Lesson 50

Say the base and exponent for that group. (Signal.) 10³.
- How many 10s are in the other group? (Signal.) 3.
- Say the base and the exponent for that group. (Signal.) 10².
- So $10^3 \times 10^3 = 10^6$.
- What's another way of showing 10⁶? (Signal.) $10^3 \times 10^3$.
- So if the base number is shown 6 times, the exponents must add up to 6.
- If the base is shown 6 times, what must the exponents add up to? (Signal.) 6.
- If the base is shown 9 times, what must the exponents add up to? (Signal.) 9.
- If the base is shown 5 times, what must the exponents add up to? (Signal.) 5.
- (Repeat step f until firm.)

Exercise 1

EXPONENTS

In Groups

- Textbook practice —

a. Open your textbook to lesson 50, part 1. √
 - (Teacher reference:)

 | $10 \times 10 \times 10 \times 10 \times 10 \times 10 = 10^6$ |
 | (10×10)×(10×10×10×10×10×10) = 10^6 |
 | $10^2 \times 10^3 = 10^5$ |
 | (10×10)×(10×10×10×10×10×10) = 10^6 |
 | $10^3 \times 10^3 = 10^6$ |

- You’ve learned how to express repeated multiplication as a base and exponent.

b. The first equation shows a set of 10s.
 - What’s the base? (Signal.) 10.
 The base is 10. The base is shown 6 times.
 - So what’s the exponent? (Signal.) 6.
 So the whole set is 10⁶.

 c. Below is the same set of 10s in 2 groups.
 The groups are multiplied together. How many 10s are multiplied in the first group? (Signal.) 2.
 So that group equals 10².
 - Say the base and exponent for that group. (Signal.) 10².
 - Look at the next group. √
 How many 10s are in the second group? (Signal.) 4.
 - Say the base and exponent for that group. (Signal.) 10⁴.
 So another way to show 10⁵ is $10^2 \times 10^4$.
 - What’s another way of showing 10⁶? (Signal.) $10^2 \times 10^4$.
 - (Repeat step c until firm.)

d. The next box shows the same set of 10s in different groups.
 - How many 10s are in the first group? (Signal.) 3.

- Textbook practice —

a. Find part 2. √
 - For each item, you’ll write the complete equation with exponents.

b. Problem A. The multiplication shows 8 seven times.
 - Say the base and exponent for all the 8s. (Signal.) 8^7.
 So no matter how the 8s are multiplied together, the exponents must add up to 7.
 - You can see the groups set off with parentheses.
 - Touch the first group. √
 Tell me the base and exponent you’ll write for the first group. (Signal.) 8^2.
 - Next group.
 Tell me the base and exponent. (Signal.) 8^3.
 - Last group.
 Tell me the base and exponent. (Signal.) 8^2.
 - The exponents are 2 and 3 and 2. Do the exponents add up to 7? (Signal.) Yes.
 - So the whole equation is $8^7 = 8^2 \times 8^3 \times 8^2$.
 - The exponents are 2 and 3 and 2. Do the exponents add up to 7? (Signal.) Yes.

 c. Say the equation. (Signal.) $8^7 = 8^2 \times 8^3 \times 8^2$.
 - Write that equation. Pencils down when you’re finished. √
Lesson 50

- (Write on the board:)

 a. \[8^2 = 8^3 \times 8^2\]

- Here’s what you should have.

- (Write on the board:)

 b. \[7^5 = 7^3 \times 7^2\]

- Here’s what you should have.

- (Write on the board:)

 c. \[9^9 = 9^2 \times 9^2 \times 9^3\]

 d. Write the complete equation for problem B. Pencils down when you’re finished. (Observe students and give feedback.)

- (Write on the board:)

 e. \[5^4 = 5^2 \times 5^2\]

 f. Write the complete equation for the rest of the items in part 2. Pencils down when you’re finished. (Observe students and give feedback.)

- (Write on the board:)

 g. \[10^8 = 10^3 \times 10^3 \times 10^2\]

- g. Raise your hand if you got everything right. √

Exercise 2

CIRCUMFERENCE/DIAMETER

- Textbook practice —

 a. Find part 3. √

 b. You’re going to work problems that start with the equation for the circumference of a circle.

 - What’s the name for 3.14? (Signal.) \(\pi\).

 - Say the equation for the circumference of a circle. (Signal.) \(C = \pi D\).

 - For some problems, you’ll find the diameter. For others, you’ll find the circumference.

 c. Touch circle A. √

 - What is given, the circumference or the diameter? (Signal.) Circumference.

 - So you solve for the diameter.

