noted. In short, Direct Instruction language programs are engineered for student success.

Some teachers feel that scripted presentations hinder their creativity; however, the opposite is true: Teachers put life into scripted programs. According to Watkins and Slocum (2004), “Teachers relate to the students through the words in the scripts. They are the source of warmth, excitement, and life in the presentation. They make the expected adjustments for individual differences among students. Teachers are the only ones who can motivate students with praise and other feedback on their work. They are the only ones who can adjust the pace to the needs of the group, allowing more time for tasks that are difficult for a particular group and moving more quickly through tasks that are easier. Teachers are the only ones who can play the critical roles of problem solver and decision maker, identifying problems in student learning and adjusting the instruction accordingly.”

Group Unison Responding

One way to obtain active student engagement is to call on individual students to provide answers. If the questions are relevant and well-placed, students practice well and teachers receive immediate feedback on student understanding of content (Watkins & Slocum, 2004).

However, these individual responses have limitations. When one student is responding, other students may not be paying attention. Further, the teacher obtains information on only one student—without knowing if the other students actually understood the question/material. An alternative way to obtain student responses to ensure attention and skill acquisition, and to decrease behavior problems, is to use group unison responding. With group unison responding, students respond as one. Thus, students:

- Have opportunities to respond more and to receive feedback on their responses.
- Do not have time to “go off task” given the rapid pacing and instructional requirements.

Group unison responding is followed by individual questions to check for further student understanding.

Direct Instruction language programs provide an appropriate mix of group responses (85%) and individual turns (15%) to create an optimum learning environment (Marchand-Martella, Blakely, & Sharab, 2004).

Continuous Assessment and Testing for Mastery

“It is important to monitor students’ progress toward program objectives continuously” (Watkins & Slocum, 2004). Assessment is part of every Direct Instruction language lesson. For anything that is taught, the teacher provides a task to determine whether the students understand the content presented. Teachers monitor students’ performance and use the information to identify skills or information that need to be remediates.

Further, mastery tests are provided after every 10 lessons in all Direct Instruction language programs.

- These assessments are designed to help teachers monitor students’ progress and provide feedback to the students about their learning.
- When these assessments are analyzed, teachers become data-based decision makers, determining if groups have mastered the concepts and skills taught in the programs to that point or require re-teaching of specific concepts or practice of specific skills.
- This cycle of instruction, feedback, and re-teaching, when necessary, helps students experience success that instills confidence and motivation to continue learning.
Direct Instruction Language Programs

Error Correction Procedures

One hallmark of an effective program is the use of specified error correction procedures (Watkins & Slocum, 2004). Direct Instruction language programs adhere to a general error correction procedure:

- Model — “My turn. This is a chair.”
- Lead — “Say it with me. This is a chair.”
- Test — “Your turn. Say the whole thing.”
- Re-test — Return to an earlier part of the exercise and represent the subsequent steps.

(See Waldron-Soler & Osborn, 2004 for other error correction procedures related to the language programs.)

IV. Alignment of Direct Instruction Language Programs with the Elements of Oral Language

Scientifically based language programs designed for students with fewer English language skills and those learning English as a second language should contain three functional components — form, content, and use — and five dimensions of oral language: phonology, morphology, syntax, content, and pragmatics (Meese, 2001; Owens, 2001). These are the tools for discourse, reading and writing, complex language, and cognitive processes. As students progress through different grades, the demand for complex language use in speaking, reading, and writing increases dramatically. Limitations leave many students unable to infer subtleties, discern irony, and comprehend relationships among ideas.

The forms/dimensions of oral language presented in Direct Instruction language programs begin with simple constructions and build in complexity.

Form

Language form consists of phonology, morphology, and syntax.

Phonology: Phonology is defined as “the aspect of language concerned with the rules governing the structure, distribution, and sequencing of speech sounds and the shape of syllables” (Owens, 2001, p. 22). The English language has approximately 44 phonemes or families of very similar sounds (Bos & Vaughn, 2002). For example, cat and mat each begin with a different phoneme (i.e., /c/ and /m/, respectively). Only the initial phoneme prevents the words cat and mat from being identical, yet the meanings of cat and mat are very different.

Direct Instruction language programs simultaneously develop speech and understanding of the English language. Although these programs are not specifically designed to address speech articulation issues with the sounds of the English language, students build phonological awareness, learn vocabulary, and acquire knowledge of English grammatical structures by focusing on oral language.
IV. Alignment of Direct Instruction Language Programs with the Elements of Oral Language

Scientifically based language programs designed for students with fewer English language skills and those learning English as a second language should contain three functional components — form, content, and use — and five dimensions of oral language: phonology, morphology, syntax, content, and pragmatics (Meese, 2001; Owens, 2001). These are the tools for discourse, reading and writing, complex language, and cognitive processes. As students progress through different grades, the demand for complex language use in speaking, reading, and writing increases dramatically. Limitations leave many students unable to infer subtleties, discern irony, and comprehend relationships among ideas.

The forms/dimensions of oral language presented in Direct Instruction language programs begin with simple constructions and build in complexity.

Form

Language form consists of phonology, morphology, and syntax.

Phonology. Phonology is defined as “the aspect of language concerned with the rules governing the structure, distribution, and sequencing of speech sounds and the shape of syllables” (Owens, 2001, p. 22). The English language has approximately 44 phonemes or families of very similar sounds (Bos & Vaughn, 2002). For example, *cat* and *mat* each begin with a different phoneme (i.e., /k/ and /m/, respectively). Only the initial phoneme prevents the words *cat* and *mat* from being identical, yet the meanings of *cat* and *mat* are very different.

Direct Instruction language programs simultaneously develop speech and understanding of the English language. Although these programs are not specifically designed to address speech articulation issues with the sounds of the English language, students build phonological awareness, learn vocabulary, and acquire knowledge of English grammatical structures by focusing on oral language.

Exercise 1

Classification

1. I’m going to name some objects. I’ll tell you what class the objects are in.
 a. Listen: house, school, barn, store, motel. These objects are buildings.
 b. What are they? (Signal.) Buildings.
 c. Listen: car, truck, bus, train, plane. These objects are vehicles.
 d. What are they? (Signal.) Vehicles.
 e. Listen: flower, tree, weed, bush, grass. These objects are plants.
 f. What are they? (Signal.) Plants.

Example of how students use language in Language for Learning.

Students are also required to produce language in all lessons of Direct Instruction language programs. This method of instruction allows students to hear and practice using the 45 sound elements of the English language.
Morphology. Morphemes are the smallest grammatical units of language that carry meaning (Owens, 2001). They differ from phonemes in that phonemes do not convey meaning on their own. Morphology refers to the rules governing the organization of morphemes in words. There are two types of morphemes — free and bound. Free morphemes are independent and can be used alone. For example, cover is a free morpheme. Bound morphemes cannot be used alone and must be attached to free morphemes (e.g., recover). Bound morphemes change the meaning of words when attached to free morphemes (e.g., recover).

Direct Instruction language programs teach students the internal organization of words (morphology) in a variety of exercises. Language for Learning includes action and picture exercises that teach students to recognize the difference between singular and plural nouns. Students learn how the addition of the morpheme /s/ changes the meaning of the word. Figure 3 illustrates an example from Lesson 55 of Language for Learning where students are taught to recognize whether they need to perform an action involving one or more than one part of the body.

In later exercises, students learn to use a singular or plural noun to describe one or multiple objects in a picture. Figure 4 shows an example from Lesson 62 of Language for Learning where students learn to use a singular or plural noun to describe an object.

Exercise 3

EXERCISE 7 Plurals

1. Tell me if I touch treessss.
 a. (Touch three trees at the same time.) Am I touching treessss? (Signal.) Yes.
 b. (Touch one tree.) Am I touching treessss? (Signal.) No.
 c. (Touch two trees at the same time.) Am I touching treessss? (Signal.) Yes.
2. (Repeat part 1 until all children’s responses are firm.)
3. Watch.
 a. (Touch one tree.) Am I touching treessss? (Signal.) No.
 What am I doing? (Signal.) A tree. Say the whole thing about what I am doing. (Signal.) You are touching a tree.
 b. (Touch three trees.) Am I touching treessss? (Signal.) Yes.
 What am I doing? (Signal.) Trees. Say the whole thing about what I am doing. (Signal.) You are touching trees.
4. (Repeat part 3 until all children’s responses are firm.)

Example of how students learn to recognize the meaning of the morpheme /s/ in Language for Learning.
Morphology. Morphemes are the smallest grammatical units of language that carry meaning (Owens, 2001). They differ from phonemes in that phonemes do not convey meaning on their own. Morphology refers to the rules governing the organization of morphemes in words. There are two types of morphemes — free and bound. Free morphemes are independent and can be used alone. For example, cover is a free morpheme. Bound morphemes cannot be used alone and must be attached to free morphemes (e.g., recover). Bound morphemes change the meaning of words when attached to free morphemes (e.g., recover).

Direct Instruction language programs teach students the internal organization of words (morphology) in a variety of exercises. Language for Learning includes action and picture exercises that teach students to recognize the difference between singular and plural nouns. Students learn how the addition of the morpheme /s/ changes the meaning of the word. Figure 3 illustrates an example from Lesson 55 of Language for Learning where students are taught to recognize whether they need to perform an action involving one or more than one part of the body.

In later exercises, students learn to use a singular or plural noun to describe one or multiple objects in a picture. Figure 4 shows an example from Lesson 62 of Language for Learning where students learn to use a singular or plural noun to describe an object.

EXERCISE 7 Plurals

1. Tell me if I touch trees.
 a. (Touch three trees at the same time.) Am I touching trees? (Signal.) Yes.
 b. (Touch one tree.) Am I touching tree? (Signal.) No.
 c. (Touch two trees at the same time.) Am I touching trees? (Signal.) Yes.
2. (Repeat part 1 until all children’s responses are firm.)
3. Watch.
 a. (Touch one tree.) Am I touching tree? (Signal.) No. What am I touching? (Signal.) A tree. Say the whole thing about what I am doing. (Signal.) You are touching a tree.
 b. (Touch three trees.) Am I touching trees? (Signal.) Yes. What am I touching? (Signal.) Trees. Say the whole thing about what I am doing. (Signal.) You are touching trees.
4. (Repeat part 3 until all children’s responses are firm.)
In comparative exercises in *Language for Learning*, students are taught to use words such as *bigger* and *smaller* to compare objects. In earlier lessons of *Language for Learning*, students learn to use the words *big* and *small* appropriately. The comparative exercises build on this skill and teach students how the new words are used when an additional morpheme /er/ is added. Figure 5 illustrates an example from Lesson 131 of *Language for Learning* where students learn to compare objects.

EXERCISE 7 Comparatives

1. Look at the picture:
 - (Point to a.) What is this? (Touch.) A ball.
 - (Point to b, c, and d.) What are these? (Touch.) Apples.
 - Say the whole thing. (Signal.) These are apples.
 - (Point to e.) What is this? (Touch.) A cup.
 - (Point to a and e.) Which is bigger, the ball or the cup? (Touch.) The ball.
 - Yes, the ball is bigger than the cup. Say that. (Signal.) The ball is bigger than the cup.
 - (Repeat part 1 until all children’s responses are firm.)

Example of how students learn to compare objects in *Language for Learning*.

Direct Instruction Language Programs

This type of word manipulation continues into the *Language for Thinking* and *Language for Writing* programs. Students learn how the meanings of *big* and *small* change when the morphemes /est/ or /er/ are added. Figure 6 provides an example from Lesson 24 of *Language for Thinking* where students learn to determine if classes of objects are the smallest, next bigger, or the biggest.

Transfer is also enhanced by teaching language functions, such as comparison. The programs shape understanding beyond the examples presented in a given lesson because once students know how to compare, they can apply that skill to a range of contexts across content areas.