 - What do you solve for? (Signal.) Diameter.

 d. Circle B. What is given, the circumference or the diameter? (Signal.) Diameter.

 e. Circle C. What is given? (Signal.) Circumference.

 f. Circle D. What is given? (Signal.) Diameter.

 g. Circle E. What is given? (Signal.) Circumference.

 h. Work problem A. Use the \(\pi\) key on your calculator. Pencils down when you’re finished. (Observe students and give feedback.)

 i. Work problem B. Pencils down when you’re finished. (Observe students and give feedback.)

 - (Write on the board:)

 a. \[C = \pi d\]

 \[
 \frac{11}{\pi} = \pi \left(\frac{11}{\pi}\right)
 \]

 \[
 \frac{11}{\pi} = d
 \]

 \[
 3.50 \text{ m}
 \]

 - Here’s what you should have.

 - The circumference is 11 meters. What problem did you work on your calculator? (Signal.) \(11 \div \pi\).

 - What’s the diameter? (Signal.) 3.50 meters.

 i. Work problem B. Pencils down when you’re finished. (Observe students and give feedback.)

 - (Write on the board:)

 b. \[C = \pi d\]

 \[
 C = \pi (4.5)
 \]

 \[
 14.14 \text{ yd}
 \]

 - Here’s what you should have.

 - The diameter is 4.5 yards.

 - What problem did you work on your calculator? (Signal.) \(\pi \times 4.5\).

 - What’s the circumference? (Signal.) 14.14 yards. [14.13 if 3.14 is used.]
j. Work the rest of the problems in part 3. Pencils down when you’re finished. (Observe students and give feedback.)
k. Check your work.
l. Problem C. The circumference is 2.08 feet.
 - What problem did you work on your calculator? (Signal.) \(2.08 \div \pi\).
 - What’s the diameter? (Signal.) 0.66 feet.
m. Problem D. The diameter is 29 inches.
 - What problem did you work on your calculator? (Signal.) \(\pi \times 29\).
 - What’s the circumference? (Signal.) 91.11 inches. [91.06 if 3.14 is used.]
n. Problem E. The circumference is 0.8 centimeters.
 - What problem did you work on your calculator? (Signal.) \(0.8 \div \pi\).
 - What’s the diameter? (Signal.) 0.25 centimeters.

--- Exercise 3 ---

RATE EQUATIONS

Reverse Order
Textbook practice

a. Find part 4. \(\checkmark\)
 - These are problems you solve with rate equations.
 - Last time you wrote the equations so they start with the unit that answers the question.
b. Problem A: A machine produces pencils at the rate of 120 pencils per minute. How long will it take the machine to produce 40 pencils?
 - Raise your hand when you know which unit the problem asks about. \(\checkmark\)
 - Which unit? (Signal.) Minutes.
 - (Write on the board:) \[a. \quad m = m\] [50:3A]
 - Start with the simple equation \(M = M\), and complete the rate equation. Pencils down when you’ve done that much. (Observe students and give feedback.)
 - Check your work.

(Write to show:)

\[a. \quad m = \left(\frac{m}{p}\right)p\] [50:3B]

- Here’s what you should have: \(M = M\) over \(P\) times \(P\).
c. Problem B: There are 3.5 pounds of flour for every pound of sugar. How many pounds of flour are used if 10 pounds of sugar are used?
 - Tell me which unit the problem asks about. (Pause. Signal.) Pounds of flour.
 - Skip 5 lines. Start with the simple equation \(PF = PF\), and complete the rate equation. Pencils down when you’re finished. (Observe students and give feedback.)
 - Check your work.
 - (Write on the board:) \[b. \quad pf = \left(\frac{pf}{ps}\right)ps\] [50:3C]
 - Here’s what you should have: \(PF = PF\) over \(PS\) times \(PS\).
d. Write letter equations for problems in C and D. Leave space below each equation. Pencils down when you’ve done that much. (Observe students and give feedback.)
 - Problem C. Read the equation that begins with \(W\). (Signal.) \(W = (W/M)M\).
 - Problem D. Read the equation that begins with \(CM\). (Signal.) \(CM = (CM/Y)Y\).
e. Now work all the problems in part 4. Answer each question with a number and a unit name. Pencils down when you’re finished. (Observe students and give feedback.)
 - Problem A. How long will it take to produce 40 pencils? (Signal.) 1/3 minute.
 - Problem B. How many pounds of flour are used? (Signal.) 35 pounds.
 - Problem C. How many women work in the factory? (Signal.) 160 women.
50

- Problem D. How much will the diameter increase? (Signal.) 18 and 2/3 centimeters.

--- Exercise 4 ---

MULTIPLYING INTEGERS

--- Textbook practice ---

a. Find part 5. √
 - These are multiplication problems with signed numbers.

b. Remember the rules for multiplying 2 values.
 - If the signs are the same, what is the sign in the answer? (Signal.) Plus.
 - If the signs are different, what is the sign in the answer? (Signal.) Minus.
 - (Repeat step b until firm.)

c. Everybody, read problem A. (Signal.)
 - 5 (– 2.3).
 - Are the signs the same or different? (Signal.) Same.
 - So what’s the sign in the answer? (Signal.) Plus.

 - Are the signs the same or different? (Signal.) Different.
 - So what’s the sign in the answer? (Signal.) Minus.

e. Copy the problems in part 5 and work them.
 - Remember, first figure out the sign in the answer. Then multiply to find the number part of the answer. Pencils down when you’re finished.
 - (Observe students and give feedback.)
 - Check your work.

- Problem A: – 5 (– 2.3).
 - What’s the answer? (Signal.) + 11.5.
- Problem B: – 3/8 (+ 5).
 - What’s the answer? (Signal.) + 15/8.
- Problem C: + 6.4 (– 10).
 - What’s the answer? (Signal.) – 64.
- Problem D: – 4 (+ 2).
 - What’s the answer? (Signal.) – .8.
- Problem E: – 7 (– 1).
 - What’s the answer? (Signal.) + 7.
- Problem F: – 5/7 (– 6).
 - What’s the answer? (Signal.) + 30/7.

--- Exercise 5 ---

ALGEBRA

Like Terms on Both Sides

--- Textbook practice ---

 - Remember the steps: First, combine like terms on each side. Then add or subtract to get a letter term on 1 side and a number term on the other side. Then solve for the letter. Pencils down when you’ve finished problem A.
 - (Observe students and give feedback.)
 - (Write on the board:)

 ![Equation](image)

 - The equation with combined like terms is 6W = 6 + W.
 - You subtract W from both sides. You get the equation 5W = 6. So W = 6/5.

 - Combine the like terms. Then solve for R. Pencils down when you’re finished.
 - (Observe students and give feedback.)
 - (Write on the board:)

 ![Equation](image)

 - Problem G: + 1 (– 6).
 What’s the answer? (Signal.) – 6.
 - Problem H: – 2/3 (+ 7).
 What’s the answer? (Signal.) – 14/3.
• Read the equation with combined like terms. (Signal.) \(3R - 14 = 7\).
• What do you do to change both sides? (Signal.) Add 14.
 So \(3R = 21\).
• What does \(R\) equal? (Signal.) 7.
d. Problem C: \(10 - 2 = \frac{2}{3}H + 6 + \frac{5}{3}H\).
• Combine the like terms. Then figure out what \(H\) equals. Pencils down when you’re finished.
 (Observe students and give feedback.)
• (Write on the board:)

\[
c. \quad 10 - 2 = \frac{2}{3}h + 6 + \frac{5}{3}h
\]
\[
8 = \frac{7}{3}h + 6
\]
\[
-6 \quad -6
\]
\[
\frac{3}{7} \quad 2 = \frac{7}{3}h \left(\frac{3}{7}\right)
\]
\[
\frac{6}{7} = h
\]

• Read the equation with combined like terms. (Signal.) \(8 = \frac{7}{3}H + 6\).
• What do you do to change both sides? (Signal.) Subtract 6.
• What does \(H\) equal? (Signal.) \(\frac{6}{7}\).
e. Problem D: \(11K - 4K = 15 + 2K - 5\).
• Combine the like terms. Then figure out what \(K\) equals. Pencils down when you’re finished.
 (Observe students and give feedback.)
• (Write on the board:)

\[
d. \quad 11k - 4k = 15 + 2k - 5
\]
\[
7k = 10 + 2k
\]
\[
-2k \quad -2k
\]
\[
\frac{1}{5} 5k = 10 \left(\frac{1}{5}\right)
\]
\[
k = 2
\]

• Read the equation with combined like terms. (Signal.) \(7K = 10 + 2K\).
• What do you do to change both sides? (Signal.) Subtract \(2K\).

• What does \(K\) equal? (Signal.) 2.
f. Problem E: \(3G - 7G - 10 + 40 = G\).
• Combine the like terms. Then figure out what \(G\) equals. Pencils down when you’re finished.
 (Observe students and give feedback.)
• (Write on the board:)

\[
e. \quad 3g - 7g - 10 + 40 = g
\]
\[
-4g \quad + 30 = g
\]
\[
+ 4g \quad + 4g
\]
\[
\frac{1}{5} 30 = 5g \left(\frac{1}{5}\right)
\]
\[
6 = g
\]

• Read the equation with combined like terms. (Signal.) \(-4G + 30 = G\).
• What do you do to change both sides? (Signal.) Add 4G.
• What does \(G\) equal? (Signal.) 6.

Exercise 6

INDEPENDENT WORK

Assign Independent Work: textbook parts 7–12 and workbook parts 1 and 2.