EXERCISE 2 Classification

1. You’re going to learn about bigger classes and smaller classes.
 a. Here’s the rule: The bigger class has more kinds of things in it.
 Everybody, say that rule. Get ready. (Signal.) The bigger class has more kinds of things in it.
 b. Listen to these classes: children, girls, baby girls.
 Everybody, say those three classes. Get ready. (Signal.) Children, girls, baby girls.
 c. The biggest class is children. It has boys in it. It has girls in it, and it has baby girls in it. What’s the biggest class? (Signal.) Children.
 • Are there girls in that class? (Signal.) Yes.
 • Are there baby girls in that class? (Signal.) Yes.
 • Are there boys in that class? (Signal.) Yes.
 d. Say the three classes again. Get ready. (Signal.) Children, girls, baby girls.
 • Which class is the biggest? (Signal.) Children.
 Yes, the biggest class is children.
 e. The next biggest class is girls. It has girls and baby girls in it, but it doesn’t have boys in it.
 Say the three classes again. Get ready. (Signal.) Children, girls, baby girls.
 • Which class is the biggest? (Signal.) Children.

Example of how students learn to recognize the smallest, next bigger, and biggest classes in *Language for Thinking*.

Figure 5

In comparative exercises in *Language for Learning*, students are taught to use words such as *bigger* and *smaller* to compare objects.

Figure 6
This type of word manipulation continues into the Language for Thinking and Language for Writing programs. Students learn how the meanings of big and small change when the morphemes /est/ or /er/ are added. Figure 6 provides an example from Lesson 24 of Language for Thinking where students learn to determine if classes of objects are the smallest, next bigger, or the biggest.

Transfer is also enhanced by teaching language functions, such as comparison. The programs shape understanding beyond the examples presented in a given lesson because once students know how to compare, they can apply that skill to a range of contexts across content areas.

EXERCISE 2 Classification

1. You’re going to learn about bigger classes and smaller classes.
 a. Here’s the rule: The bigger class has more kinds of things in it. Everybody, say that rule. Get ready.
 (Signal.) The bigger class has more kinds of things in it.
 b. Listen to these classes: children, girls, baby girls.
 Everybody, say those three classes. Get ready. (Signal.) Children, girls, baby girls.
 c. The biggest class is children. It has boys in it. It has girls in it, and it has baby girls in it. What’s the biggest class? (Signal.) Children.
 • Are there girls in that class?
 (Signal.) Yes.
 • Are there baby girls in that class?
 (Signal.) Yes.
 • Are there boys in that class?
 (Signal.) Yes.
 d. Say the three classes again. Get ready. (Signal.) Children, girls, baby girls.
 • Which class is the biggest? (Signal.) Children.
 Yes, the biggest class is children.
 e. The next biggest class is girls. It has girls and baby girls in it, but it doesn’t have boys in it.
 Say the three classes again. Get ready. (Signal.) Children, girls, baby girls.
 • Which class is the biggest?
 (Signal.) Children.

Example of how students learn to recognize the smallest, next bigger, and biggest classes in Language for Thinking.
Syntax. Syntax refers to the set of rules that governs the meaningful arrangement of words into sentences. Syntax dictates the grammatically acceptable relationships among sentence elements such as the subject, verb, and object (Owens, 2001).

Throughout each level of the Direct Instruction language programs, students are provided models of appropriate syntax and then are asked to use these sentences on their own. The sentences become increasingly complex as students are instructed in each level of the programs. For example, Figure 7 shows an exercise from Lesson 3 of Language for Learning where students initially learn to produce simple sentences like, “This is a boy.” As lessons progress, new vocabulary is combined into longer phrases and sentences. By the end of Language for Learning, students are using sentences such as, “The rabbit jumped into the can.” Figure 8 illustrates an exercise with this level of syntax in Lesson 150 of Language for Learning.

In Language for Thinking, students learn how to use the vocabulary and simple grammatical structures in more complex ways. Students begin with sentences such as, “It’s a container” and progress to sentences like, “A bird is an animal, but an airplane is not an animal.” Figure 9 shows a usage exercise from Lesson 141 of Language for Thinking requiring students to produce complex sentences using contractions.

In Language for Writing, students learn to create compound sentences. Figure 10 illustrates the production of compound sentences in Lesson 84 of Language for Writing.

Figure 8

EXERCISE 3 Common Information

1. Let’s see how much information you remember.
 a. What makes a vehicle move? (Signal.) An engine. Say the whole thing. (Signal.) An engine makes a vehicle move.
 b. What do we call a person who brings your food in a restaurant? (Signal.) A waiter. Say the whole thing. (Signal.) A waiter is a person who brings your food in a restaurant.
 c. What do we call a place where vehicles are fixed? (Signal.) A garage. Say the whole thing. (Signal.) A garage is a place where vehicles are fixed.
 d. What do we call a person who fixes vehicles? (Signal.) A mechanic. Say the whole thing. (Signal.) A mechanic is a person who fixes vehicles.

Figure 7

EXERCISE 2 Identity Statements

1. We’re going to talk about a boy.
 a. (Ask a boy in the group to stand up.) Everybody, what is this? (Signal.) A boy. Yes, a boy.
 b. My turn. I can say the whole thing. This is a boy. Listen again. This is a boy.
 c. Say the whole thing with me. (Signal. Respond with the children.) This is a boy.
 d. Again. (Signal. Respond with the children.) This is a boy. (Repeat step d until all children are making the statement with you.)

Example of sentence production in an initial lesson of Language for Learning.

Example of sentence production in the final lesson of Language for Learning.

Example of complex sentence production in Language for Thinking.

Figure 9

b. (Point to everyone.)
 • Do you eat applesauce with a toothpick? (Signal.) No.
 • Say the statement with a contraction. (Signal.) We don’t eat applesauce with a toothpick.
 c. (Point to a girl.)
 • Do you eat applesauce with a spoon? (Signal.) Yes.
 • Say the statement. (Signal.) I eat applesauce with a spoon.
 d. (Point to two girls.)
 • Do they eat applesauce with a spoon? (Signal.) Yes.
 • Say the statement. (Signal.) They eat applesauce with a spoon.

(Repeat part 2 until all responses are firm.)

Figure 10

Exercise 5

Words in Compound Sentences

(The students are not to write anything during part 1.)

1. You’ll write each sentence with the correct joining word. We’ll go over the sentences first.
 1. Sentence 1. It was cold. the bear did not feel cold.
 2. Sentence 2. She hurt her arm. she had a sore knee.
 3. Sentence 3. She didn’t go home. blanked, she wasn’t in school.

 a. What are the joining words for that sentence? (Signal.) And, but.
 b. Say the sentence with the right joining word. (Signal.) She hurt her arm, and she had a sore knee.
 c. Sentence 2. She hurt her arm. blanked, she wasn’t in school.

 a. What are the joining words for that sentence? (Signal.) Or, but.
 b. Say the sentence with the right joining word. (Signal.) She didn’t go home, but she wasn’t in school.

Example of compound sentence production in Language for Writing.
Syntax. Syntax refers to the set of rules that governs the meaningful arrangement of words into sentences. Syntax dictates the grammatically acceptable relationships among sentence elements such as the subject, verb, and object (Owens, 2001).

Throughout each level of the Direct Instruction language programs, students are provided models of appropriate syntax and then are asked to use these sentences on their own. The sentences become increasingly complex as students are instructed in each level of the programs. For example, Figure 7 shows an exercise from Lesson 3 of Language for Learning where students initially learn to produce simple sentences like, “This is a boy.”

As lessons progress, new vocabulary is combined into longer phrases and sentences. By the end of Language for Learning, students are using sentences such as, “The rabbit jumped into the can.” Figure 8 illustrates an exercise with this level of syntax in Lesson 150 of Language for Learning.

In Language for Thinking, students learn how to use the vocabulary and simple grammatical structures in more complex ways. Students begin with sentences such as, “It’s a container” and progress to sentences like, “A bird is an animal, but an airplane is not an animal.” Figure 9 shows a usage exercise from Lesson 141 of Language for Thinking requiring students to produce complex sentences using contractions.

In Language for Writing, students learn to create compound sentences. Figure 10 illustrates the production of compound sentences in Lesson 84 of Language for Writing.

Exercise 3

Common Information

1. Let’s see how much information you remember.
 a. What makes a vehicle move? (Signal.)
 An engine.
 Say the whole thing. (Signal.) An engine makes a vehicle move.
 b. What do we call a person who brings your food in a restaurant? (Signal.) A waiter.
 Say the whole thing. (Signal.) A waiter is a person who brings your food in a restaurant.
 c. What do we call a place where vehicles are fixed? (Signal.) A garage.
 Say the whole thing. (Signal.) A garage is a place where vehicles are fixed.
 d. What do we call a person who fixes vehicles? (Signal.) A mechanic.
 Say the whole thing. (Signal.) A mechanic is a person who fixes vehicles.

Exercise 5

Words in Compound Sentences

(The students are not to write anything during part 1.)

1. You’ll write each sentence with the correct joining word. We’ll go over the sentences first.
 a. Sentence 1. It was cold. The bear did not feel cold.
 b. Sentence 2. She hurt her arm. She had a sore knee.
 c. Sentence 3. She didn’t go home. She wasn’t in school.

Exercise 7

Example of sentence production in an initial lesson of Language for Learning.

Example of sentence production in the final lesson of Language for Learning.

Example of complex sentence production in Language for Thinking.

Example of compound sentence production in Language for Writing.
Language content involves semantics.

Semantics. Semantics is the “system of rules governing the meaning of words and word combinations” (Owens, 2001, p. 23). Students must gain knowledge of vocabulary (e.g., words related to objects such as dog, shoe, hat) so they accurately understand and use labels for items and events. Semantic knowledge also includes concept development and categorization. For example, students must learn the difference between the concepts same and different, as well as the rule (e.g., “If it takes you places, it is a vehicle”) that puts a plane and car in the same class (e.g., vehicles). Knowledge of antonyms and synonyms is also a part of semantic knowledge. For example, students must learn that substituting the word finish with end in the sentence, does not change the meaning of the sentence “The class will finish at noon.” Finally, Moss (2001) stated that students should learn that word meaning can change depending on the context of the sentence (e.g., “Mary will run for office.” “Juan can run fast”) or whether the words are being used figuratively (e.g., “Would you run that by me again?”).

Semantic knowledge can also be described in terms of receptive and expressive semantics. Receptive semantics refers to language comprehension, while expressive semantics refers to using language following the rules that govern the meaning of words and word combinations. It is important that students learn to understand and use words and word combinations accurately.

Language for Learning, Language for Thinking, and Language for Writing explicitly teach students to understand and use words and word combinations through exercises representing the different aspects of semantic knowledge (vocabulary, concept development, classification, antonyms, synonyms, and connotative meaning by context).
Language content involves semantics.

Semantics. Semantics is the "system of rules governing the meaning of words and word combinations" (Owens, 2001, p. 23). Students must gain knowledge of vocabulary (e.g., words related to objects such as dog, shoe, hat) so they accurately understand and use labels for items and events. Semantic knowledge also includes concept development and categorization. For example, students must learn the difference between the concepts same and different, as well as the rule (e.g., "If it takes you places, it is a vehicle") that puts a plane and car in the same class (e.g., vehicles). Knowledge of antonyms and synonyms is also a part of semantic knowledge. For example, students must learn that substituting the word finish with end in the sentence, does not change the meaning of the sentence "The class will finish at noon." Finally, Meese (2001) stated that students should learn that word meaning can change depending on the context of the sentence (e.g., "Mary will run for office," "Juan can run fast") or whether the words are being used figuratively (e.g., "Would you run that by me again?").

Semantic knowledge can also be described in terms of receptive and expressive semantics. Receptive semantics refers to language comprehension, while expressive semantics refers to using language following the rules that govern the meaning of words and word combinations. It is important that students learn to understand and use words and word combinations accurately.

Language for Learning, Language for Thinking, and Language for Writing explicitly teach students to understand and use words and word combinations through exercises representing the different aspects of semantic knowledge (vocabulary, concept development, classification, antonyms, synonyms, and connotative meaning by context).
Use

Language is used in formal or informal settings and for social or academic purposes. Social purposes include expressing needs and wants, indicating agreement or disagreement, and participating in personal conversations. Academic purposes include asking and answering informational questions, relating information, comparing, contrasting, drawing conclusions, summarizing, and evaluating.

Pragmatics. Pragmatics is the set of rules for the English language governing how language is used to communicate. The American Speech-Language-Hearing Association (ASHA) (2004) identifies the following three communication skills as components of pragmatics:

• Using language to achieve different communicative functions (e.g., demanding, requesting, and relating information)
• Adapting or changing language according to the context within which it is being used (i.e., the needs or expectations of a listener or situation)
• Abiding by the rules for conversations or narrative (e.g., pausing to allow the listener to respond, rephrasing, facial expressions)

Direct Instruction language programs teach students how to use language for a variety of communicative purposes through a lens of academic meaning and use. For example, verbs are taught so students can retell, comparative adjectives so they can compare, and conditional reasoning so they can hypothesize.

In early lessons, Language for Learning teaches students to use language to identify objects (e.g., “This is a boy”). In later lessons of Language for Learning, students are taught to use language to describe the actions of the teacher and themselves, which requires them to know how to use parts of speech, particularly verbs, nouns, and prepositions.

Figure 14 illustrates an exercise from Lesson 23 of Language for Learning where students use language this way.

Direct Instruction language programs teach students how to use language for a variety of communicative purposes.

Language for Thinking builds on skills developed in Language for Learning and teaches students to use language to describe their actions as well as pictures and actions in pictures, to identify sequences of events, to compare, and to report on pictures. The function of describing requires that students use appropriate nouns, pronouns, verbs, adverbs, prepositional phrases, and words in sequence. Figure 15 shows an exercise from Lesson 118 of Language for Thinking where students use language to report on a picture.

In Language for Writing, students are taught to make oral statements, questions, and commands. In later exercises, these skills are applied to different writing tasks. Figure 16 illustrates an exercise from Lesson 20 of Language for Writing where students are taught to use language to make a statement or question.

Direct Instruction language programs equip students to participate in content instruction and support academic language proficiency. Language becomes a vehicle, rather than a barrier, to learning.
Use

Language is used in formal or informal settings and for social or academic purposes. Social purposes include expressing needs and wants, indicating agreement or disagreement, and participating in personal conversations. Academic purposes include asking and answering informational questions, relating information, comparing, contrasting, drawing conclusions, summarizing, and evaluating.

Pragmatics. Pragmatics is the set of rules for the English language governing how language is used to communicate. The American Speech-Language-Hearing Association (ASHA) (2004) identifies the following three communication skills as components of pragmatics:

- Using language to achieve different communicative functions (e.g., demanding, requesting, and relating information)
- Adapting or changing language according to the context within which it is being used (i.e., the needs or expectations of a listener or situation)
- Abiding by the rules for conversations or narrative (e.g., pausing to allow the listener to respond, rephrasing, facial expressions)

Direct Instruction language programs teach students how to use language for a variety of communicative purposes through a lens of academic meaning and use. For example, verbs are taught so students can retell, comparative adjectives so they can compare, and conditional reasoning so they can hypothesize.

In early lessons, Language for Learning teaches students to use language to identify objects (e.g., “This is a boy”). In later lessons of Language for Learning, students are taught to use language to describe the actions of the teacher and themselves, which requires them to know how to use parts of speech, particularly verbs, nouns, and prepositions.

Figure 14 illustrates an exercise from Lesson 23 of Language for Learning where students use language this way.

In early lessons, Language for Learning teaches students to use language to identify objects (e.g., “This is a boy”). In later lessons of Language for Learning, students are taught to use language to describe the actions of the teacher and themselves, which requires them to know how to use parts of speech, particularly verbs, nouns, and prepositions.

Figure 14 illustrates an exercise from Lesson 23 of Language for Learning where students use language this way.

Exercise 6

1. We’re going to describe a girl. I’m going to tell you three things about the girl.
 - (Hold up one finger.) Listen. She is frowning. Everybody, say that. (Signal.) She is frowning.
 - (Hold up two fingers.) Listen. She has short hair. Everybody, say that. (Signal.) She has short hair.
 - (Hold up three fingers.) Listen. She has a ribbon in her hair. Everybody, say that. (Signal.) She has a ribbon in her hair.

 Yes, the girl we’re looking for is frowning, she has short hair, and she has a ribbon in her hair.

Example of an exercise describing actions in Language for Learning.

Language for Thinking builds on skills developed in Language for Learning and teaches students to use language to describe their actions as well as pictures and actions in pictures, to identify sequences of events, to compare, and to report on pictures. The function of describing requires that students use appropriate nouns, pronouns, verbs, adverbs, prepositional phrases, and words in sequence. Figure 15 shows an exercise from Lesson 118 of Language for Thinking where students use language to report on a picture.

Exercise 1

1. I’ll show you how I smile. Watch. (Smile.)
 1. Your turn. Everybody, smile. (Signal.)
 2. Get ready to do some other actions.
 a. Everybody, stand up. (Signal.) What are you doing? (Signal.) Standing up.
 b. Everybody, smile. (Signal.) What are you doing? (Signal.) Smiling.
 c. Everybody, sit down. (Signal.) What are you doing? (Signal.) Sitting down.
 d. (Repeat part 2 until all children’s responses are firm.)

Example of an exercise reporting on pictures in Language for Thinking.

In Language for Writing, students are taught to make oral statements, questions, and commands. In later exercises, these skills are applied to different writing tasks. Figure 16 illustrates an exercise from Lesson 20 of Language for Writing where students are taught to use language to make a statement or question.

Example of an exercise on statements and questions in Language for Writing.

In summary, by building competence in a range of functions, Direct Instruction language programs equip students to participate in content instruction and support academic language proficiency. Language becomes a vehicle, rather than a barrier, to learning.

Direct Instruction language programs teach students how to use language for a variety of communicative purposes.
V. Importance of Written Language

Writing is perhaps the most complex of all the language skills that students must learn (Hall, Salas, & Grimes, 1999; Harris, Schmidt, & Graham, 1998). Written language skills are highly correlated with reading performance. Additionally, students with low written language skills may struggle in the classroom and perform poorly on high-stakes tests. The following sections describe the relationship between written language skills and reading, academic achievement, and high-stakes testing.

Written Language and Reading

- Tierney and Shanahan (1991) reviewed several studies investigating this relationship. The authors concluded that although the exact nature of the relationship is not clear, writing and reading are related. When students perform well in writing, they tend to perform well in reading, and vice versa.
- Raphael and Englert (1990) also illustrated the relationship between writing and reading skills. They implemented a program that incorporated reading instruction with four Grade 5 students. Specifically, the authors taught the students to analyze text structures as they read. The writing performance of these students greatly improved by the end of the study.

Written Language and Academic Achievement

Writing is an essential skill for successful school performance (Harris et al., 1998; Fredrick & Steventon, 2004). It is a primary form of communication in the classroom.

- Students must use writing skills to take notes from class activities (e.g., lectures and discussions) and demonstrate their understanding of material taught in the classroom (e.g., writing answers to questions posed by the teacher or answers to a test).
- Students also use their writing skills to learn new skills introduced in the classroom. For example, students often are taught to write answers to textbook chapter questions as a way to prepare for an exam.

Written Language and High-Stakes Testing

The majority of states now include a writing component in their state tests.

- In fact, 49 of the 50 states require a measure of writing competency for high school graduation or include writing assessments as part of statewide testing (State Assessment Services State Assessment Advisor, 2002).
- The SAT added a writing component that is one-third of the total SAT score beginning in 2005.
- Perhaps even more important, writing continues to be an ever-increasing skill used in the workplace (Agnew, 1992; Fredrick & Steventon, 2004). Many jobs require writing reports, taking notes related to job activities, and/or communicating through e-mail with colleagues and/or other concerned parties.

Students with low written language skills are clearly at a disadvantage in the classroom compared to peers who have fluent writing skills.

VI. Alignment of Language for Writing with the Elements of Written Language

This section describes how Language for Writing aligns with the four key areas of written language (i.e., oral language, the secretary and author roles of writing, the writing process, and text structures). It also outlines the ways these principles are incorporated within the Language for Writing program.

Oral Language

Research has shown that performance on writing tasks improves when students are taught a variety of oral language skills (Englert, Raphael, Anderson, Anthony, & Stevens, 1991; Stuart, 1999).

- For example, Englert et al. found that expository writing improved when students were instructed with a writing program that promoted the use of oral language.
- Stuart investigated the relationship between phonemic awareness language skills and reading and spelling. Students instructed with a phonemic awareness language program made greater improvements in reading and spelling than children in a control group.

These results suggest that oral language skill instruction improves the acquisition of reading and writing skills.

Exercise 3

Opposites

We’re going to talk about opposites.

1. Listen to these words: thin, fat. Those words are opposites. • Everybody, what are those words? (Signal) Opposites. • Thin is not the same as fat. Thin is the opposite of fat.

2. Listen to these words: thin, skinny. Those words are not opposites. They mean the same thing.

3. Listen to these words: old, young. • Everybody, are those words opposites, or do they mean the same thing? (Signal) Opposites. Old is not the same as young. Old is the opposite of young.

4. Listen to these words: shout, yell. • Everybody, are those words opposites, or do they mean the same thing? (Signal) They mean the same thing. Shout means the same as yell. (Repeat parts 1 through 4 until all responses are firm.)

Example of an exercise on synonyms and antonyms in Language for Writing.
V. Importance of Written Language

Writing is perhaps the most complex of all the language skills that students must learn (Hall, Salas, & Grimes, 1999; Harris, Schmidt, & Graham, 1998). Written language skills are highly correlated with reading performance. Additionally, students with low written language skills may struggle in the classroom and perform poorly on high-stakes tests. The following sections describe the relationship between written language skills and reading, academic achievement, and high-stakes testing.

Written Language and Reading

- Tierney and Shanahan (1991) reviewed several studies investigating this relationship. The authors concluded that although the exact nature of the relationship is not clear, writing and reading are related. When students perform well in writing, they tend to perform well in reading, and vice versa.
- Raphael and Englert (1990) also illustrated the relationship between writing and reading skills. They implemented a program that incorporated reading instruction with four Grade 5 students. Specifically, the authors taught the students to analyze text structures as they read. The writing performance of these students greatly improved by the end of the study.

Written Language and Academic Achievement

Writing is an essential skill for successful school performance (Harris et al., 1998; Fredrick & Steventon, 2004). It is a primary form of communication in the classroom.

- Students must use writing skills to take notes from class activities (e.g., lectures and discussions) and demonstrate their understanding of material taught in the classroom (e.g., writing answers to questions posed by the teacher or answers to a test).
- Students also use their writing skills to learn new skills introduced in the classroom. For example, students often are taught to write answers to textbook chapter questions as a way to prepare for an exam.

Written Language and High-Stakes Testing

The majority of states now include a writing component in their state tests.

- In fact, 49 of the 50 states require a measure of writing competency for high school graduation or include writing assessments as part of statewide testing (State Assessment Services State Assessment Advisor, 2002).
- The SAT added a writing component that is one-third of the total SAT score beginning in 2005.
- Perhaps even more important, writing continues to be an ever-increasing skill used in the workplace (Agnew, 1992; Fredrick & Steventon, 2004). Many jobs require writing reports, taking notes related to job activities, and/or communicating through e-mail with colleagues and other concerned parties.

Students with low written language skills are clearly at a disadvantage in the classroom compared to peers who have fluent writing skills.

V.I. Alignment of Language for Writing with the Elements of Written Language

This section describes how Language for Writing aligns with four key areas of written language (i.e., oral language, the secretary and author roles of writing, the writing process, and text structures). It also outlines the ways these principles are incorporated within the Language for Writing program.

Oral Language

Research has shown that performance on writing tasks improves when students are taught a variety of oral language skills (Englert, Raphael, Anderson, Anthony, & Stevens, 1991; Stuart, 1999).

- For example, Englert et al. found that expository writing improved when students were instructed with a writing program that promoted the use of oral language.
- Stuart investigated the relationship between phonemic awareness language skills and reading and spelling. Students instructed with a phonemic awareness language program made greater improvements in reading and spelling than children in a control group.

These results suggest that oral language skill instruction improves the acquisition of reading and writing skills.

Exercise 3

Opposites

We’re going to talk about opposites.

1. Listen to these words: thin, fat. Those words are opposites.
2. Listen to these words: thin, skinny. Those words are not opposites. They mean the same thing.
3. Listen to these words: old, young. Everybody, are those words opposites, or do they mean the same thing? (Signal.) Opposites. Old is not the same as young. Old is the opposite of young.
4. Listen to these words: shout, yell. Everybody, are those words opposites, or do they mean the same thing? (Signal.) They mean the same thing. Shout means the same as yell. (Repeat parts 1 through 4 until all responses are firm.)

Example of an exercise on synonyms and antonyms in Language for Writing.
When initially learning many skills, students practice them aloud with guidance from the teacher before independently applying them in written form. Language for Writing links oral language skills with written language tasks by requiring students to analyze language structures in both forms. For example, Figure 18 shows how students first practice changing statements into questions aloud with teacher support in Lesson 39 of Language for Writing.

Exercise 1
Changing Statements/Questions

1. Listen to this sentence.
 a. The brown dog is barking.
 - Say it. (Signal) The brown dog is barking.
 - What kind of statement is that? (Signal) A statement.
 b. Now I'll make up a question using the same words.
 - Listen. Is the brown dog barking?
 - Say it. (Signal) Is the brown dog barking?
 - I'll say the statement. You say the question with the same words.
 - Listen. The brown dog is barking.
 - Say the question. (Signal) Is the brown dog barking?

(Repeat part 1 until all responses are firm.)

2. I'll say some more statements. You say the questions with the same words.
 a. Listen. The dog was eating.
 - Say the question with the same words. (Signal) Was the dog eating?
 b. Listen. Those dogs were sleeping.
 - Say the question. (Signal) Were those dogs sleeping?
 c. Listen. Four cats were sleeping.
 - Say the question. (Signal) Were four cats sleeping?

Exercise 2
Changing Statements/Questions

(The students are not to write anything during part 1.)

1. Everybody, open your workbook to lesson 39. Find part A.
 - You will write each statement as a question.
 - I'll read the statement in item 1. Those dogs were sleeping.
 - Say the question that has the same words. (Signal) Were those dogs sleeping?
 - I'll read the statement in item 2. The toys are in the box.
 - Say the question that has the same words. (Signal) Are the toys in the box?
 - I'll read the statement in item 3. This string did break.
 - Say the question that has the same words. (Signal) Did this string break?

Example of an exercise on statements and questions in Language for Writing.

In later lessons, teacher support decreases and students practice changing statements into questions in written form on their own.

Secretary and Author Roles of Writing

There has been much debate about whether writing instruction should focus on technical skill development, such as grammar and writing mechanics, or the content of writing (Weaver, 1996). Kame’enui et al. (2002) refer to these instructional domains as the skills-dominant and composition-dominant approaches. The skills-dominant approach focuses on the secretary role of writing (mechanics of writing), while the composition-dominant approach focuses on the author role of writing (content).

There is little empirical evidence showing that the use of either approach in pure form results in clear writing. Students will not master written language until they can independently function in both roles. When students struggle with writing mechanics, they also tend to struggle with the author role of writing (Isaacs, 1994). The burden of poorly developed writing mechanics may cause students to focus so much energy on this aspect of writing that the content of their writing is compromised (Englert et al., 1988). However, the assumption that instruction of writing mechanics will result in improved composition is as faulty as the assumption that instruction in composition will result in grammatically accurate writing. Rather, research suggests that parallel instruction in both roles (secretary and author) is most effective (Kame’enui et al., 2002).

Language for Writing provides opportunities for students to practice the skills required of the author and secretary roles of writing. Each Language for Writing lesson includes several exercises in grammar, sentence construction, writing mechanics, and critical thinking. As each grammatical and mechanical rule is learned, students are asked to use it in various writing tasks. For example, students are taught to analyze the structure of sentences. They learn to identify parts of sentences such as the subject and the verb. As students learn to identify different parts of sentences, they are asked to construct sentences using these parts.

In later lessons, teacher support decreases and students practice changing statements into questions in written form on their own.

Exercise 2
Verbs

1. We're going to talk about verbs. Every sentence has a verb. The verb is always in the predicate. It's usually the first part of the predicate.
 - Everybody, is the verb ever in the subject? (Signal) No.
 - Is the verb always in the predicate? (Signal) Yes.
 - Where do you usually find it in the predicate? (Signal) In the first part of the predicate.

(Repeat part 1 until all responses are firm.)

2. Now I'm going to say some sentences.
 - To correct: Repeat any items that give the students trouble.
 a. Listen. That boy jumped in the water.
 - Say it. (Signal) That boy jumped in the water.
 b. What's the subject? (Signal) That boy.
 c. What's the predicate? (Signal) Jumped.
 d. That's the verb.
 e. Those cats have short tails.
 - Say it. (Signal) Those cats have short tails.
 f. What's the subject? (Signal) Those cats.
 g. What's the predicate? (Signal) Have short tails.
 h. What's the first word in the predicate? (Signal) Have.

That's the verb.

Example of an exercise on verbs in Language for Writing.
When initially learning many skills, students practice them aloud with guidance from the teacher before independently applying them in written form. Language for Writing links oral language skills with written language tasks by requiring students to analyze language structures in both forms. For example, Figure 18 shows how students first practice changing statements into questions aloud with teacher support in Lesson 39 of Language for Writing.

Figure 18

Exercise 1

Changing Statements/Questions

1. Listen to this sentence.
 - The brown dog is barking.
 - Say it. (Signal) The brown dog is barking.
 - What kind of sentence is that? (Signal) A statement.

2. Now I’ll make up a question using the same words.
 - Listen. Is the brown dog barking?
 - Say it. (Signal) Is the brown dog barking?
 - I’ll say the statement. You say the question with the same words.
 - Listen. The brown dog is barking.
 - Say the question. (Signal) Is the brown dog barking?

(Repeat part 1 until all responses are firm.)

2. I’ll say some more statements. You say the questions with the same words.
 - Listen. The dog was eating.
 - Say the question with the same words. (Signal) Was the dog eating?
 - Listen. Those dogs were sleeping.
 - Say the question. (Signal) Were those dogs sleeping?
 - Listen. Four cats were sleeping.
 - Say the question. (Signal) Were four cats sleeping?

Example of an exercise on statements and questions in Language for Writing.

After practicing this skill aloud, students practice writing questions from statements, with teacher support. Figure 19 illustrates how students are asked to write questions from statements in Lesson 39 of Language for Writing.

Figure 19

Exercise 2

Changing Statements/Questions

(The students are not to write anything during part 1.)

1. Everybody, open your workbook to lesson 39. Find part A. Yes. You will write each statement as a question.
 - I’ll read the statement in item 1.
 - Those dogs were sleeping.
 - Say the question that has the same words. (Signal) Were those dogs sleeping?
 - I’ll read the statement in item 2. The toys are in the box.
 - Say the question that has the same words. (Signal) Are the toys in the box?
 - I’ll read the statement in item 3. This string did break.
 - Say the question that has the same words. (Signal) Did this string break?

Example of an exercise on statements and questions in Language for Writing.

In later lessons, teacher support decreases and students practice changing statements into questions in written form on their own.

Secretary and Author Roles of Writing

There has been much debate about whether writing instruction should focus on technical skill development, such as grammar and writing mechanics, or the content of writing (Weaver, 1996). Kame’enui et al. (2002) refer to these instructional domains as the skills-dominant and composition-dominant approaches. The skills-dominant approach focuses on the secretary role of writing (mechanics of writing), while the composition-dominant approach focuses on the author role of writing (content).

There is little empirical evidence showing that the use of either approach in pure form results in clear writing. Students will not master written language until they can independently function in both roles. When students struggle with writing mechanics, they also tend to struggle with the author role of writing (Isaacson, 1994). The burden of poorly developed writing mechanics may cause students to focus so much energy on this aspect of writing that the content of their writing is compromised (Finger et al., 1986). However, the assumption that instruction of writing mechanics will result in improved composition is as faulty as the assumption that instruction in composition will result in grammatically accurate writing. Rather, research suggests that parallel instruction in both roles (secretary and author) is most effective (Kame’enui et al., 2002).

Language for Writing provides opportunities for students to practice the skills required of the author and secretary roles of writing. Each Language for Writing lesson includes several exercises in grammar, sentence construction, writing mechanics, and critical thinking. As each grammatical and mechanical rule is learned, students are asked to use it in various writing tasks. For example, students are taught to analyze the structure of sentences. They learn to identify parts of sentences such as the subject and the verb. As students learn to identify different parts of sentences, they are asked to construct sentences using these parts.

Example of an exercise on verbs in Language for Writing.

Figure 20

Exercise 1

Verbs

1. We’re going to talk about verbs. Every sentence has a verb. The verb is always in the predicate. It’s usually the first part of the predicate.
 - Everybody, is the verb in the subject? (Signal) No.
 - Is the verb always in the predicate? (Signal) Yes.
 - Where do you usually find it in the predicate? (Signal) In the first part of the predicate.

(Repeat part 1 until all responses are firm.)

2. Now I’m going to say some sentences. To correct: Repeat any items that give the students trouble.
 - Listen. That boy jumped in the water.
 - Say it. (Signal) That boy jumped in the water.
 - What’s the subject? (Signal) That boy.
 - What’s the predicate? (Signal) Jumped.
 - What’s the first word in the predicate? (Signal) Jumped.
 - That’s the verb.
 - Those cats have short tails.
 - Say it. (Signal) Those cats have short tails.
 - What’s the subject? (Signal) Those cats.
 - What’s the predicate? (Signal) Have short tails.
 - What’s the first word in the predicate? (Signal) Have.
 - That’s the verb.

Example of an exercise on verbs in Language for Writing.
In later lessons, students are asked to write detailed instructions for completing simple tasks such as washing dishes. Figures 22a-b illustrate how they learn to write instructions for washing dishes in Lesson 111 of Language for Writing.

Exercise 5
Writing Instructions

- Everybody, open your textbook to lesson 111. Find part A. ✓
 1. I’ll read the paragraph in part A. The dishwasher is broken, so Zirk has to wash the dishes by hand. Here are the first two instructions to Zirk for washing the dishes by hand.
 a. Put the dirty dishes in the kitchen sink.
 b. Fill the sink with hot water.
 c. Write at least four more instructions to Zirk so he can finish washing the dishes by hand.

Example of an exercise on writing instructions in Language for Writing.

Figure 22a

- Everybody, open your textbook to lesson 111. Find part A. ✓
 1. I’ll read the paragraph in part A. The dishwasher is broken, so Zirk has to wash the dishes by hand. Here are the first two instructions to Zirk for washing the dishes by hand.
 a. Put the dirty dishes in the kitchen sink.
 b. Fill the sink with hot water.
 c. Write at least four more instructions to Zirk so he can finish washing the dishes by hand.

Example of an exercise on writing instructions in Language for Writing.

Exercise 4
Completing a Story

- Everybody, open your textbook to lesson 117. Find part A. ✓
 1. I’ll read the instructions. Copy the sentences on your paper. Then complete the story. Write at least three paragraphs. (Call on a student who read the sentences.) “Get into the lifeboats,” shouted the captain. “We’re starting to sink.”

Example of an exercise on completing a story in Language for Writing.
In later lessons, students are asked to write detailed instructions for completing simple tasks such as washing dishes. Figures 22a–b illustrate how they learn to write instructions for washing dishes in Lesson 111 of Language for Writing.

![Figure 22a](image)

Exercise 1

Changing Statements/Questions

1. Everybody. I’m going to say some sentences. When I say a statement, you say the question with the same words. When I say a question, you say the statement with the same words.

2. Here are the statements and questions.
 a. Listen to this statement: He is talking.
 b. Listen to this statement: The brown cow was hungry.
 c. Listen to this question: Is he talking?
 d. Listen to this question: Was the brown cow hungry?

3. Say the statement that has the same words. (Signal) He is talking.
4. Say the statement that has the same words. (Signal) The brown cow was hungry.
5. Listen to this statement: Are they cutting the grass.
6. Listen to this statement: Are the birds singing?
7. Say the statement that has the same words. (Signal) The birds are singing. (Repeat part 2 until all responses are firm.)

![Example of an exercise on writing instructions in Language for Writing](image)

Writing Process

The process of writing consists of three to four basic steps: planning, drafting, editing/revising, and publishing (Gersten & Baker, 2001; Kame’enui et al., 2002). Sometimes publishing is not included as part of this process, however. From a meta-analysis of research on teaching expressive writing to students with disabilities, Gersten and Baker found students’ writing performance improved when they were explicitly taught each step of the writing process. Further, evidence suggests that this process should be divided into discrete steps with each step taught separately. These steps can then be integrated into the whole process (Graham & Harris, 1988; Hull, 1987; Isaacson, 1990).

Language for Writing provides students with skills practice necessary for the steps of the writing process. For example, before many of the writing activities, students are asked to brainstorm ideas about what they might write and then share these ideas verbally with the rest of the group. Once these ideas are shared, each student is asked to complete the writing task independently. Teachers provide feedback to students during and after their writing. Students are then asked to make any necessary corrections.

![Figure 22b](image)

Exercise 5

Writing Instructions

- Everybody, open your textbook to lesson 111. Find part A.
- The dishwasher is broken, so Zirk has to wash the dishes by hand. Here are the first two instructions to Zirk for washing the dishes by hand.
 1. Put the dirty dishes in the kitchen sink.
 2. Fill the sink with hot water.
 3. Wipe at least four more instructions to Zirk so he can finish washing the dishes by hand.

- What will Zirk need to put into the hot water? (Call on a student. Ideas: Detergent; soap.)
- What tools will Zirk use to clean the dishes? (Call on a student. Ideas: A sponge; a scrubbing pad; a brush.)
- How will Zirk get the soap off the clean dishes? (Call on a student. Idea: By rinsing them in clean water.)
- Where will Zirk put the dishes to dry? (Call on a student. Ideas: In a drying rack; in a dish rack.)
- Will the dishes be dry at the end of the washing cycle? (Yes)

- Write at least four more instructions to Zirk so he can finish washing the dishes by hand.
- You may want to use words in the word box. Follow along as I read them.

- Everyday, write the last four instructions to Zirk.
- Write about adding the detergent, using the sponge, rinsing the dishes and putting the dishes in the drying rack (Observe students and give feedback.)

![Example of an exercise on writing instructions in Language for Writing](image)

Language for Writing includes other exercises that help develop the skills needed for each step of the writing process. For example, during Lessons 111–120 students participate in proofreading activities. Figure 24 illustrates how they are asked to correct wording and punctuation errors in a paragraph and then rewrite the paragraph in a proofreading exercise in Lesson 132 of Language for Writing.
Another important element of writing instruction involves text structures. Text structures are patterns that students use to organize important information communicated in their writing. Each text structure has its own set of structural characteristics.

- Kame’enui et al. (2002) note the example of stories. Stories typically include a protagonist, a crisis, developing incidents, and a resolution.
- Further, research suggests that it is beneficial to teach a few text structures until the skills are mastered rather than simply expose students to many types of text structures (Englert et al., 1991).

Students master several text structures in the Language for Writing program including stories, instructions, and comparisons. The characteristics of each text structure are explicitly taught through the use of examples and non-examples. Figures 25a–e show examples of instruction that indicate what students will write about, what tense they will use, what kind of paragraphing is required, and the specific sentence forms they must use.

Exercise 1

1. Close the errors in the paragraph. It has 7 errors. All sentences should be in the past tense.
 - We had a big storm last night. The rain fell, the thunder was, and the lightning flash. Many people and animals got wet. We couldn’t go downtown the car until the storm went away.
 - Your errors: __________

2. Write a story about a dog that your family had one day. Use the story structure of the paragraph. It has 7 errors. All sentences should be in the past tense.
 - The dog was black and white. He loved to run and jump. He had a ball in his mouth that he would bring back to the house every day. One day, the dog was lost in the woods. His family searched for him for hours. Finally, they found him safe and sound.
 - Your errors: __________

3. Write an instruction about how to make a sandwich. Use the instruction structure of the paragraph. It has 7 errors. All sentences should be in the past tense.
 - To make a sandwich, first take two slices of bread. Then, put some peanut butter and jelly on one slice. Finally, put the peanut butter and jelly slice on top of the other slice of bread. Serve it with a side of chips.
 - Your errors: __________
Exercise on completing a story in Language for Writing.

Figure 25a

Exercise on describing feelings in Language for Writing.

Figure 25b

Students have to write at least two sentences about the picture, with one sentence describing the boy's feelings, which requires an inference by the student.

Figure 25c

Lessons 31-40

Example of an exercise on describing feelings in Language for Writing.

Figure 25d

Lessons 71-80

Example of an exercise on describing event sequence in Language for Writing.

Figure 25e

Lessons 125

Example of an exercise on continuing a story from Language for Writing.

Figure 24

Exercise 1

Proofreading

1. I'll read the instructions. Correct the errors in the paragraph. It has 7 errors. All sentences should be in the past tense.

 1. (Call on a student to read the first sentence of the paragraph.) We had a big storm last night.
 2. Everybody, does that sentence have any errors? (Signal.) Yes.
 3. What's the first error? (Call on a student. Idea: The word storm should be capitalized.)
 4. What's the next error? (Call on a student. Idea: The word storm should be capitalized.)
 5. Everybody, draw a line through those two words and write the correct words above them. (Observe students and give feedback.)

2. (Call on a student to read the second sentence.) The rain fell, the thunder boom and the lightning flash.

 2. Everybody, does that sentence have any errors? (Signal.) Yes.
 3. What's the first error? (Call on a student. Idea: The word boom should be boomed.)
 4. What's the next error? (Call on a student. Idea: The word flash should be flashed.)

3. (Call on a student to read the third sentence.) Many people and animals get wet.

 2. Everybody, does that sentence have any errors? (Signal.) Yes.
 3. What's the first error? (Call on a student. Idea: The word many should be capitalized.)
 4. What's the next error? (Call on a student. Idea: The verb get should be got.)

Lessons 11-20

Early lessons focus on the most basic writing skills. Here, students are asked to write two sentences describing the action in the picture. Their first sentence is to tell where the dog is, and the second sentence is to tell what the dog is doing.

Lessons 41-50

Here, the instructions are more general. Students are told only to write three sentences about what the boy will do. At this point, student writing begins to show varying sophistication. As with this paragraph using transitional words.

Lessons 71-80

At this stage, students are writing three or more sentences telling what happened before the event in the picture, requiring the ability to sequence events logically.
All investigations were selected using the First Search, ERIC, PsyCINFO, Education Ab, and ProQuest databases. Descriptions included the following: Direct Instruction, direct instruction, DISTAR Language, DISTAR Language I, DISTAR Language II, DISTAR Language III, Language for Learning, Language for Thinking, Language for Writing, language instruction, language development, expressive and receptive language development, and explicit instruction. Ancestral searches of reference lists were used to identify other possible research articles. In addition, hand searches were done of the following peer-reviewed journals: ADN News, Effective School Practices, and Journal of Direct Instruction.

The following section describes published research on the Direct Instruction language programs. The studies are grouped according to the population with whom the programs were implemented (i.e., students without disabilities [N = 7], students with disabilities [N = 8], students with and without disabilities [N = 2]).

In a climate where accountability has never counted more, Direct Instruction language programs are carefully structured to ensure success.
VII. Studies on Direct Instruction Language Programs

“Research is essential for identifying effective educational practices. Research, when it is based on sound scientific observations and analyses, provides reliable information about what works, why, and how it works. This information is essential to designing effective instruction and in demonstrating that it is, in fact, effective. Responsible decisions about what is good for students, therefore, require scientific evidence” (Reyna, 2004, p. 47).

In a climate where accountability has never counted more, Direct Instruction language programs are carefully structured to ensure success. Seventeen studies have been published in peer-reviewed journals, 16 of which were group design studies (pre-experimental, quasi-experimental, experimental) and one of which was single case (A-B). All examined the effectiveness of one or more of the Direct Instruction language programs across a wide variety of settings and populations. All studies are described in the narrative. Only the results of those investigations that isolated the effects of a Direct Instruction language program and used a control or comparison group are shown graphically (N = 8). All investigations were selected using the First Search, ERIC, Psych INFO, Education Abs, and ProQuest databases. Descriptions included the following: Direct Instruction, direct instruction, direct instruction, DISTINCT Language, DISTINCT Language I, DISTINCT Language II, DISTAR Language I, Language for Thinking, Language for Writing, language instruction, language development, expressive and receptive language development, and explicit instruction.

In a climate where accountability has never counted more, Direct Instruction language programs are carefully structured to ensure success.
Benner et al. (2002) investigated the effects of the entire Language for Learning program implemented over one academic year on the receptive language skills of Kindergarten children who lived in a small rural Midwestern town. Forty-five children participated across two elementary schools. The Language for Learning school included 21 children (mean age 5.50 years) while the comparison school, which used language development activities designed by the teachers, included 24 children (mean age 5.61 years).

Children were pretested and posttested with the Test of Auditory Comprehension of Language-3 (TACL-3). Results showed that children who received Language for Learning instruction had statistically higher gains on the TACL-3 than children in the comparison school (see Figure 26).

Beveridge and Jerrams (1981) compared the relative effects of a 12-week implementation of the DISTAR Language program only, the DISTAR Language program combined with the Parental Assistance Plan (PAP), the PAP only, and a control group that did not receive a language program. In all, 40 nursery school children ranging in age from three years, five months to four years, five months, from Manchester, England, were involved in the study. Ten children were assigned to each group; each child was matched with a child from each of the other groups. Thus, there were 10 matched quartets. All children were pretested and posttested immediately following the intervention as well as 18 months later on the Reynell Comprehension and Expressive Language Scales and the English Picture Vocabulary Test. Results showed that the DISTAR Language only, DISTAR Language plus PAP, and PAP-only groups scored higher than children in the control group (see Figure 27). However, only the children in the DISTAR Language plus PAP and PAP-only groups scored statistically significant gains as compared to the control group.

Darch, Gersten, and Taylor (1987) investigated the combined effects of Teaching Mastery, DISTAR Arithmetic, and DISTAR Language implemented over three years with over 600 African American students from low-income homes beginning with students who entered Grade 1 in 1969 or 1970. Three elementary schools participating—one located in a small town and two located in agricultural areas in South Carolina. The Metropolitan Achievement Test (MAT) (1973–1976), Comprehensive Test of Basic Skills (CTBS) (1973–1976), and the Stanford-Binet Intelligence Scale, PPVT, were administered as pretests and posttests for students in the experimental and comparison groups. Students received Direct Instruction language programs over a three-year period. The stability of the effects was assessed over a seven-year period. Results showed that students were more likely to graduate from high school. These findings suggest that the structured immersion approach using DISTAR programs increased the academic achievement of language minority students in Uvalde. These findings show that language achievement was at or near grade level for more than one decade.

Benner et al. (2002) study showing mean standard score gains on the Test of Auditory Comprehension of Language-3.

Benner et al. (2002) investigated the effects of the entire Language for Learning program implemented over one academic year on the receptive language skills of Kindergarten children who lived in a small rural Midwestern town. Forty-five children participated across two elementary schools. The Language for Learning school included 21 children (mean age 5.50 years) while the comparison school, which used language development activities designed by the teachers, included 24 children (mean age 5.61 years). Children were pretested and posttested with the Test of Auditory Comprehension of Language-3 (TACL-3). Results showed that children who received Language for Learning instruction had statistically higher gains on the TACL-3 than children in the comparison school (see Figure 26).

Beveridge and Jerrams (1981) compared the relative effects of a 12-week implementation of the DISTAR Language program only, the DISTAR Language program combined with the Parental Assistance Plan (PAP), the PAP only, and a control group that did not receive a language program. In all, 40 nursery school children ranging in age from three years, five months to four years, five months, from Manchester, England, were involved in the study. Ten children were assigned to each group; each child was matched with a child from each of the other groups. Thus, there were 10 matched quartets. All children were pretested and posttested immediately following the intervention as well as 18 months later on the Reynell Comprehension and Expressive Language Scales and the English Picture Vocabulary Test. Results showed that the DISTAR Language only, DISTAR Language plus PAP, and PAP-only groups scored higher than children in the control group (see Figure 27). However, only the children in the DISTAR Language plus PAP and PAP-only groups scored statistically significant gains as compared to the control group.

Darch, Gersten, and Taylor (1987) investigated the combined effects of Teaching Mastery, DISTAR Arithmetic, and DISTAR Language implemented over three years with over 600 African American students from low-income homes beginning with students who entered Grade 1 in 1969 or 1970. Three elementary schools participating—one located in a small town and two located in agricultural areas in South Carolina. The Metropolitan Achievement Test (MAT) (1973–1976), Comprehensive Test of Basic Skills (CTBS) (1973–1976), and the Stanford-Binet Intelligence Scale, PPVT, were administered as pretests and posttests for students in the experimental and comparison groups. Students received Direct Instruction language programs over a three-year period. The stability of the effects was assessed over a seven-year period. Results showed that students were more likely to graduate from high school. These findings suggest that the structured immersion approach using DISTAR programs increased the academic achievement of language minority students in Uvalde. These findings show that language achievement was at or near grade level for more than one decade.

Benner et al. (2002) study showing mean standard score gains on the Test of Auditory Comprehension of Language-3.
Benner et al. (2002) investigated the effects of the entire Language for Learning program implemented over one academic year on the receptive language skills of Kindergarten children who lived in a rural Midwestern town. Forty-five children participated across two elementary schools. The Language for Learning school included 23 children (mean age 5.5 years) while the comparison school, which used language development activities designed by the teachers, included 24 children (mean age 5.6 years). Children were pretested and posttested with the Test of Auditory Comprehension of Language-3 (TACL-3). Results showed that children who received Language for Learning instruction had statistically significant gains on the TACL-3 than children in the comparison school (see Figure 26).

Beveridge and Jerrams (1981) studied the effects of reading Mastery, DISTAR Arithmetic, and DISTAR Language implemented over three years with over 600 African American students from low-income homes beginning with students who entered Grade 1 in 1969 or 1970. Three elementary schools participated — one located in a small town and two located in agricultural areas in South Carolina. The Metropolitan Achievement Test (MAT) (1973–1976), Comprehensive Test of Basic Skills (CTBS) (1978–1980), Cooperative Self-Concept Inventory, and JARS, were administered as pretests and posttests for students in the experimental and comparison groups. Students received Direct Instruction language programs over a three-year period. The stability of the effects was assessed over a seven-year time period (1973–80). Results showed twice as many students in the local comparison group were more than one year below grade level (i.e., at risk for academic failure). There were large differences between the Direct Instruction language students and the comparison students on almost every subtest of the MAT (the one exception was Math Concepts). Consistent differences were found on the affective measures favoring the Direct Instruction language students. Also, the Direct Instruction language students had a much greater percentile change on the MAT Total Reading, Math, and Language (1973–1976) and CTBS Total Reading, Math, and Language (1978–1980) subtests than did the control group over the seven years as compared to the control group.

Through. Structured immersion was defined as teaching new content in English comprehended by students — difficult words were pretaught to students, sometimes in their native language. Thus, prompts in Spanish were provided when necessary. Students were from low-income households (85% eligible for free lunch) and Hispanic, with 60–80% classified as limited English proficient (LEP). DISTAR Language, Reading, and Arithmetic programs were used. At the end of Grade 3, the Uvalde students achieved above or near the national norm on the Language subscores of the Metropolitan Achievement Test (MAT). These students were followed up in Grades 5 and 6, with educationally significant (above 0.25 noted by Adams and Engelmann, 1996) findings noted for the MAT Language subscore for students in Grade 6. Finally, a preliminary analysis of the effects of those receiving DISTAR programs in Follow-Through through the high school years was conducted. Results revealed that these students were more likely to receive a high school diploma, less likely to be retained in any grade, and had better attendance. Further, these students were more likely to graduate from high school. These findings suggest that the structured immersion approach using DISTAR programs increased the academic achievement of the language minority students in Uvalde. These findings show that language achievement was at or near grade level for more than one decade.

Muthukrishna and Naidoo (1987) investigated the effects of the DISTAR Language I program with disadvantaged Indian preschoolers (age range four to five years) in South Africa. Six students were taught with the DISTAR Language I program and five children received instruction using a teacher-developed semi-structured program every day for 30 to 35 minutes for about 12 months. The authors reported that both groups had gains in intelligence, expressive and receptive language, and vocabulary as measured by the Stanford Binet Intelligence Scale, PPVT, and Reynell Developmental Scales—Revised (see Figure 28). The DISTAR Language I group had greater gains than did the semi-structured (comparison) group on all measures.
Sassenrath and Maddux (1974) implemented DISTAR Language, the Peabody Language Development Program, and the Standard Method Language Development over one academic year. Ninety-eight kindergarteners from economically and educationally disadvantaged neighborhoods across seven elementary schools (11 classrooms) in a small city/rural school district participated. (Note: There was no information on the number of students/classesrooms exposed to each program.) Fifty-five of the students were monolingual (English), while 43 were bilingual (English and Spanish). All students were given the School Readiness Survey, Wepman Auditory Discrimination Test, and Illinois Test of Psycholinguistic Abilities as pretests and posttests. Students in all groups made gains on nearly all measures. There were statistically significant differences favoring the DISTAR Language and Standard Method programs in the areas of Speaking Vocabulary, errors in Auditory Differences, and errors in Auditory Similairties (see Figure 29). Statistically significant differences were found in favor of the Standard Method program for Manual Expression.

Wheldall and Wheldall (1984) implemented DISTAR Language I and Shiach’s Teach Them to Speak program for eight weeks with 16 children (age three years, nine months to four years, nine months). Children were randomly assigned to one of the programs (eight per program). From there, all children were randomly assigned to be taught by the teacher or nurse (thus, four children participated in each of the subgroups). Another group of 12 children who had 12 or more errors on the DISTAR Placement Test, and whose raw scores on the EPVT were so low that a vocabulary age could not be calculated, were provided the DISTAR Language I program by either a teacher (N = 6) or nurse (N = 6). The DISTAR Placement Test, EPVT, Sentence Comprehension Test, British Ability Scales, and Illinois Test of Psycholinguistic Abilities (ITPA) were administered to all children as pretests and posttests. Results showed no statistically significant differences between the programs with the exception of “marginally significant” results on the EPVT Raw Score and ITPA Auditory Reception subtests favoring Shiach’s Teach Them To Speak program. However, the authors argued that these results were likely due to chance factors, rather than differential effects of the programs. Statistically significant increases were observed from pretests to posttests for both programs on several of the measures (see Figure 30). Finally, there were no statistically significant differences between groups taught by the teacher and those taught by the nurse.

Overall, the results of these studies suggest that Direct Instruction language programs are as effective or more effective than other language programs.

Students in all groups made gains on nearly all measures. There were statistically significant differences favoring the DISTAR Language and Standard Method programs in the areas of Speaking Vocabulary, errors in Auditory Differences, and errors in Auditory Similarities.
Sassenrath and Maddux (1974) implemented DISTAR Language, the Peabody Language Development Program, and the Standard Method Language Development over one academic year. Ninety-eight Kindergarteners from economically and educationally disadvantaged neighborhoods across seven elementary schools (11 classrooms) in a small city/rural school district participated. (Note: There was no information on the number of students/classrooms exposed to each program.) Fifty-five of the students were monolingual (English), while 43 were bilingual (English and Spanish). All students were given the School Readiness Survey, Wepman Auditory Discrimination Test, and Illinois Test of Psycholinguistic Abilities as pretests and posttests. Students in all groups made gains on nearly all measures. There were statistically significant differences favoring the DISTAR Language and Standard Method programs in the areas of Speaking Vocabulary, errors in Auditory Differences, and errors in Auditory Similarities (see Figure 29). Statistically significant differences were found in favor of the Standard Method program for Manual Expression.

Students in all groups made gains on nearly all measures. There were statistically significant differences favoring the DISTAR Language and Standard Method programs in the areas of Speaking Vocabulary, errors in Auditory Differences, and errors in Auditory Similarities.

Wheldall and Wheldall (1984) implemented DISTAR Language I and Shiach’s Teach Them To Speak program for eight weeks with 16 children (age three years, nine months to four years, nine months). Children were randomly assigned to one of the programs (eight per program). From there, all children were randomly assigned to be taught by the teacher or nurse (thus, four children participated in each of the subgroups). Another group of 12 children who had 12 or more errors on the DISTAR Placement Test, and whose raw scores on the EPVT were so low that a vocabulary age could not be calculated, were provided the DISTAR Language I program by either a teacher (N = 6) or nurse (N = 6). The DISTAR Placement Test, EPVT, Sentence Comprehension Test, British Ability Scales, and Illinois Test of Psychological Abilities (ITPA) were administered to all children as pretests and posttests. Results showed no statistically significant differences between the programs with the exception of “marginally significant” results on the EPVT Raw Score and ITPA Auditory Reception subtest favoring Shiach’s Teach Them To Speak program. However, the authors argued that these results were likely due to chance factors, rather than differential effects of the programs. Statistically significant increases were observed from pretests to posttests for both programs on several of the measures (see Figure 30). Finally, there were no statistically significant differences between groups taught by the teacher and those taught by the nurse.

Overall, the results of these studies suggest that Direct Instruction language programs are as effective or more effective than other language programs.
Baldie Language Ability Test

Learning classes were also administered at various times throughout the study. Before the study, students progressed at an average rate of two months for every five months of instruction. After the

Schonell Word Recognition Test

Basic Language Concepts Test, and

Peabody Picture Vocabulary Test-Revised, Test of Early

Determine the relative effectiveness of Direct Instruction programs versus Mediated Learning.

Both groups had gains on several measures. No statistically significant differences were found between the two programs except for the

Peabody Language kit

Northwest Syntax Screening Test

Booth, Hewitt, Jenkins, and Maggs (1979) investigated the long-term effects of a five-year program in DISTAR Language I–III and DISTAR Reading I–III. Twenty-five students with mental retardation, ranging in age from 8 to 14 years (IQ range 35 to 55) received instruction in DISTAR Language and Reading over a five-year period. The PPVT was administered at the end of each school year. DISTAR mastery tests in language and reading, and the SIA Word Recognition Test were also administered at various times throughout the study. Before the study, students progressed at an average rate of two months for every five months of instruction. After the

DISTAR programs were implemented, the authors reported that the students gained an average of 34 language age months in the actual 32 months of instruction. Many of the students were performing at approximately Grades 3–4 levels in language and reading at the conclusion of the study. The

DISTAR Language students outperformed typical children in 31 of the 66 objectives on the Baldie Language Ability Test.

Cole and Dale (1986) compared the effects of DISTAR Language I with Interactive Language Instruction implemented two hours per day, five days per week for 32 weeks with 44 preschoolers with language delays (i.e., 1.5 standard deviations below the mean for their chronological age). These children ranged in age from 34 to 69 months and attended the Experimental Education Unit at the University of Washington. All children were randomly assigned to one of five classrooms. Two classrooms used the DISTAR Language program (N = 19) and three classrooms used the Interactive Language Instruction program. Children were pretreated and posttested with a variety of language assessments including measures of mean length of utterance (MLU), developmental sentence scoring (DSSS), Preschool Language Scale (Auditory Comprehension subtests), Preschool Language Scale (Oral), Basic Language Concepts (BLC), Northwestern Syntax Screening Test (Receptive subtests), and PPr.T.

Table 1 — Characteristics of studies investigating DISTAR Language programs (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>DI Program</th>
<th>n</th>
<th>Participants</th>
<th>Research Design</th>
<th>Research Purpose</th>
<th>Research Purpose</th>
<th>Intervention Details</th>
<th>Outcome Measures</th>
<th>Findings</th>
</tr>
</thead>
</table>
| DISTAR Language I, II, III (1982) | DISTAR Language I, II, III | 83 | Kindergarten (for five years), 3 preschool, 1 Kindergarten (mean age 4.9 years) per year) | Experimental — Pretest/posttest: Stanford-Binet Intelligence Test (P-level) or programs utilizing some components of the Interactive Language Instruction program. (SeeCole & Dale (1986)) | Determine the long-term effectiveness of DISTAR Language I, II, III and Interactive Language Instruction in improving language skills of children with moderate to severe retardation. | Interactive language instruction (DISTAR Language I, II, III) and Interactive Language Instruction implemented one hour per preschool day over a two year period (experimental group) and DISTAR Language I, II, III and Interactive Language Instruction implemented one hour per preschool day over a two year period (control group). | Improvement in language mastery. | DISTAR Language I, II, III and Interactive Language Instruction significantly outperformed "normal" children on 31 of 66 objectives on the PEABODY LANGUAGE KIT.

Jenkins (1993) investigated the effectiveness of DISTAR Language I, II, III and Interactive Language Instruction implemented one hour per preschool day over a two year period (control group). | | | | | | | | | |
Children with Disabilities

Eight studies were found examining the effectiveness of Direct Instruction language programs with children with disabilities. Table 2 shows these investigations.

Table 2 — Characteristics of studies investigating Direct Instruction language programs with children with disabilities (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>DI Program</th>
<th>n</th>
<th>Participants</th>
<th>Research Design</th>
<th>Research Purpose</th>
<th>Intervention Details</th>
<th>Outcome Measures</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cole & Dale (1986)</td>
<td>DISTAR Language I, II, III</td>
<td>107</td>
<td>(55 in Direct Instruction programs, 52 in Mediated Learning program)</td>
<td>Pre-experimental — One group pre-tested and post-tested</td>
<td>Determine the long-term effectiveness of DISTAR language programs with children with disabilities</td>
<td>Stanford-Binet Intelligence Scale, Piaget’s Class Inclusion, Matrix, Piaget’s Seriation, and Stanford Early Reading Ability</td>
<td>No statistically significant differences between the two groups on any measure of reading instruction or performance.</td>
<td>No statistically significant differences between the two groups on any measure of reading instruction or performance.</td>
</tr>
<tr>
<td>Spellman, Jenkins, & Maggs (1979)</td>
<td>DISTAR Language I, II, III</td>
<td>83</td>
<td>(25 in DISTAR Language I, 25 in DISTAR Language II, 33 in DISTAR Language III)</td>
<td>Pre-experimental — Two groups pre-tested and post-tested</td>
<td>Determine the effectiveness of DISTAR language programs with children with disabilities</td>
<td>Stanford-Binet Intelligence Scale, Peabody Language, 14 in DISTAR Language I, 14 in DISTAR Language II, 14 in DISTAR Language III</td>
<td>No statistically significant differences between the two groups on any measure of reading instruction or performance.</td>
<td>No statistically significant differences between the two groups on any measure of reading instruction or performance.</td>
</tr>
<tr>
<td>Booth, Hewitt, Jenkins, & Maggs (1979)</td>
<td>DISTAR Language I, II, III</td>
<td>107</td>
<td>(55 in Direct Instruction programs, 52 in Mediated Learning program)</td>
<td>Pre-experimental — One group pre-tested and post-tested</td>
<td>Determine the long-term effectiveness of DISTAR language programs with children with disabilities</td>
<td>Stanford-Binet Intelligence Scale, Peabody Language, 14 in DISTAR Language I, 14 in DISTAR Language II, 14 in DISTAR Language III</td>
<td>No statistically significant differences between the two groups on any measure of reading instruction or performance.</td>
<td>No statistically significant differences between the two groups on any measure of reading instruction or performance.</td>
</tr>
<tr>
<td>Spellman, Jenkins, & Maggs (1979)</td>
<td>DISTAR Language I, II, III</td>
<td>83</td>
<td>(25 in DISTAR Language I, 25 in DISTAR Language II, 33 in DISTAR Language III)</td>
<td>Pre-experimental — Two groups pre-tested and post-tested</td>
<td>Determine the effectiveness of DISTAR language programs with children with disabilities</td>
<td>Stanford-Binet Intelligence Scale, Peabody Language, 14 in DISTAR Language I, 14 in DISTAR Language II, 14 in DISTAR Language III</td>
<td>No statistically significant differences between the two groups on any measure of reading instruction or performance.</td>
<td>No statistically significant differences between the two groups on any measure of reading instruction or performance.</td>
</tr>
<tr>
<td>Spellman, Jenkins, & Maggs (1979)</td>
<td>DISTAR Language I, II, III</td>
<td>83</td>
<td>(25 in DISTAR Language I, 25 in DISTAR Language II, 33 in DISTAR Language III)</td>
<td>Pre-experimental — Two groups pre-tested and post-tested</td>
<td>Determine the effectiveness of DISTAR language programs with children with disabilities</td>
<td>Stanford-Binet Intelligence Scale, Peabody Language, 14 in DISTAR Language I, 14 in DISTAR Language II, 14 in DISTAR Language III</td>
<td>No statistically significant differences between the two groups on any measure of reading instruction or performance.</td>
<td>No statistically significant differences between the two groups on any measure of reading instruction or performance.</td>
</tr>
<tr>
<td>Spellman, Jenkins, & Maggs (1979)</td>
<td>DISTAR Language I, II, III</td>
<td>83</td>
<td>(25 in DISTAR Language I, 25 in DISTAR Language II, 33 in DISTAR Language III)</td>
<td>Pre-experimental — Two groups pre-tested and post-tested</td>
<td>Determine the effectiveness of DISTAR language programs with children with disabilities</td>
<td>Stanford-Binet Intelligence Scale, Peabody Language, 14 in DISTAR Language I, 14 in DISTAR Language II, 14 in DISTAR Language III</td>
<td>No statistically significant differences between the two groups on any measure of reading instruction or performance.</td>
<td>No statistically significant differences between the two groups on any measure of reading instruction or performance.</td>
</tr>
</tbody>
</table>
Results indicated statistically significant differences between pretest and posttest performance for both groups (see Figure 31). The DISTAR Language 1 program outperformed the Interactive Language Instruction program on eight of the nine measures. However, both programs were effective and showed no statistically significant differences between them.

![Figure 31](image)

Figure 31

BLCT: Basic Learning Concepts Test

Table 3.1

<table>
<thead>
<tr>
<th>Program</th>
<th>MLU</th>
<th>DSS</th>
<th>PLS</th>
<th>BLCT</th>
<th>NSST</th>
<th>PPVT-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Instruction</td>
<td>12</td>
<td>16</td>
<td>18</td>
<td>0.80</td>
<td>0.57</td>
<td>-0.07</td>
</tr>
<tr>
<td>Mediated Learning</td>
<td>8.90</td>
<td>7.45</td>
<td>12.53</td>
<td>0.81</td>
<td>11.15</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Cole and Dale (1986) study displaying pretest–posttest gain scores.

Cole, Dale, and Mills (1993) compared the effects of Direct Instruction (DISTAR Language, Arithmetic, and DISTAR Reading) to Mediated Learning. Programs were implemented two hours a day, five days per week over 180 days (preschool) and 5.5 hours a day, five days per week over 180 days (Kindergarten). The study was conducted over a four-year period with 164 preschool or Kindergarten children (three to seven years of age, mean age 4.75 years) with developmental delays in language (mean IQ was 76.03). Children were randomly assigned to either a classroom using Direct Instruction programs or a classroom using Mediated Learning. All children were instructed at a laboratory school (three preschool classrooms and one Kindergarten classroom per year per program). The PPVT-R, TELD, MSCA, PLAI, MLU, and BLCT were administered as pretests and posttests.

Results showed no statistically significant differences on language, cognitive, or other measures between the groups. However, higher performing children gained more from Direct Instruction, while lower performing children gained more from Mediated Learning.

Dale and Cole (1988) compared the effects of Direct Instruction (DISTAR Language, Arithmetic, and Reading) to Mediated Learning. The programs were implemented two hours a day, five days per week over 180 school days (preschool) and 5.5 hours a day, five days per week over 180 school days (Kindergarten). Eighty-three children (61 preschool, 22 Kindergarten) with developmental delays in language (mean IQ was 75.5) were administered as pretests and posttests. Results showed statistically significant increases from pretest to posttest assessments for both programs on the following measures: MSCA General Cognitive Index, PPVT-R Raw Score, PPVT-R Standard Score, TELD (Quotient Score; TELD Raw Score, PLAI, and BLCT). No statistically significant differences between the Direct Instruction and Mediated Learning were found on language, cognitive, or other measures except for the PPVT-R Standard Score favoring the Mediated Learning group. However, children who scored higher initially on the MSCA General Cognitive Index and PLAI gained more from the Direct Instruction programs in language development, while lower performing children gained better on the posttest in Direct Instruction on 18 of the 24 analyses.

Gersten and Maggs (1982) investigated the long-term effects of an intensive five-year program in DISTAR Language 1-III and DISTAR Reading 1-III in Sydney, Australia. Twelve children with mental retardation ranging in age from six years, ten months to twelve years, six months received instruction in the three levels of DISTAR Language and Reading for an average of 30 minutes per day over approximately 195 instructional days during a five-year period. The Stanford-Binet Intelligence Test (pretest and posttest) and PPVT, Balodie Language Ability Test, and Neale Analysis of Reading Ability (posttest only) were administered. Results indicated statistically significant gains on the Stanford-Binet Intelligence Test from 41.9 (44.8 when adjusted for regression) to 50.6 (1.08 standard deviation gain from pretest to posttest: 0.36 standard deviation gain when compared to normative group). There were significant differences between the children with mental retardation in this study and children without disabilities from the normative sample in Sydney on nine of the 66 objectives on the Balodie Language Ability Test (five favoring children with mental retardation, four favoring children without disabilities).

Giang, Singer, Clokey, and Tish (1992) provided DISTAR Language I and DISTAR Reading I to a six-year-old girl with a traumatic brain injury (12 months post-injury) two to three times per week for a total of 12 instructional sessions. The girl’s full-scale IQ score was 65. She was at the second percentile on the Vocabulary and Similarities subtest and at the first percentile on the Comprehension subtest of the Wechsler Preschool and Primary Scale of Intelligence. Data were gathered on the percentage of words correctly repeated in complete sentences and the number of sounds read correctly. The girl’s percentage of words correctly repeated increased from an average of 47.9% during baseline to 72.8% during instruction. She also increased in the number of sounds read correctly from zero sounds during baseline to an average of 6.2 during instruction.

Maggs and Morath (1976) assessed the differential effects of the DISTAR Language I program and Peabody Language program with 28 children (ages ranging from eight to 16 years) with moderate to severe retardation who were institutionalized for a period of five years in Stockton and Marion Hospital schools in South Wales. Fourteen children were randomly selected from the two institutions and received DISTAR Language I for one hour per school day over a two-year period. Fourteen other children were randomly selected from the same institutions and received instruction from the standard curriculum (i.e., Peabody Language [P-level] or some components of the Peabody Language program with variations). All participants were pretested and posttested with the Basic Concept Inventory, Reynell Verbal Comprehension Test, Stanford-Binet Intelligence Test, Piaget’s Class Inclusion, Piaget’s Seriation, and Bruner’s Matrix. Significantly greater gains were observed for students instructed with DISTAR Language I than students instructed with the Peabody Language program on all six dependent measures (see Figure 32). Overall, the results of these studies suggest that Direct Instruction language programs are as effective or more effective than other language programs.
Cole and Dale (1986) study displaying pretest–posttest performance for both groups (see Figure 31). The DISTAR Language I program outperformed the Interactive Language Instruction program on eight of the nine measures. However, both programs were effective and showed no statistically significant differences between them.

Cole and Dale (1986) study displaying pretest–posttest performance for both groups (see Figure 31). The DISTAR Language I program outperformed the Interactive Language Instruction program on eight of the nine measures. However, both programs were effective and showed no statistically significant differences between them.

Cole, Dale, Mills, and Jenkins (1993) compared the effects of Direct Instruction (DISTAR Language, Arithmetic, and Reading) to Mediated Learning. The programs were implemented two hours a day, five days per week over 180 days (preschool) and 5.5 hours per week over 180 days (Kindergarten). The study was conducted over a four-year period with 164 preschool or Kindergarten children (three to seven years of age, mean age 4.75 years) with developmental delays in language (mean IQ was 76.03). Children were randomly assigned to either a classroom using Distar Direct Instruction programs or a classroom using Mediated Learning. All children were instructed at a laboratory school (three preschool classrooms and one Kindergarten classroom per year per program). The PPVT-R, TELD, MSCA, PLAI, MLU, and BLCT were administered as pretests and posttests. Results showed no statistically significant differences on language, cognitive, or other measures between the groups. However, higher performing children gained more from Direct Instruction, while lower performing children gained more from Mediated Learning.

Cole, Dale, Mills, and Jenkins (1993) compared the effects of Direct Instruction (DISTAR Language, Arithmetic, and Reading) to Mediated Learning. The programs were implemented two hours a day, five days per week over 180 days (preschool) and 5.5 hours per week over 180 days (Kindergarten). The study was conducted over a four-year period with 164 preschool or Kindergarten children (three to seven years of age, mean age 4.75 years) with developmental delays in language (mean IQ was 76.03). Children were randomly assigned to either a classroom using Distar Direct Instruction programs or a classroom using Mediated Learning. All children were instructed at a laboratory school (three preschool classrooms and one Kindergarten classroom per year per program). The PPVT-R, TELD, MSCA, PLAI, MLU, and BLCT were administered as pretests and posttests. Results showed no statistically significant differences on language, cognitive, or other measures between the groups. However, higher performing children gained more from Direct Instruction, while lower performing children gained more from Mediated Learning.

Figure 32 shows no statistically significant differences between the Direct Instruction and Mediated Learning programs were as effective or more effective than students instructed with the Peabody Language program.

Giang, Singler, Cookley, and Tish (1992) provided DISTAR Language I and DISTAR Reading I to a six-year-old girl with a traumatic brain injury (12 months post-injury) two to three times per week for a total of 12 instructional sessions. The girl’s full-scale IQ score was 65. She was at the second percentile on the Vocabulary and Similarities subtests and at the first percentile on the Comprehension subtest of the Wechsler Preschool and Primary Scale of Intelligence. Data were gathered on the percentage of words correctly repeated in complete sentences and the number of sounds read correctly. The girl’s percentage of words correctly repeated increased from an average of 47.9% during baseline to 72.8% during instruction. She also increased in the number of sounds read correctly from zero sounds during baseline to an average of 6.2 during instruction.

Maggs and Morath (1976) assessed the differential effects of the DISTAR Language I program and Peabody Language program with 28 children (ages ranging from eight to 16 years) with moderate to severe retardation who were institutionalized for a period of five years in Stockton and Morden Hospital schools in South Wales. Fourteen children were randomly selected from the two institutions and received DISTAR Language I for one hour per school day over a two-year period. Fourteen other children were randomly selected from the same institutions and received instruction from the standard curriculum (i.e., Peabody Language [P-level] or some components of the Peabody Language program with variations). All participants were pretested and posttested with the Basic Concept Inventory, Reynell Verbal Comprehension Test, Stanford-Binet Intelligence Test, Peabody’s Clasp Inclusion, Peabody’s Sequencing, and Bruner’s Matrix. Significantly greater gains were observed for students instructed with DISTAR Language I than students instructed with the Peabody Language program on all six dependent measures (see Figure 32).

Overall, the results of these studies suggest that Direct Instruction language programs are as effective or more effective than other language programs.
Children with and without Disabilities

Two studies were found examining the effectiveness of Direct Instruction language programs in children with and without disabilities. Table 3 describes these investigations.

Table 3 - Characteristics of studies investigating Direct Instruction language programs with children with and without disabilities

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Research Design</th>
<th>Research Program</th>
<th>Intervention Details</th>
<th>Outcome Measures</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martella & Waldron-Soler (2002)</td>
<td>126 students in Grades 2–5 (105 general education students in Grades 2–3 and 21 special education resource room students in Grades 3–5) (at least 60% African American and/or Hispanic). Ten classrooms participated from the following locations: two in the Pacific Northwest, one in the West, four in the Southwest, two in the Midwest, and one in the South. Classrooms one through five received five months of the program (Evaluation I). Classroom six received 14 months of the program (Evaluation II). Classrooms seven through ten received nine months of the program (Evaluation II).</td>
<td>Pre-experimental - one group pretest-posttest</td>
<td>Language for Writing</td>
<td>No special education students were included in the comparison group. The authors noted that English-Language learners made educationally significant improvements in all three measures of writing.</td>
<td></td>
<td>Overall, the results of these studies suggest that Direct Instruction language programs are effective.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Waldron-Soler et al. (2002) investigated the effects of a 15-week implementation of the Language for Learning program on the language and social interaction skills of children in an integrated preschool located in the Pacific Northwest. A total of 36 students were involved (28 children without developmental delays and eight children with developmental delays). Three preexisting groups were replicated and posttested on the following measures: Peabody Picture Vocabulary Test Third Edition (PPVT-III), Expressive Vocabulary Test, and Social Skills Rating System (SSRS). Preschool Teacher Questionnaire. Preschool A (N = 16, 12 children without developmental delays and four with developmental delays) received the Language for Learning program. Preschool B (N = 16, all without developmental delays) and Preschool C (N = 4, all with developmental delays) received standard early childhood education programs. Results showed that children with developmental delays who were instructed with Language for Learning had greater improvement in receptive and expressive language skills and social interaction skills than children in the comparison group (see Figure 33). Children instructed with Language for Learning had reduced problem behaviors as measured by the SSRS compared to those in the comparison group. Additionally, children without developmental delays who received instruction in Language for Learning outperformed the comparison group on all measures; however, the statistical significance levels were reached for only receptive language (as measured on the PPVT-III) and social interaction skills (as measured by the SSRS). Overall, the results of these studies suggest that Direct Instruction language programs are effective.</td>
</tr>
</tbody>
</table>

Martella and Waldron-Soler (in press) conducted an 18-month program evaluation of the Language for Writing program with 126 students in Grades 2–5 (105 general education students in Grades 2–3 and 21 special education resource room students in Grades 3–5) (at least 60% African American and/or Hispanic). Ten classrooms participated from the following locations: two in the Pacific Northwest, one in the West, four in the Southwest, two in the Midwest, and one in the South. Classrooms one through five received five months of the program (Evaluation I). Classroom six received 14 months of the program (Evaluation II). Classrooms seven through ten received nine months of the program (Evaluation II). All students were pretested and posttested using the TOWL-J. Data was also gathered on errors, lesson duration, lesson ratings, mastery test performance, and social validity. Statistically significant gains from pretest to posttest were found for all classrooms involved in the evaluation on the TOWL-J. Effect sizes ranged from 0.45 (Contrived Writing) to 1.29 (Spontaneous Writing) for general education students in Evaluation I and 0.43 (Contrived Writing) to 1.67 (Spontaneous Writing) for Evaluation II. Students in special education settings closed the gap between their performance and that of the normative sample. The authors noted that English-Language learners made educationally significant improvements in all three measures of writing.
Effect sizes ranged from 0.45 (Contrived Writing) to 1.29 (Spontaneous Writing) for general education students in Evaluation I and 0.43 (Contrived Writing) to 1.67 (Spontaneous Writing) for Evaluation II. Students in special education settings closed the gap between their performance and that of the normative sample. The authors noted that English-Language learners made educationally significant improvements in all three measures of writing.

Waldron-Soler et al. (2002) investigated the effects of a 15-week implementation of the Language for Learning program on the language and social interaction skills of children in an integrated preschool located in the Pacific Northwest. A total of 36 students were involved (28 children without developmental delays and eight children with developmental delays). Three preexisting groups were pretrained and posttested on the following measures: Peabody Picture Vocabulary Test Third Edition (PPVT-III), Expressive Vocabulary Test, and Social Skills Rating System (SSRS): Preschool Teacher Questionnaire. Preschool A (N = 16, all without developmental delays) and Preschool B (N = 16, all without developmental delays) received the Early Language for Learning program. Preschool C (N = 4, all with developmental delays) received standard early childhood education programs.

Results showed that children with developmental delays who were instructed with Language for Learning had greater improvement in receptive and expressive language skills and social interaction skills than children in the comparison group (see Figure 33). Children instructed with Language for Learning had reduced problem behaviors as measured by the SSRS compared to those in the comparison group. Additionally, children without developmental delays who received instruction in Language for Learning outperformed the comparison group on all measures; however, the statistical significance levels were reached for only receptive language (as measured on the PPVT-III) and social interaction skills (as measured by the SSRS).

Overall, the results of these studies suggest that Direct Instruction language programs are effective.

Table 3 - Characteristics of studies investigating Direct Instruction language programs with children with and without disabilities

<table>
<thead>
<tr>
<th>Study</th>
<th>Interventions Details</th>
<th>Intervention Details</th>
<th>Outcome Measures</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martella & Marchand-Martella (2002)</td>
<td>Language for Learning</td>
<td>Baseline - 3 months without developmental delays</td>
<td>Preschool B (N = 16, all without developmental delays) and Preschool C (N = 4, all with developmental delays) received standard early childhood education programs.</td>
<td>Children with disabilities instructed with Language for Learning made greater gains on all three measures than their matched peers (all with developmental delays). No differences were observed between Language for Learning (LFL) and the comparison group (CG) compared to the baseline group.</td>
</tr>
</tbody>
</table>

Figure 33

Note: PPVT-III = Peabody Picture Vocabulary Test-III; EVT = Expressive Vocabulary Test; SSRS = Social Skills Rating System. Lower scores refer to less problem behavior.

Waldron-Soler et al. (2002) study illustrating pretest/posttest gain scores.
(VIII. References

(Note: * indicates the studies included in the research review)

Arnab, E. (2004). When are poor reading skills a threat to educational achievement? Reading and Writing, 17(5), 495-492.

VIII. References

(Note: * indicates the studies included in the research review)

Arnbak, E. (2004). When are poor reading skills a threat to educational achievement? Reading and Writing, 17(5), 495-492.

*Martella, T. A. Slocum, & R. C. Martella (Eds.), Introduction to Direct Instruction, 7(2), 337-372.

Direct Instruction
Language Programs

Provide research-based, proven tools for success.

In a climate where accountability has never counted more, numerous studies document the effectiveness of Direct Instruction. The programs that make up the Direct Instruction language curriculum — Language for Learning, Language for Thinking, and Language for Writing — address the important elements of instructional language as well as broader knowledge of the words and sentence structures relevant to reading comprehension and writing.

Discover the research base and validation that suggest these Direct Instruction programs can close the achievement gap for a wide range of students.

References:

Direct Instruction
Language Programs

Provide research-based, proven tools for success.

In a climate where accountability has never counted more, numerous studies document the effectiveness of Direct Instruction. The programs that make up the Direct Instruction language curriculum — Language for Learning, Language for Thinking, and Language for Writing — address the important elements of instructional language as well as broader knowledge of the words and sentence structures relevant to reading comprehension and writing.

Discover the research base and validation that suggest these Direct Instruction programs can close the achievement gap for a wide range of students.